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Introduction

In his important paper “Coverings of p-adic symmetric regions” [Dr], Drinfeld
showed that the p-adic upper half plane and its higher dimensional analogues serve
as moduli spaces for certain rigidified formal groups with quaternionic multipli-
cations. Given a formal group of the proper type, together with rigidifying data, over,
say, a ring R on which p is nilpotent, Drinfeld constructs an R-valued point of the
appropriate p-adic half space. If we draw an analogy between formal groups and
abelian varieties, then Drinfeld’s procedure is analogous to computing the period
lattice of an abelian variety and obtaining thereby a point in a Siegel upper half
space. In the case of abelian varieties, the inverse procedure 1s well known-—given a
period lattice, the abelian variety can be constructed immediately. The purpose of
this paper is to supply the corresponding inverse procedure in the case of Drinfeld’s
formal groups, at least in a special case. More precisely, given a W(F‘I,)-valued point
of the p-adic upper half plane over Z,, we construct the corresponding 2-
dimensional, height 4 quaternionic module over W(F“p) with its rigidifying data.
We proceed in three stages. First, we discuss in detail Drinfeld’s functorial
description of points on the p-adic upper half plane. We supply a proof of his
description, which he states without proof in [Dr]. We also obtain a rigid analytic
interpretation of his description. Next, we construct the special fiber of the formal
quaternionic module which corresponds to a point on the reduction mod p of the p-
adic upper half plane. Finally, we apply the technique of the universal extension, as
described in [Haz], to obtain our desired module over W(F,). We supply the
Dieudonne module and the logarithm for this module in Theorems 45 and 46.

Notation

Let D be the quaternion division algebra over Q,, and let @, be the maximal order in
D. Choose IT in O, so that IT? = p, and let

A={acOy:ITa=all}
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where ar—4 is the involution on D. A4 is isomorphic to the quadratic unramified
extension of Z,.

If G is a commutative formal group over a Z, algebra R, then we let M(G)
denote the Cartier-Dieudonne module of p-typical curves for G. We let W(R) denote
the (1-prime) Witt vectors of R. In general, all of our notations and conventions for
Witt vectors and Cartier-Dieudonne modules will follow Hazewinkel [Haz].

We let # » be the formal scheme constructed by Mumford [Mum], and generally
referred to as the p-adic upper half plane over Z,. We let 3¢, denote the associated
rigid analytic space over Q,. Thus the set of L-valued points of 5, is L — Q, for
extension fields L of Q,,.

The definition of a special formal ¢, module is due to Drinfeld; we recall it here.

Definition 1. Let B be Z ,-algebra. A 2 dimensional commutative formal group G over
B, together with an embedding

1.0, < End(G)

is called a formal O module. If, at each geometric point P of SpecB/pB, the
representation of O,/II O} on the tangent space of G X Kp is the sum of two distinct
characters of Op/I10,, then G is called special.

We will abbreviate the phrase “G is a special, formal ¢, module” by saying that G is
an SFD-module.

If G over B is an SFD-module, then the endomorphisms of G endow the
Dicudonne module of G with additional structure. To make this explicit, label the
two embeddings

06,01:0p/110,—F,.

These embeddings determine two embeddings A — W(F,); we will abuse notation
and denote the lifted embeddings with the same letter. Then M(G) carries a Z,/2Z-
grading, defined by

M(G) = {xeM(G):1(a) x = 6,(a)x acA}.

The operations F and V, and the endomorphism I7, have degree 1 relative to this
grading.

An isogeny between two formal groups G and H over B is a homomorphism
p:G— H having finite kernel, If B is a finite field of characteristic p, and p is an
isogeny from G to H, then the kernel N of p is a finite connected group scheme over
B. The rank of N is p" for some integer h; we call this integer h the height of p.

Following Drinfeld, we say that an element p of Hom(G,H)®Q, is a quasi-
isogeny if p has an inverse in Hom(H,G)®Q,. The height function extends to
Hom(G,H)®Q, in a natural way.

