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Let X be a smooth projective variety over a field. Let ~f~ denote the Zariski sheaf 
associated to the presheaf U ~-, Kj(F(U, Cv)) of Quillen K-groups. The collection 
of Zariski cohomology groups H~(X, ~Fj) will be referred to as the K-cohomology 
of X. The groups contain a great deal of information about the geometry of X. For 
example, Bloch's formula [11] says that Hi(X, ~ )  is isomorphic to the group 
Ctt~(X) of codimension i cycles on X modulo rational equivalence. 

In this paper, the K-cohomology of a rational surface over a finite field will be 
calculated up to p-torsion, where p is the characteristic. Recall that a surface X 
over a field F is called rational if Z = X |  is birational with I'3 over the 
algebraic closure F. 

Motifs play a central role in the computation. The idea that motifs could be 
used effectively to study the K-theory of varieties over finite fields is due to Soulr, 
whose paper [15] is a fertile source of inspiration. He introduced the 
K-cohomology of motifs and proved several important finiteness results. In 
particular, he showed for a wide class of varieties, including rational surfaces, that 
Ki(X) is torsion for j > 0. A second source of ideas is the fundamental work of 
Merkurjev and Suslin [I 8], especially as applied in [4] to codimension two cycles 
and in [17] to the K2-cohomology of rational surfaces. 

The paper is organized as follows. The first section contains a brief review of the 
theory of motifs. From the motivic point of view, all the relevant data about a 
rational surface is contained in the action of the Galois group on Pic(X). This 
action is a continuous, finite dimensional, integral Galois representation. The 
second section contains a computation of the prime-to-p K-theory of such 
representations when F is finite. 

In the final section, the orders of the K-cohomology groups are related to the 
values at integer points of the L-functions associated to X. Let # F = q = ig and let l 
be a prime different from p. Let 4j denote the endomorphism of the &ale 
C0homology group HJ(X ", r which is induced by the q-power Frobenius. Define 
.P~(t) = det(1 - ~:)  and Lj(s) = Pj(q- ~). Also, if a, b ~ ~,  write a ~ b to mean that a/b 
is a power of p. 
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Theorem. If  X is a rational surface over a finite field and if n>2,  then 

L2i(n).,~ ~Hi(X,O~'2n_i_l) 0_<i<2 

L2~+ l(n),,~ 4~ Hi(X, ~/12n_~_ 2) 0 < i < 1 .  

The restrictions on i in the theorem correspond to the range of possibly 
nontrivial &ale cohomology groups and L-functions. The restriction on n avoids 
any contribution from Ko(X ), hence by [15] lies in a range where the K-groups are 
torsion. The conclusion also holds for certain other particularly simple varieties. It 
is compatible with the Quillen conjecture for curves. It is unlikely that such a 
simple formula holds in general. Beilinson [2] and Lichtenbaum [8] have 
conjectured a theory of arithmetic cohomology which would yield a more 
elaborate formula for the values of the zeta function of X at any positive integer n. 

1. Motifs and Rational Surfaces 

For a fuller discussion of the theory of motifs, see [9, 15]. The category of motifs 
used here is constructed from the integral Chow theory as follows. Let V(F) be the 
category of smooth projective varieties over a field F. Let CV(F) denote the 
category of correspondences between varieties over F. That is, the objects of C7(F) 
are the same as those of V(F). If 3f, ~r are objects of CV(F) which represent 
irreducible varieties X, Y, then 

Homcv~r~(~g, ~r) = CHaim x(X x Y). 

A pair of morphisms f ~ CHatmx(x • Y), g ~ CHaimr( Y • Z) is composed by the 
rule 

go f = (prxz).(pr*r(f)npr*z(g)), 

where the cycle theoretic intersection is computed on X x Y x Z. These definitions 
are extended to reducible varieties componentwise. 

Define the category M + (F) of effective motifs over F to be the pseudo-abelian 
completion of CV(F). Thus, the objects of M+(F) are pairs (X, c) consisting of a 
variety X and a correspondence c ~ CHdfmX(x X X) which is a projector; i.e., 
c o c = c. The morphisms (X, c)~(Y, d) are defined as 

{ f  eCHdimx(x • Y): f oc=do f } / { f  : f oc=do f =O}. 

