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1. introduction 

This paper treats various aspects of the asymptotic behavior of solutions of certain 
elliptic equations of geometric interest on complete Riemannian manifolds. 

Sharp results relating the rate of volume growth of a complete Riemannian 
manifold and the growth of its harmonic and subharmonic functions can be found 
in E22] together with references to related results. In Sect. 2 of this paper we 
consider solutions of the more restrictive inequality Au>=e>O (where 

= div o grad) and show that these must be unbounded if M n has even quadrati- 
cally exponential volume growth, and that u must have faster than linear growth if 

t 

M" has sub-exponential volume growth (as does the function u = x 2 on R 1 for 
\ 

�9 d . 

which ~ u = 2 . These results (which are sharp) lead, in Sect. 3 to an inequality 

for the exterior radius of certain complete Riemannian manifolds immersed with 
bounded mean curvature vector in Euclidean space. Our results in this direction 
generalize previous results of Aminov [1], Hasanis and Koutroutiotis [14], and 
Jorge and Xavier [20]. In particular, it is shown that a complete Riemannian 
manifold with exponential (or even quadratically exponential) volume growth 
cannot be minimally immersed in a bounded set in Euclidean space, while it is 
known ([18], cf. [34, p. 690]) that such immersions exist if the volume growth 
restrictions are removed. 

The last section of the paper connects the results of Sect. 2 with Brownian 
motion on complete minimal submanifolds of R N, and it is shown that Brownian 
motion is non-explosive on a complete, properly imbedded minimal submanifold 
0fR ~. 

Weaker versions of some of the results of this paper were stated without proof 
in [23]. 
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2. The Main Analytic Theorems 

In this section and throughout the paper we let Q(-) denote the intrinsic 
Riemannian distance function on the Riemannian manifold (M", ds 2); the distance 
is measured from a fixed point x o e M which plays no role in what follows. We 
denote by B(xo; r) the geodesic ball of radius r and center Xo, and we often write 
B(r) when the specific choice of Xo is irrelevant. 

In what follows we will use two quantitative measures of the rate of volume 
growth at infinity the Riemannian manifold (M", ds2). We define 

and 

71 = lim_ sup-1 r log vol B(r), 

1 
72 = lim soouP ~- log vol B(r). 

It is well-known that the rate of volume growth is connected with lower 
estimates for the Ricci tensor. Indeed, one has the following standard estimates: 

Proposition 2.1 (cf. [4, p. 256]). I f  the Ricci curvature of M ~ satisfies 

Ricci_>_ - ( n -  1)~ 2 (2.1) 

in B(r) then 

. . . . .  ~ (sinhat) "-1 
vot a(r) ~= c. j ~ dt. 

o ct 

As an immediate consequence we have 

Corollary 2.1.1. I f  (M n, ds 2) is complete and the Ricci tensor satisfies 

Ricci > - ( n -  1)or 2 

then 71 < ( n -  1)~< o0. 

If we let ~ in (2.1) be dependent on r then we may derive 

Coronary 2.1.2. I f  (M n, ds 2) is complete and the Ricci tensor satisfies 

Riccix ~ - c(1 + Q(x) 2) 

for some constant c > 0 and all points x then 72 < o0. 

It is worth remarking that this last estimate is essentially sharp. For example, 
the metric ds2=dr2+G(r)2dO 2 on IR 2 [where G(r)>0 if r>0 ,  G(0+) =0, and 
G ' (0+)=  1] has y2= + oo if G(r)=e :+" for r ~  1, and in this case the curvature 
Kx = -G" /G  ~ -Q(x) 2+ 2~. On the other hand, a consideration of metrics with 
G(r)=e -r f(r)--.oo, and f , _ f , 2 ~ _  oo shows that we can have vol(M)< oo 
and still have curvatures tending to - o o  with arbitrary speed as Q(x)--, o0. 