The p-adic upper half plane revisited

Viewed from a naive perspective, the upper half plane # » is the complement of the
rational points of P'. In order to prove his theorem on moduli (Theorem 28 below)
Drinfeld describes the points of # ,in schemes S on which p is nilpotent functorially,
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in terms of certain data on S. We will now embark on something of a digression in
order to describe this data and to make explicit how it is used to construct a
morphlsm S—-»;f Then, we will construct universal data on Jf so that a map
S— Jf yields approprxate data on S by pull-back. A major tool in our study will be
an mterpretatlon of Drinfeld’s functorial description of the S-valued points of JK
from a rigid analytic perspective.

Preliminaries

Let us begin by fixing some fundamentals regarding # , and # - In particular, there
is a well-known relationship between the tree 7 of GL,(Q,) and 5. (See [Mum] or
[Man]) We will realize this relationship in the following way. Fix a coordinate
function z on 5 ,. There is a canonical reduction map

iy
such that, if te GL,(Q,), and v(z) is the corresponding vertex, then
r—1
'w(v)) = {PeP':|wz(P)| =1} — {J t~'B, (i)
i=0
where B,(x) is the open ball of radius r centered at x. GL,(Q,) acts on 7 by the rule

t10(ty) = v(toty 1)5

and this action commutes with the reduction map and with the action of GL,(Q,) on
# , through linear fractional transformations in z.

Definition 2. Let I"°(p) be the subgroup of SL,(Z,) consisting of matrices with upper
right entry divisible by p.

Lemma 1. The edges of I are in one-to-one correspondence with the coset space

I"°(p\SL,(Q,)-

Proof. There is an SL,(Q,) invariant orientation on the edges of 7, and SL,(Q,)
permutes the edges of  transitively within this orientation. The group I °(p) is the
stabilizer of the edge joining the vertices v(1) and v(m), where

0 p
m= ( 1 0). O
Ift1eSL,(Q,), we will use the notation e(r) to denote the edge in 7 corresponding

to 1. Let &(7) denote the “dumbell’ consisting of the edge e(t) together with its two
terminal vertices. We set U(t) =r ;' (é(t)). Each U(t)is an affinoid subdomain of 5,
and together they form an admissible covering of #,,. For the sake of concreteness,
we point out that

p—1

U(1)= {PeP":|z(P)| S 1} —- .L=)1 (B1())v B, (pi)) — By,,(0)

while U(r) =t~ 1U(1) for 1eSL,(Q,).
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We also point out that the correspondence between edges ¢ in the tree 9 and
cosets I"°(p)\SL,(Q,) implies the following relations:

Lemma 2. The definition of the U(t) yield the following relations:

1. U(ry)=Ul(z,) if and only if ;75 *eI"°(p).

2. If tt;'eSLy(Z,) but 115 '¢m 'SLy(Z,)m, then uv(r,)=0v(r,) and
Ut )N U(zy) = r; 1 (v(zy)).

3.If 1 em™'SLL(Z,)m, but ty15;'¢SLy(Z,), then v(mrt,)=uv(mt,) and
Ult)nU(ty) =15 (v(mry)).

4. If none of the above conditions hold, then U(t,)nU(z,) = .

The formal scheme 3’? -—the naive construction

Now we give a construction of .}f which will supply us with a naive description of
the S-valued points in ,9? This constructlon is derived from Bosch’s work [B] on
passage from rigid spaces to formal schemes.

Associated with the covering {U(t)} of &, is a reduction 3?;, together with a
map r: ¥, 436’7;. yﬁ; is a scheme over F, consisting of rational curves meeting in
ordinary double points with intersection graph 4. The sets r(U(z,})nU(z,)) are
Zariski open in the reduction Z. Following [B], we may derive a formal scheme
# ,from 5 ,. The underlying to_pological space of # »is the same as that of 5‘?;. If,
however, U is an open set in 5, then

04 (0)={f€0, " DN:If -1 S 1)- M)

In a sense, ,}? is a model for #, over Z,,.