Composition of morphisms is induced from CV(F). 
There are natural functors V(F)~ which assigns X to X and f :  y-~X 

to the class of its graph as a cycle on X x Y, and CV(F)~M+(F) which embeds 
as ~" =(X, lx). The category of effective motifs has a number of advantages. It is 
additive, and every projector has a kernel and an image. It has a direct sum induced 
from ~ @  17= (XHY) ' and  a tensor product from .g|  ~'= (X x Y)'. Furthermore, 
let H: V(F)~ be a graded cohomology theory which admits a 
multiplicative structure, a A-linear eovariant structure subject to the usual 
projection formula, and a compatible cycle class map. Then H extends to an 
additive functor M+(F)~A-algebras. This result holds for the Chow theory, for 
&ale cohomology, and for the bigraded K-cohomology. 
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Let U = (Spec F, 1) be the motif of a point. Then U is a unit for the tensor 
product operation. Let e e F  ~ be an F-point. Then U ~ ( F t , e x P  1) and, if 
L= (F ~, ~'~ • e), there is a canonical decomposition 

~i  = U@L. 

The motif L plays a particularly important role. For instance, 

~ .  U@L~.. .~L ~. 

If g is a vector bundle on X of rank n + 1 with associated projective bundle 
Z= F(8), then 

2~s163174174 
If B is the blowup of X along a smooth center Y of codimension r + 1, then 

B~, X $ ( Y | 1 7 4  

Twisting a motif M by L effects cohomology by 

Hi(M| L, ~ )  ~ Hi-  1( M, ~ -  1) 

Hi(M| Zt) ~ H s- 2(M, 711( - 1)). 

Finally, the endofunctor M ~ M |  i is fully faithful. One completes the construc- 
tion of the category M(F) of all motifs by formally adjoining an inverse L- 1 of L for 
tensor product. 

Now suppose that X is a rational surface over F. A Galois extension ElF is 
called a splitting field for X provided that the surface Xe obtained by base change 
is birational to ~2 by a sequence of monoidal transformations centered at 
E-points. Over E, the motif of X becomes 

Xe ~' U ~)mLt~ L2 . 

This decomposition follows immediately from the motivic behavior of blowups. 
The K-theory and the &ale cohomology of XE are completely understood. One 
would like to proceed by descent theory. A key step is provided by the following 
consequence of [4]. 

(1.1) Theorem. Let X, Y be smooth, projective, oeometrically connected varieties 
over a finite field F of characteristic p. Let G = Gal(F/F). Let 1 be a prime different 
from p. Assume 

(i) X and Y are simply connected ; 
(~) H~(s162 
(iii) na(2  x Y,, Zz(2)) is torsion free. 

Then CHz(X x Y) has no l-primary torsion. 

Proof. It is shown in [4] that the/-primary torsion ofCH2(X x Y) is a subquotient 
~ x Y, ~t/T~2)). It suffices, therefore, to show that the latter group vanishes. 
Since .~ and ~ are simply connected with vanishing H a, the Kunneth formula 
shows that Ha(X " x Y,, Q,/lz(2))= 0. The Serre spectral sequence thus yields an 
isomorphism 

Ha(X x Y, 1~,/7.,(2)) ~ H*(G, H2(.eY x ~ ~JZ,(2))) 

~, H2(~ x Y,, ~t/7.~2))o. 
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By the Weil conjectures [6], 

H2(2 x ?, ~,(2)) ~ = o = H2(2 • ?, ~ ( 2 ) ) ~ .  

Since H3(X x Y, Zl(2)) has been assumed torsion free, the long exact cohomology 
sequence shows that H2(X x ~, ~t/Z,(2))= 0, as desired. 

(1.2) Corollary. Let X and Y be rational surfaces over the finite field F. Then 
CH2(X • Y) has no prime-to-p torsion. 

Proof. Since rational surfaces have no odd-dimensional cohomology, hypotheses 
(i) and (ii) of the theorem hold. Since X • Y can be obtained from ]p2 • p2 by a 
sequence of blowups centered at "point • surface" or "surface • point," it also has 
no odd-dimensional cohomology, and hypothesis (iii) also holds for all primes 
l#p .  