We now turn to the main results of the paper: 
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Theorem 2.2. Let (M", ds z) be a complete Riemannian manifold with volume-orowth 
of exponential type (i.e., 71 < ~ ) .  I f  u: M " ~ R  1 satisfies 

then 

u(x) 
lim sup ( - - ~  <a 

,,-,oo \ o ( x ) /  

inf(Au)<71a. 
M 

A related result is contained in 

Theorem 2.3. Let (M", ds 2) be a complete Riemannian manifold with Y2 < oo. I f  
u: M" ~ R 1 satisfies supu < ~ then 

infAu<O. 

We postpone for a moment the proofs of Theorems 2.2 and 2.3 and turn to 
some 

Examples. 1) Let (M",ds z) be a simply-connected space of constant negative 
sectional curvature = - c  2. It is known (cf. [13, Chap. 2]) that on such a manifold 
d0 > (n - 1)c and y i = (n - 1)c. If we now take u = Q it follows that the statement of 
Theorem 2.3 is sharp. 

2) Consider the metric ds 2 = dr 2 + G(r)ZdO z on R 2. One cheeks easily that, for a 
radial function u(r), 

1 
Au = -6 ( Gu,), . 

It follows that the function u(r)=! ds ! G(t)dt satisfies Au= 1 and 

s 

supu(r)= ! G(t)at. oa 5 
Note that this improper integral converges if we take G(r) = r x + ~e '~ +" for r > 1, and 
in this case logvolB(r) , , , r  T M  as r--,oo, and 72 just barely fails to be finite. 
Theorem 2.3 is thus quite sharp. [] 

We now give the 

Proof of Theorem 2.2. We first note that given 0 < 0 < 1 there exists a positive 
constant C > 0 and a family { ~ . ;  r)}, r e R +, of smooth functions with compact 
SUpport such that ~(x; r) ~ 1 for x e B(0r), ~(x; r) = 0 for x ~ M " -  B(r), and 
II V~(x; r)H < C for all x e M" and r e R+.  In fact, it is shown in [12] that given e > 0 
there exists a C ~ approximation W to the distance function O such that 
suP l~-Q[ _-<8 and II Vvgll-<_ 1 + 8. A family with the desired properties may be 
defined via #=#0P) after an appropriate choice of #eC~(R1) .  (For a similar 
Construction see [2] or [32].) 

With 2 > 0 (to be chosen later) and Q = Q(x), we have 

div [ e xp ( 2u -  7#) �9 Vu] = exp(2u-TQ) [21117u112-7(170, Vu) + Au] .  
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Now if infAu = b > 0 we have 

itllVullZ-~llVull + hu2 i t -Tp  IlVull2 

y2 
for every/~ < b. It follows that with 2 -  ~ = A(2, Y, f)  = A > 0 

A S ~2(x;r)exp(itu-ro)llVull 2 
B(r) 

< 2  I ~(x ; r ) .exp( i tu- r0) l (V~,  Vu)l 
B(r) 

~ 2 (BSr) ~2 exp(itu-,O) l[ Vu l[2) l/2 

�9 (/dr) H V~ l[ 2 exp(itu - TQ)) 1/2, (2.1) 

since ~ div(~2X)=0 for any vector field X. Now 17q~=0 except in the annular 
B(2r) 

region B(r)-B(Or). Thus if ? = ~  + q + ~  

$ lllZo~llZexp(2u-70)<c z sup [exp(2u-l /0)]  J e -~+~)Q 
B(r) B(r) - B(Or) B(r) - B(Or) 

It follows from the definition of ya that 

~ e-(Y~+a)e < oo ; 
M 

in fact, 

(2.2) 

]" e-(,,+~)~= ~ ~ e-(r'+')Q<er'+~ ~ e-(r'+~)kvolB(k) 
M k= 1 B(k)- B(k- Z) k= 1 

which converges. Consequently, if eventually 2 u -  r/Q < 0 as Q~ ~ ,  it follows from 
(2.1), (2.2), and the fact that 