IfSisa scheme over Z, on which p is nilpotent, we would like to find a
description of the § valued pomts of Jf To this end, let us make the construction of
.}f absolutely explicit. As T runs through SL,(Q,), let

1 1
R(T) = Z[Zrawn 1 '—Zf—l,l — wg—L:I/(ZtWr— p)

R(z) =lim R/p"R.

and

Then it follows from the definitions, and in particular from (1), that

0 (U@) = R(2).
Lemma 3. The gluing maps between the various U(t) are determined by the following
cases:
Case l. 1,15 *eI"°(p). Then the map

ﬁ(ﬁ) - ﬁ(‘[z)
2, TyT5 2y,
w,m™ 11 mw,,

defines an isomorphism R(z 1)—»&(7:2).
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Case 2. 7415 'eSL,(Z,) but 1,75 '¢m™'SL,(Z,)m. Then the map

| - | e 1]

Zt1 HTITZ_ lz‘rz
glues the open sets where z;, and z_, are units.

Case 3. ©,7; 'em™'SL,(Z,)m but 7,75 '¢SL,(Z,). Then the map

Re| o | R - |

-1 -1
w, mT T T, mw,

glues the open sets where w,, and w,, are units.

Proof. All of this follows from consideration of the tree 7 ; we refer the reader to
[Mum] or [Man] for details. []

This discussion enables us to prove the following lemma.
Lemma 4. Let S be a Z, scheme on which p is nilpotent. Then to specify a morphism
¥:8 - #, is equivalent to giving the following data:

1. A covering {V(z)} of S by open sets, indexed by elements of SL,(Q,).

2. A pair of functions z, and w_ on V(1) which satisfy z.w,=p and such that
1—zP"1 and 1 — w2~ are units on V(z).

The open sets V(r) with their functions z, and w, must satisfy the following
conditions:
Case 1. If 1,15 eI °(p), then V(z,)=V(z,) and
z, =1,17 'z,
w,, =m" Ty tmw,,.
Case 2. If 1,15 *€SL,(Z,) but 7,75 '¢m™'SL(Z,)m, then
V()0 V()= V)lz, 1= V(n)lz;"
and on this open set
Z, =T4T7 'Z,,.
Case 3. If 1,75 'em ™ 'SL,(Z,)m but 7,7, '¢SL,(Z,) then
V(t)n V()= Ve)lw, 1= V() [w,, ']
and on this open set

w, =m" 11,15 Tmw,,.

Proof. Specifying z, and w, on V(t) determines a map ¥, V(t)— U(r). The

-

additional conditions guarantee that the y, glue to give amap ¥:S—>#,. [
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Drinfeld’s description of 9’?

Armed with the above naive description of the points of Ji” we now consider
Drinfeld’s description, given in [Dr, p. 109]. He claims that pomts of 9? in formal
schemes S on which p is nilpotent are determined by certain data on S. Here we will
recall the definition of his data, and show how to deduce from it a map from S to %
Later, we construct universal data on Jf to show that any map from S to Jf »
induces Drinfeld’s data on S.

If Bis a ring, Drinfeld denotes by B[ IT] the ring B[ 11 ]/(IT? — p), and attaches a
grading to B[IT] by letting deg(b) = 0 for be B and deg(IT) = 1. Suppose Sisa Z,
scheme on which p is nilpotent. Then an S-valued point of Jf consists of the
following data:

(1) A sheaf offlat, Z/2Z-graded Z,[IT] modules  on S. (note that # is not a quasi-
coherent sheaf, but only a sheaf of abelian groups with added structure.)

(2) A Z/2Z-graded sheaf T of O5[IT] modules whose homogeneous components
are invertible.

(3) A homogeneous, degree zero map w:y— T such that u® 1:p® Os—T is
surjective.

(4) A Qlincar map p:Q,®Q,~>1°®Q,.

All of this data must be compatible, in the sense that it must satisfy the following

conditions:

(C1) Let S; < S be the zeros of the morphism IT: T'— T**!; then #'[5, is a constant
sheaf with fiber Z,® Z,,.
(C2) For all points s of S, the map

un/ 1, —(T/IT) @«

is injective, where k; is the residue field of s.
(C3)
A, = p AT (2, ® L),
Let us now show how Drinfeld’s data give rise to maps S—»ffp. We will
construct a covering {V(r)} of S together with functions z, and w, meeting the
requirements of lemma 4.