(1.3) Theorem. Let X be a rational surface over a finite field F. Then the motif of 
X,  and hence its cohomology, is determined (up to p-torsion) by the action of 
Frobenius on Pie(X). 

Proof. Let E/F be a splitting field. Write 

XE ~ U ~ m L ~  L2. 

Let Y be a rational surface over F obtained by blowing up m -  1 F-points on p2 

Then ~ ~ U ~ m L ~  L 2 

and ~e is E-isomorphic to XE. This isomorphism determines descent data or, 
equivalently, a cohomology class in 

Ht(Gal(E/F), Autu(E~(Yz)). 

These descent data will suffice to determine the motif of X provided the base 
change functor - |  is faithful on the full subcategory of motifs of rational 
surfaces. For such surfaces X, Y, the usual norm argument shows that the base 
change homomorphism 

fl: CH2(X x Y)-+CH2(XE x YE) 

has torsion kernel. By Theorem 1.1, fl is injective up to p-torsion. Hence the base 
change functor is faithful provided one works in the motivic category localized 
away from p. So, the descent data determine the motif of X up to p-torsion. 

Since X is defined over a finite field, it contains an F-rational zero cycle e of 
degree 1 [15, Lemmal,  1.5.3]. The projectors e x X  and X •  determine a 
decomposition 

.X ~ U ~ N(X)@L 2 

for some motif N(X). Arguing as in the proof of Theorem 1.1, one sees that 
CH2(X)=Z.  So, this decomposition is canonical. Upon base change to /~, 
N ( X ) |  -1 extends to the motif mU. But 

Endmr~(mU ) = CH~ 2 points) = M=(Z) 
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is the ring of m • m integral matrices. Hence 

AutulE)(mU ) = GL(m, 7.). 

To give descent data  which determine 3( it suffices to give descent data on mU 
which determine N ( X ) |  that is, a class in 

HI(Gal(E/F),  GL  (m, Z)) = H o m  (GaI(E/F), GL(m, Z)). 

Since F is finite, each homomorphism is determined by the image of Frobenius. 
Finally, the action of Frobenius on N ( X ) |  is faithfully reflected on its &ale 
cohomology 

HO(N(X) |  - 1, Zt ) = H2(N(X), 7 Z , ( 1 ) )  = Pic(X)| 7Z~. 

(1.4) Example. Let X be the surface in F 4 defined by 

a(dR - S 2) = b( T + U) (T + If) 
c(dR 2 -  T 2) = b(S + U ) ( S -  11) 

for some a, b, c, d e F. If d r F2, then X is not birational to F 2 over F, but is so over 

the splitting field F(~/-d). Such surfaces are degree 4 del Pezzo surfaces of Manin's 
type IV [10]. If {l, e~ . . . . .  es} is the standard basis of Pic(X), then Frobenius acts 
through 

- 2  - 1  - 1  - 1  - 1  - 1  

1 - 1  1 0 0 

1 - 1  0 --1 0 " 

1 - 1  0 0 - 1  

, 1 - 1  0 0 O -  

A more convenient basis for understanding the representation is { l - e ~ - e s ,  es, 
el - ez - e a, ex - e4 - es, e4 - es, e2 - -  es} which yields the similar matrix 010001)0 1 0 0 0  0 0 

0 0 0 1  0 

0 0 1 0 0  " 
0 0 0 0 - 1  

0 0 0 0  0 - 1 /  

On the one hand, these surfaces give 
caa be applied. 

nontrivial examples to which the theorems 

On the other hand, suppose F is a local or global field. Colliot-Th616ne [17] 
showed that CHZ(g)tor is finite. Coombes and Muder [5] showed that there exists 
nontrivial torsion varying with the parameters. Theorem 1.1 fails over such fields, 
and Theorem 1.3 fails in the sense that the Galois representation on Pie(X) does 
not determine the motif of X. 
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2. The K-Theory of Representations 

To each rational surface is associated a continuous, finite dimensional, integral 
Galois representation. Other motifs also give rise to such representations. For 
instance, let E/F be a finite Galois extension with group G. Write rn = [E:F]. 
Consider the F-motif P(E)=(SpecE, 1). After base extension, P(E) becomes 
isomorphic to the motif of m points. As before, descent theory assigns to P(E) a 
representation of G in GL(m, Z); this is just the regular representation. 