S e (- ~ +6)~ 
B(r) - B(Or) 

as r ~ ,  that IlVul[-0. This contradicts the assumption that infAu>0. To 
M 

complete the proof  we note that if lim sup ( u ]  < a then -q u-r/O < 0, eventually. If 
,~oo \ ~ /  a 

(71 + q)2 < 4b then we can choose it with ~.~ < it < -~ for some 6 = Y -  r / -  71 > 0 and 
r/ a 4p  a 

O</~<b,  and then Au-uQ~O for Q large. SetF(q,=(Y~+V~)Z.  Fac hievesa 
L 

minimum value of 47~ with the choice q = Yl. It follows that if ~ > 71, we are led to a 

contradiction. [] a 

We now turn to the indirect 

Proof of Theorem 2.3. Without loss of generality we may assume that u<O. If 

Au>b>O on M" then v=  l u  satisfies Av~_ 1 and w=e v satisfies O < w < l ,  and 
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Aw>__eVAv>=w. Consequently, the function (~(x,t)=def(et--1)w--t satisfies 

A - ~ ~ = ( e  t -  1 )Aw-e tw+  1 >(e  t -  l ) w - e ' w +  1 > 0  on Mx[O, oo). 

0 
Let ~ ,  be tbe solution of the heat equation (zl - N )  ton ; 0  on ~n =Kn x [0 , r ]  

with ton=~ on Oo~n=aofKnx{t=O}uOKnx[O,T]. Here {K~} is a smoothly 
bounded exhaustion of M n, and T >  0 will be chosen later. Since ~ is uniformly 
bounded on Mx[O, T] it follows from the maximum principle that the functions 
{to,} are also uniformly bounded onK x [0, T] if K C C M, and n >> 1. By standard 
interior estimates for parabolic equations [11] the functions {ton} converge to a 
global solution to of the heat equation on Mx[0, T] and to(x, 0) = 0 since ~ = 0 
when t = 0. We claim that ~ ~ 0. Indeed, 

in Q, and to, = ~ on 0of2~. It follows that ~p~ > ~ in ~ .  Now consider the difference (0) 
~0~§ n in f~,. We have A - - ~  (u and u  

on 00f2 .. It follows that the sequence {~}  is increasing, and to> to, for all n. Now 
t0,(x, t) > (e' - 1)w-- t > 0 for t large enough and x fixed. Therefore, if we choose T 
large enough, ~2(x, t)>0 for some x e M and some t < T. It follows that to is a 
solution of the heat equation that is uniformly bounded on Mx[0, T], initially 
equal to zero and not identically zero. This, however, contradicts a recent result of 
Karp and Li [24] which asserts that no such function can exist if ?2 < m. This 
completes the proof. [] 

Remarks. (a) Theorem 2.3 generalizes a result asserted without proof (and in a 
different context in [15]). 

(b) Theorems 2.2 and 2.3 may be considered as "weak generalized maximum 
principles" on noncompact manifolds. Note  that if there exists a point p ~ M* for 
which u(p)~ u(x), Vx ~ M", then du(p)< 0. Such a point certainly exists, and has 
the additional property that lZu(p) = 0, if M" is compact. Generalizing earlier work 
of Omori [27], it was shown by Yau [31] (see also [7, 14]) that if the Ricci 
curvature of (M ~, ds 2) is bounded from below and (M*, ds 2) is complete then a 
generalized maximum principle is valid: If u: M * ~ R  ~ satisfies supu < oo then 
given e > 0, 3p~ E M" with Au(p~) < e, II Vu(p~)II < ~, and u(p~) > sup u--  t. This result is 
extremely useful (see [33], for instance) and it is reasonable to ask whether or not 
Theorem 2.2 (resp. 2.3) can be strengthened to give this conclusion under the 
Weaker hypothesis that 71 <ao  and limsup(u(x)/o(x))~O (resp., ~'2< oo and 

r oO 

SUpu < oo). It may be noted that for any complete manifold (M ~, ds2), ifu: M n ~ i R  ~ 
satisfies sup u < oo then given ~ >03p~ with 

u (p~)>supu-e  and 1117u(p,)[l__<l/~. 