Let x4 and x, be the standard generators of the lattice Z,®Z, < Q,® Q,. For
any element t€SL,(Q,), define

xo(r)\ _[a b\(xo
x;0)) \c¢ d (x1 '

Lo(t) = Zpxo(7) + Zpx, ()

Let us also set

and
Ly(t) = Z,pxy(7) + Z ,x (7).

Definition 3. For elements 1€SL,(Q,), let V(t) = S be the subset
V(t)={PeSnp2p(Lo(r)) and IIn;=p(Ls(r))}.
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Lemma 5. The sets V(t) are open and cover S.

Proof. Let U be a connected open set containing P. Then the existence of the
isomorphism p forces the restriction maps py,: 1°(U) = 4°(V) to be injective for any
V < U. Therefore if P is any point such that #°|p 2 p(Ly(7)), there is an open set
U(P) containing P such that 7°y, contains p(Lo(t)). It follows that the set

Vo(1) = {PeS:np 2 p(Lo(1))}
is open. A similar argument shows that
Vi) = {PeS:IInp 2 p(L(7))}

is also open, and therefore V(1) = V(1) V, (1) is open.

Now we must show that the V(z) cover S. If P is any point of S, then either PeS,
or PeS,. In thefirst case, #°|, = p(L¢(7)) for some t by condition (C3). This 7 may be
chosen so that ITy'|p, which is a sublattice of #°|, of index at most p, contains
(L, (0). It follows that Pe V(1) for some 7. A similar argument using (C3) shows that
the V(1) cover S, as well. [

Definition 4. Let S,(t)=S;n V(1) for i=0,1.

Lemma 6. The following equations are consequences of the compatibility conditions,
when the sets in question are non-empty.
1. On the open Sy(t) — S,(7),

n®=IIn* = p(Lo(7)).
2. On the open set S,(1) — Sy(7),

Iyt = p(L4(1)
and
1n° = p((1/p)L, (1))

3. If PeSy(t)n S, (1),
Ap = p(Lo(7))
and
Iyp = p(L, (7).

Proof. On S,(t) — S, (x), the sheaf T°/IT T is zero. Therefore, by (C2), we know that
#°/In' =0 on this set. It follows that #° = ITn" on Sy(r) — S, (7). By (C1), n° is
constant. By the definition of V(7), n° 2 p(L(7)) on this set. Finally, by (C3), we
know that A%7° = A%p(L,). We conclude that #° = p(Ly(7)). On S; — S,, we know
that T1/ITT° = 0, and therefore by (C2) that ' = ITy°. This means that ITn* = py°.
It then follows from (C1) and (C3) that ITn'=p(L,(r)) and therefore that
1#° = (1/p)p(L, (7). Finally, if PeSonS;, we know that neither T°/IT T* nor T*/I1T°
are zero. It follows that each of #3/ITy} and ni/IIn3 are one dimensional over F >
Using (C1) and (C3) as before, we see that 7 = p(Lo(z)) and II'np = p(L(z)). 0O
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Corollary 7. There exist sections yo(t) and y,(t) iny}(V (7)) such that ITy(1) = p(x,)
and ITy,(7) = p(px,(1)).

Proof. Inspection of the above results show that p(x,(r)) and p(px,(7)) belong to
Hptonallof V(x) O

Lemma 8. Let AcZ, and set
to(T, A) = u(p(x, (1) — Axo(7)))e TO(V ().

Then ty(t, A) has no zeroes on V(z). Let yo(z) and y,(t) be the sections defined in the
corollary, and let

t(t, ) =ulyof™) — Ay1 (1)) T (V (z)).

Then t,(t, A) has no zeroes on V(1).

Proof. The element x,(t) — Ax,(7) does not belong to ITy! anywhere on S,(z). It
follows from (C2) that t4(t,4) is not zero in T°/II T ®x, for any PeS,(z). On
So{t) — S, (z), we know that T° = ITT?, and that p(x,(t) — Ax(t)) = ITw for some
wen(V(z)). Since n'/IIn° injects into T'/IIT,, we conclude that u(w) does not
vanish on S(r) — S, (r) and therefore neither does (1, A) = ITu(w). Since S4(t) and
5,(¢) cover V(r), we conclude that the section ty(r, 1) never vanishes. A parallel
argument shows that the same is true for ¢,(z,4). [