It is interesting to note that not every representation can be realized as a motif 
of the form (X, c) where X is a union of points. For example, let Q be the integral 
representation with Frobenius acting on 7/by multiplication by - I .  The only 
zero-dimensional candidate to realize Q over F = F~ is as a summand of P(F~2). But 
the representation P(F~2) is indecomposable; if a is the nontrivial automorphism, 
then the projector (1 +a)/2 is only defined rationally, not integrally. Even more 
interestingly, Q is a direct summand of the representation associated to a degree 4 
del Pezzo surface of Martin's Type IV, so a is actually an integral motif. In order to 
pick out the representations within the category of motifs, one has the 

Definition. Let M be an F-motif and let ~M be the Frobenius endomorphism of M. 
Let I be a prime different from p. Say that M is/-pure of weight w if 

(a) B~(M, Qt) = 0 for i 4= w; 
(b) the natural map Z[~bM] C End(/~)~End(HW(J~ r, ~l)) is injective. 

Every/-pure motif of weight w thus gives an l-adic representation of the Galois 
group. If this representation is actually integral independently of l, then M is said 
to be pure of weight w. A motif will be called continuous if ~b M has finite order. 

The continuous pure motifs of weight 0 form an additive subcategory M~ of 
M(F), dosed under direct sum and tenso[ product. The functor of 6tale 
cohomology faithfully describes M~ as a subcategory of the category R(F) of 
continuous, finite dimensional, integral Galois representations. Objects of M~ 
have a K-theory by virtue of being motifs [15]. There is also a natural candidate for 
the K-theory of objects in R(F). 

Let Q E R(F). Let ElF be a Galois extension field over which the restricted 
representation eEeR(E) becomes trivial. Let re=rank(e). Clearly, K~(~e) 
~Z~|  View this as a tensor product of Galois modules for Gal(E/F), 
acting in the usual way on Ki(E) and through the representation Q on ~m. Define 

Ks(O ) = (Zm| K ~( E) )O~l (Wr) . 

This definition has the following desirable properties. 

(2.1) Independence of Splittino Field. Suppose El and E2 are two different fields 
over which e becomes trivial. Let Gi=Gal(EJF). Then 

(Zm| K~E1)~ ,~ (~,.,n | K~E2)~2 . 

To prove this, it is enough to assume E~ CE2. Then G2--~Gt and the kernel H acts 
trivially on ~ .  So, it suffices to check that 

KIE 1 ~ (KtE2) n . 

The latter follows immediately from Quillen's computation of the K-theory of 
finite fields [12]. 
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(2.2) Normalization. Let 2 be the regular representation of GaI(E/F). Then 
Ki(2)= K,(E). 

(2.3) Direct Sums. If 0, a ~ R(F), then 

K,(e @ a) = K,(e) �9 K,(tr). 

(2.4) Localization. Let Z C R C Q  and let o be a continuous Galois representation 
into GL(m, R). Let 

Then for every q e R(F), 

K~(a) = (R m | ~ . 

K~(Q| = K~(o)| 

(2.5) Functoriality. The K-groups are covariantly functorial on R(F). 

(2.6) Projection Formula. Let E/F be any field extension. Let 0~ be the represen- 
tation obtained by base change from Q e R(F). There are natural maps 

a* : K~(Q)~ Ki(o~). 

If ElF is finite, then there are also transfer maps 

�9 , :  K~(a,)--,Ki(O. 

These maps are related by the usual projection formula. 

(2.7) Theorem. Let M E M~ be a continuous pure motif of weight 0 with motivic 
K-groups K~( M). Let ~: Gal (E/F) ~GL(m, Z) be the associated representation, with 
K-groups Ki(Q) defined as above. Then, up to p-torsion, 

Ki(M ) ~,, K,(Q) . 