This follows from very general metric space results [17]. 
We conclude this section with some immediate consequences of the theorems 

and Proposition 2.1. 
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Corollary 2.2.1. Let (M n, ds 2) be complete with Ricci curvature bounded below by 
- ( n - l ) c  2. If  u:M~--,R 1 satisfies limsup(u(x)/Q(x))<a (resp., s~p[Vul< ~)  

then inf (A u) < ( n -  1)ca (resp., infA u < (n -- 1)c. sup I Vul). I f  u has sublinear ~Trowth 
(i.e., a=O) then inf(Au) <0. 

Corollary 2.3.1. Let (M', ds 2) be complete with Ricci curvature satisfying Riccix> 
-c(1  +Q2(x)) for some c>0.  I f  u :M~--,R ~ and supu< oo then inf(Au)<0. 

Corollary 2.2.2. Let (M ~, ds 2) be complete and have subexponential volume growth 
(which occurs, for instance, if Ricci>0). I f  u : M*--,R 1 and supllZul<oo then 
inf(~u)~0. 

Remark. A result somewhat weaker than Theorems 2.2 and 2.3 was announced 
without proof in the author's paper 1-23]. 

3. Applications: Isometric Immersions and Minimal Submanifolds 

In this section we consider various applications of the results of Sect. 2. We begin 
with an estimate for the exterior radius of a complete manifold immersed in 
Euclidean space (or any simply-connected space of nonpositive curvature). Recall 
that according to a result of Nash 1-26] any noncompact n-dimensional 
Riemannian manifold (Mn, ds 2) can be isometrically imbedded in a ball of 
preassigned radius e>0 in Rn+k if the codimension k is large enough. Of course, 
such an imbedding would have to twist a great deal and this twisting is controlled 

the magnitude of mean curvature vector H ( =  _1 trace of the second by \ n \ 

fundamental form) of the immersion. 

Theorem 3.1. Let (M n, ds 2) be a complete Riemannian manifold with volume growth 
satisfying Y2 < ~ .  I f  (M ~, ds 2) is isometrically immersed in a simply-connected 
complete Riemannian manifold ffl n+k, k>0 of nonpositive curvature and 
Ho=suup IIH[I <oo ,  then the radius R of the smallest geodesic ball in ffl n+k that 

1 
contains M ~ satisfies R ~ Ho. 

1 
Remark. Clearly, R = Hoo if M * is a hypersphere of radius R in 17, ~+ 1 

Corollary 3.1.1, Let (M 2, ds 2) be a complete Riemannian manifold with scalar 
curvature S that satisfies S(x) ~ - C(1 + Q(x) 2) for some C > O. I f  (M ~, ds 2) is is 
isometrically immersed in geodesic ball of radius R in a simply.connected space of 

1 Ho=s~ IIHI]. nonpositive curvature then R ~ H--oo' 

A particular case deserves special mention: 

Corollary 3.1.2. l f  (M n, ds 2 ) is a complete Riemannian manifold with scalar curvature 
$ that satisfies $(x)>=-C(l+Q,(x) 2) for some C>0,  or /f 72 < ~  (e.a., /f 
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vol M < ~.),  then ( M n, ds 2 ) cannot be isometrically minimally immersed in a bounded 
set in a simply-connected space of nonpositive curvature. 

To prove these results we need 

I.emma 3.2. Suppose that M n is isometrically immersed in ffl n + k. I f  f :  IVI ~ R 1 then 
the Laplacian of the restriction o f f  to M is #iven by 

AMY= trM(172f) + n(n ,  g r a d ~ f ) ~ .  

Here 17 is the Riemannian connection on A~ and H is the mean curvature vector of 
1 

the immersion = - (trace of the second fundamental form). 
n 

This formula is well-known, but since it is difficult to give an explicit reference 
we give a short proof for completeness. 

Proof. Since Au=divMogradM and d i v M X = ~  (El, IzE,X)M for a local ortho- 
normal frame {Ei} of M, we have 

AMY= ~ <Ei, VE,(gradMf)>M 
/=1  

= • [E~(E~, grad~,f> - ( 17e,Ei, g rad~f>]  

= ~, [E,(Egf)- ( VE,E,, gradMf>] 

= E [E,(E~f)- (V~,Ei)f+ <g(E,., E~), g r a d a f > ] ,  

where a(X, Y)= VxY-VxY is the second fundamental form (cf. [25, pp. 11, 34]). 
Thus 

A f =  ~, V2f(Ei, Ei) + n<n, gradMf > , 

as required. [] 

Proof of Theorem 3.1. Suppose that M" is contained in a ball of radius R and center 
x0 ~ /~ ,  +k. Set f =  0(x) 2 where O(x)= distance from x to Xo in ~ "  +k. Recall that it 
follows from the hypotheses that ~2 is smooth (cf. [16], Chap. 1]). Using 
Lemma 3.2 we find 

A w" > trM[ 172(~2) (x)] - nHo. 20(x) ~ 2 n -  2nnoR. 

Here we have used the Hessian Comparison Theorem (cf. [30], and [13, Chap. 2]) 
according to which 172(~2)>2< ., .  >a since /~,+k is simply-connected and of 
nonpositive curvature. Sincefis  bounded on M" we must have HoR > 1, according 
to Theorem 2.3. The proof is complete. [] 

Proof of Corollary 3.1.1. It suffices to show that 72 < ~ follows from the estimate 
on the scalar curvature in the presence of the condition Ho < oo. For this we note 
that if {E~} is a local orthonormal frame for M '  then contraction of the Gauss- 
curvature equation gives 

S(x) ~ ~, sec~ (E~ ^ E j) + n 2 liB II 2 _  11~ II 2 
i * j  
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where [[ccll 2 denotes the square of the length of the second fundamental form ~. It 
follows that 

II ~ 112 ___< n2H~ + C(1 + 0(x) 2) + KR, 

where/~R = n(n- 1) times the maximum of the sectional curvatures of 53 on the 
ball of radius R that contains M' .  It now follows from the Gauss curvature 
equation 

see M (X ^ Y) = sec~ (X ^ Y) + (g(X, X), g(Y, Y)) - l] g(X, Y)][ z 

for a two plane X ^ YC ToM C Te53, that the sectional curvatures o f M  ~ satisfy Isec~l 
<C'(l+o(x) 2) for some C '>0 .  The desired conclusion now follows from 
Corollary 2.1.2. [] 

Proof of Corollary 3.1.2. For a minimal immersion H = 0 (i.e., Ho = 0) and so the 
hypothesis concerning the scalar curvature leads to 72 < ~ as in the proof of 
Corollary 3.1.1. Of course, it actually suffices to assume that Y2 < ~ .  [] 

Remarks. (a) Under the more restrictive assumption that the scalar curvature is 
bounded below, the conclusions of Corollaries 3.1.1 and 3.1.2 were obtained by 
Aminov [1] for n = 2  and 5 3 = R  t~, and Hasanis and Koutroufiotis [14] for n>2 
and M = R  s, and Jorge and Xavier [20] for n->2 and 53 as above [19]. Weaker 
results, for n > 2 and M ' =  R s, were obtained earlier in [1] and [6]. See also [23] 
for a formulation of results slightly weaker than those given here. 

(b) Similar estimates can be obtained for the exterior diameter o f M  n immersed 
with bounded mean curvature in a normal coordinate ball BR in any manifold/~. 
These involve the maximum curvature of 53 in BR. For this one only needs lower 
estimates for V202, as in the proof of Theorem 3.1, and these are readily available 
(in [13], for example). This is carried out under more restrictive hypotheses in [20] 
and [21]. 