Proof. The proof will proceed through several lemmas. I fX is any variety, let K X  
denote the K-theory spectrum of X with homotopy groups rt~(KX)= Ki(X ). If 
M = (X, c) is any motif, let K M  denote the homotopy fibre of 1 - c: K X  ~ K X .  The 
appropriateness of the name arises from 

(2.8) Lemma. n,~KM) ,~ Ki(M ). 

Proof There is a homotopy commutative square 

K X  ~ , K X  

l 1 
�9 - - - - - ~ K X .  

The induced map on the homotopy fibres of the vertical arrows is a function 
g: K X ~ K M .  Since c is a projector, the natural composite 

K M  ~ K X  g ~ K M  

is homotopic to the identity. So, n~(KM) is a direct summand of Kt(X ). Since c on 
spectra induces the obvious map on K-theory, this summand is precisely 

n,(KM) = c(Ki(X)) = Ki(M). 
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Now let ~ be the Frobenius endomorphism of the extended motif M~. Als0 
write q~ for the induced endomorphism of the spectrum KM~.  Define r to be the 
homotopy fibre of 1 - ~b: KMF.--* KME. 

(2.9) Lemma. K M  |  is weakly homotopically equivalent to ~| 

Proof  Here - |  means to smash with a Moore spectrum which localizes 
homotopy and cohomology away from p. In the motivic category, M is the kernel 
of 1 - ~ :  M e - * M  E. So, there is a natural map of spectra f :  K M - - . ~ .  By (2.4) and 
(2.6), f is a weak equivalence after tensoring with Z[1/d] where d =  [E:F].  In 
particular, f is a rational isomorphism. But a straightforward &ale cohomology 
computation reveals that f is an isomorphism on cohomology with finite prime- 
to-p coefficients. So, f is a Z[1/p]-cohomology isomorphism. Since f is a map of 
spectra, it is therefore a weak equivalence away from p. 

Let B U  be the classifying space for complex topological vector bundles. Let ~i 
denote the ith Adams operations. As in [12], K E  is the homotopy fibre of 

1-~p~d: BU-~ BU, 

where q = ~ F and d = [E : F]. Since ME is a trivial E-motif, it has spectrum 

K M  E ~, (KE) m . 

Let 0 denote the action of Frobenius on U ~ by the given integral representation 
associated to M. Define F0 to be the homotopy fibre of 

1 --0u B U - ~ B U .  

(2.10) Lemma. ~ is homotopy equivalent to FQ. 

Proof  Consider the homotopy commutative diagram 

FQ 

FQ 

, (KE) m ' - r  (KE) m 

1 
~ B U  m :-o~, B U  m 

! 

1 - to~ a [ 1 - ~qd 

~ B U  m 1 _ ~ , ,  B U  ~. 

The final two columns are homotopy fibrations. The first column is obtained as the 
homotopy fibres of the horizontal maps. In order to show g is a homot0PY 
equivalence, it suffices to show t h a t / / i s  homotopically trivial. But Q~= 1. S0, 
formally, 

1 - t  a=  1 - Qdtd = (1 -- Qt) (1 +Qt+ ... + Qd- lta- 1). 

Setting t = ~pq, one sees that 1 - ~pq~ factors through 1 - Q~pq. H e n c e  fl ~- 0 and the 
l e m m a  f o l l o w s .  

(2 .11)  L e m m a .  n~(Fo) = K~(Q). 
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Proof First, the vanishing of the even K-groups of E implies K2.(e)= 0. Next, 
Deligne's proof of the Weil conjectures [6] implies that 1-oq" is an injective 
endomorphism of Z = for n > 1. Since ~p~ acts on 7rz.(B U) = Z by multiplication by 
q", the long exact homotopy sequence associated to the fibration defining FQ 
shows that lr2.(F0) = 0. Finally, take the homotopy groups of the diagram of the 
previous lemma to obtain an exact commutative diagram 

0 ' Kzn-  t(Q) 

0 

) ~ . m  1 -- Qqn 

1 - q d .  

> ~ m  1 -- Qqn 

, Zrnt~K2n_lE 

J, 
0 

0 
1 

1 - -  qdn 

1 
a - ,  , Z,. |  - 1E 

O. 

7r2._ 1FQ , 0 

' n z n - t F o  ~ 0 

Since 1-oq" divides 1-q a", one has fl=0. By the Snake Lemma, K2n_l(0) 
~ 2 , - I ( F e )  and the lemma follows. 

The proof of Theorem 2.7 is now complete since, up to p-torsion 

Ki(o) ~ zq(F0) ~, ~i('l ~) ,~ xi(KM) ~ Ki(M). 

(2.12) Remark. Suppose ElF is a splitting field for X of degree d relatively prime to 
p. Then only d-torsion is relevant. So, the motif of X is completely determined by 
the representation ~ on Pic(X) and KI(Q)'~K~(N(X)| The restriction to 
prime-to-p torsion when p ld arises because of the mediation of ~tale cohomology. 
This restriction can presumably be removed in general by using the techniques of 
[4] to handle the p-torsion. 

Theorems 1.3 and 2.7 combine to give a complete computation of the 
/(-cohomology of rational surfaces over finite fields. One should note that Colliot- 
Th616ne [17] has computed the K2-cohomology over any field. 

(2.13) Example. Let X be a degree 4 del Pezzo surface of Manin's type IV. Then 

HO(x,~rj)=H2(X, dC.j+2)=K.I(F)=[ZO j=O j=2n 
Z/q"-I j = 2 n - 1 .  

/Pic(X) =Z2 j = 0  
Hi(X, X'~+ 1) --- j = 2n 

[ (Z/q 2" -  1) 2 x (Z/q"+1) 2 j=Zn-  1. 
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3. Connections with L-Functions 

Let M be a motif over a finite field F with q elements. Let hit be the induced motif 
over the algebraic closure. Let ~ denote the endomorphism induced by Frobenius 
on H~(h4,1~,) for some prime ! different from the characteristic. Define 

Pj(M, t) = det(1 - q~jt) Lj(s) = Pj(q-s). 

By Deligne's proof of the Well conjectures [6], Pi is a polynomial with integral 
coefficients independent of I. 

(3.1) Theorem. Let X be a rational surface over a finite field. Then for all n>2, 

L2i(X, n),~ ~ H i ( X ,  AF2n_i_I) 0 < i < 2  

L2i+l(X,n),~ ~ Hi(X, Ar2n_,_ 2) 0_<i_<1. 

Proof. For any motifs M, N, one has 

Li( M ~ N,  s) = Lj( M,  s)Li(N, s) . 

Since the K-cohomology of motifs is additive, it suffices to prove the result for each 
of the motifs in the canonical decomposition 

S ~  U~)N(X)~)L  2 . 

The effect of twisting by the Tate motif L is 

L j ( M |  s) = Li_ 2(M, s -  1) 

H i ( M |  L, ~ )  = H i -  l( M,  ~ -  1). 

The conclusion of the theorem is therefore compatible with shifting dimensions by 
twisting. So, it is enough to verify the theorem for motifs M e M~ Let O be the 
integral representation associated to M. Then, up to p-torsion, 

H ' ( M ' ~ ) = { O J ( Q )  i>oi=0 

H,(j~r, ~t) = {~| i=0  
i > 0 .  

Moreover, ~o is the action of Frobenius prescribed by O. Thus, 

IL0(M, n)l = Idet(1 - oq-~)l ~ Idet (1 - eq~)l 

= 4~ (gin/(1 - 0q~)) = 4~ K2n- ~(0). 

(3.2) Remark. The part of the theorem concerning the odd L-functions is rather 
specious, since L2~+ I(X, s) = 1 and H~(X, Yl2,_ ~_ 2) = 0 (up to p-torsion). There are 
several reasons for its inclusion with this precise choice of indices. First is its 
compatibility with twisting. Second, the K-cohomology associated to the even 
L-functions for a given n all lie on a common increasing diagonal of the E2 -terms 
of the Gersten-Quillen spectral sequence [11]. The odd terms are chosen to lie on 
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the parallel diagonal one step higher. Further, let X be a smooth projective 
F-variety. Consider the property P(X): For all n>dim(X), 

L2i(X,n),,, 4~ Hi(X, X'2n_i_ 1) 0<i_<dimX 

L2i+l(X,n)~ 4~ Hi(X, :r i_ 2) 0 < i < d i m X - 1 .  