c) The conclusions of Corollary 3.1.2 are not valid for aribtrary minimal 
immersions and some hypothesis such as y2< ~ or S(x)>-C(1 +O(x) 2) is 
required, at least if the codimension is greater than one. In fact, there exist 
constructions of bounded two dimensional minimal surfaces in R ", n => 4 due to 
Calabi (see [34, p. 690]) and Jones [18]. The question of Calabi (see [10]) and 
Chern [8] as to whether or not there exist bounded minimal submanifolds in R ~ 
remains open in the case of codimension one, and the results of this paper are the 
most general known for arbitrary codimension. 

d) For  M n compact the result of Corollary 3.1.2 is due to O'Neill [28]. ~ 

4. AppHcatiomm: The Heat Equation and Brownian Motion 

In this section we take up some connections between Brownian motion (or, 
equivalently, heat diffusion) on noncompact Riemannian manifolds and the 
previous results. 

It is known that there exists a unique minimal heat kernel p(x, y, t) for a~Y 
noncompact complete Riemannian manifold (M', ds 2) (cf. [3]; see [9] for a clear 
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and detailed construction). Associated with this kernel, there is a unique Markov 
diffusion process {Xt) called Brownian motion on (M*, ds2), and it is known that 
{X,} is conservative (or nonexplosive), i.e., {Xt} remains in M ~ C M* (= the  one 
point compactification of M) for all 0 < t < ~ ,  if and only if bounded solutions of 
the heat equation on M n x 1,0, T] are uniquely determined by their initial data (cf. 
[31 or 1,24] for a more complete discussion). 

We first note that 

Theorem 4.1. Brownian motion is explosive on a complete bounded minimal 
submanifold of of R N. 

Proof. The proof of Corollary 3.1.2 in conjunction with the proof of Theorem 2.3, 
shows that on a bounded minimal submanifold of R N there exist two distinct 

bounded solutions of the heat equation ( A - ~ ) u = O  on Mx[O,T] with 

u(x, 0) = 0, the function ~p constructed in the proof of Theorem 2.3 and the function 
u = O .  [ ]  

On the other hand we have 

Theorera4.2. Brownian motion is non explosive on a minimal graph 
xn+ 1 = f  (xl, ..., xn) over R n, and even on any complete properly imbedded minimal 
submanifold M ~ of p,N. 

Remark. Recall that it is known that for n>  8 there exist minimal graphs that are 
not planes 1,5], while for n < 7 all minimal graphs are planes [29]. [] 

Proof. We will show that bounded solutions of the heat equation on Mx[O, T] are 
completely determined by their initial values. It can be shown that for area 
minimizing hypersurfaces oflR N this result follows from the very general results of 
[24]. It is our purpose here to give an elementary proof following standard 
methods, motivated by 1,91 which applies also to properly imbedded surfaces. To 

N 
this end we consider the function ~ = ~ x~ + (2N + l)t restricted to M n. It follows, 

i=1 

as in Section three, that for the Laplacian of M, A, we have ( A - ~ )  fb ~ - l .  If 

u(x,t) is a bounded solution of ( A - ~ t ) u = 0  on Mxl0,  T] then set 

Nr  = supuxto' rllU(X, t)[ 

No = supM lu(x, 0)1 

and 

NT v= + u - N o - - ~ .  

Let M s be the portion of M that intersects the N-ball Bxt(0). Then on MRx[0, 7"] we (0) 
have A - ~ v>O, while v<O on OMR x [0, T ] u M ~  x {0}. It follows from the 
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max imum principle that  v < 0 in MRx[O, T],  i.e., 

N r  
+_ u(x, t) < N O + -~T c~(x, t) . 

Here we need to choose R = R i  (--. oo) such that  Ms ,  is a compact  manifold with 
bounda ry  ~ M ~  = Mc~dBR,. This is possible since M is complete and properly 
imbedded in R/v. Letting R i ~ o o  while (x, t) are fixed, we obtain 

lu(x, t)l =< lu(x, 0)1, 

which yields the desired conclusion. []  
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Note added in proof. A slight change in the function ~ in the proof of Theorem 4.2 yields the same 
conclusion under the weaker hypothesis that H is of polynomial growth in Ixl. The details are leg 
to the interested reader. 