There are partial results [7, 16] suggesting that curves have the property P(X). 

(3.3) Theorem. Let X be a smooth projective curve over F. Let n > 1. Then the 
QuiUen conjecture for affine curves and P(X) predict the same prime-to-p value for 
~(x, n). 

Proof. The Quillen conjecture [13] for an affine curve A is 

K2i- 2 ( A ) ~ , I  ~ H2(A, T-l(/)) 

K2i_ I(A)| 7.z ~ Hi(A, Zl(i)). 

The Bayer-Neukirch-Schneider [1, 14] cohomological formula for the value of the 
zeta function is 

I((X, n)l~- 1 4~ n ~  Zt(n)) 4~ n z ( x ,  Zz(n)) 
= 4~ Hi(X,  Zz(n)) # n3(x ,  Zz(n))" 

Without loss of generality, one may assume A C X is the open affine complement of 
an F-point. Compare the Gysin exact sequence in 6tale cohomology with the 
K-theoretic localization sequence 

0 ~ n 1 (X, Z z(n)) ~ n ~ (A, E i(n))-4 n ~ (F, 7Z.t(n -- 1)) = 0 

. . . - ,  K2,_t(X ) ~ K2n_I(A ) ~ K2~_2(F ) =0  

~H2(X,  Zi(n))~H2(A, Zz(n))~nl(F,  Zz(n - I))-,-Ha(X, ~.z(n)) ~ 0  

K2~_2(X ) ~ K2~_2(A ) ~ K2n_3(F ) ~ K2._a(X ) ~ .... 

For curves, the Gersten-Quillen spectral sequence collapses to the short exact 
sequences 

O--~ HI(X, ~ff j+ I)-* K~(X)-* H~ 3~rj)--~,O . 

Soul6 has shown [15] for curves over finite fields that HI(X, ~ +  l)= Kj(F). 
Now by Quillen's computation of the K-theory of finite fields [12] and by 

assuming the Quillen conjecture, the corresponding terms in the long exact 
sequences involving F and A have the same l-primary orders. Therefore, 

1 �9 #K2~_2(X ) 
~(x, n) ~ # ~io(x, a~2,_ 1) *e n~(x, ~z , -  2) 

H~ .YF2,- 2) 4~ Hi(X,  .r 1) 
�9 FH~ ~2~- 04~H1( X, X'2~-2) 

H~ ~2n- 2) 
= : ~ H O ( X , ~ , , . 2 n _ I ) : ~ : H I ( X , ~ 2 n _ 2 )  " 
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Since ((X, n) = L 1 (n)/Lo(n)L2(n), the latter is precisely the value predicted by P(X). 

(3.4) Proposition. (a) P(F m) is true. 
(b) I f  P(X) is true and if Z = F(~) is a projective bundle over X,  then P(Z) is 

true. 
(c) I f  P(X), P( Y) are true and if B is the blowup of X along Y, then P(B) is true. 

Proof. All three parts follow immediately from the motivic decompositions and 
the compatibility with twisting by L. 

(3.5) Remark. Let X be a surface. Then the motif of X decomposes as 

~ U@J@M@(A|  2, 

where J is the l-dimensional motif associated to the Picard variety of X and A is 
the 1-dimensional motif associated to its Albanese. The truth of P(J) and P(A) 
should follow from work on curves. Whenever M |  -1 can be reduced to a 
representation, the techniques used here should confirm P(M) and hence P(X). Up 
to small torsion, this should be the case for Enriques surfaces and hyperelliptic 
surfaces, since the second &ale cohomology group is generated by algebraic cycles. 
It is considerably less clear if one should expect P(X) to hold for abelian surfaces or 
K3 surfaces. 

It seems unlikely that P(X) holds in full generality. Several authors [2, 3, 8] 
have advanced more elaborate suggestions relating the values of L-functions to 
objects constructed from algebraic K-theory. The structure of rational surfaces 
simplifies the cohomology and the Gcrsten-Quillen spectral sequence sufficiently 
to replace those elaborate constructions witli a direct formula. 
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