Definition 5. If V(1) is non-empty, define a function z, on V(1) by the formuia
z. = u(p(xo(7)))/10(7, 0).
and a function w, on V(1) by the formula
w, = u(y,(1))/t,(z,0).
Lemma 9. The functions z, and w, satisfy z,w,=p. The functions 1 —z"' and
1 —w?™1 are units on V(z),
Proof. The relation z,w, = p is a consequence of the relations

I p(xo(1)) = pyo(7)
I p(x4(7)) = y1(%)

and the fact that the map u commutes with IT. The fact that 1 —z2~ ' and 1 —w? ™!
are units follows from lemma 8, since

1 — Az, = to(r, A)/to(r, 0)F 0
for all AeZ,. [

Lemma 10. V(1)[z7 1] = S4(t) — 5,(t) and V(z)[w; '] =S,(t) — So(7). The closed
subscheme Sy(t) " S,(z) is defined by the ideal (z,,w,).

Proof. By lemma 8, T° is generated over V(r) by the section t,(7,0) and T is
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generated by t,(7,0). By the definitions, ITty(r,0)=w.t;(t,0) and ITt,(t,0)=
2.t4(7,0). Therefore S, is precisely the zero set of w, and S, the zero set of z,.
Combined with the fact that w z, = p and that p is nilpotent, we obtain the results
immediately. [

Lemma 11. The covering {V(t)}, together with the family of functions z, and w.,
satisfy the conditions of Lemma 4.

Proof. It is a simple matter to check that 7,7;'€SL,(Z,) if and only if
L(t,) = Lo(t;), and rlr; Yem™'SL,(Z,)mif and only if L,(r,) = L,(t,). It follows
immediately that if 7,75 eI’ °(p) then V(1) = V(1,).
Now suppose that 7,75 '¢ "°(p) and that PeV(t;)n V(z,). Then

2 p(Lo(71) + Lo(73)) 2
Inp 2 p(Ly(11) + Ly(12)) 3
Comparing this with lemma 6, we see that we must have either Ly(7,) = Ly(t,) (if

PeS,) or Ly(t;)= Ly(z,) (if PeS,.) In the first case, 1,75 '€SL,(Z,), while in the
second 7,75 'emSL,(Z,)m~ ' where

m=(§’ g).

Thus intersections between the V(1) can only occur under the proper conditions.
Let us consider the situation when Lgy{r,)= Lo(r;) but L,(z,) % L(1,). Then
L(ty)+ L,(t,) = Ly(r4) and it follows that

V(t)nV(zy) = {PeV(z):ITnp = np}.
Therefore V(r,)nV(z,) = Sy(r1) — S,(z,) by Lemma 6 and, by Lemma 10,
V()N V()= V(Ti)[ztjl]'

A similar argument gives the analogous result when L,(1,)= L,(t,).

We now need only show that t,75'€SL,(Z,), then t1,75'z,=z, on
V()" V(z,), while if 1,75 em™'SL,y(Z,)m, then w, =m 't;t;'mw,, on the
intersection. These relations hold as a formal consequence of the definitions of the z,
and w,, O

We have shown that, if (n, T, u, p) is a set of compatible data on S, then there is a
morphism @:§— J, associated to this data.

Drinfeld’s data in the rigid category

So far, we have shown that Drinfeld’s data leads to maps into Jf Now we go on to
show that a map from S into Jf induces compatible data on S by constructing
universal compatible data on Jf Actually, we return to the rigid space J#, and
construct a rigid version of the data (n, T, u, p) described by Drinfeld. Then we show
how to derive the “formal” version on ff -

Let V°and V! be constant sheaves of one dimensional Q, vector spaces on J#,
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with bases t, and ¢, respectively. Define two invertible sheaves T° and T* by setting
T =0 w,® Vi

We let SL,(Q,) act on T® by the “modular cocyle,” so that t*f(z)t, =
(cz+d)f(z2)to. We let SL,(Q,) act on T!' by the formula t*f(z)t; =
(a+b/z)f(t2)t,. .

Fori=0,1, let #’ be a constant sheaf of two-dimensional Q ,-vector spaces on
A, with basis x;o and x;,. Define a map u°:#° = Q,xo, + Q,x0, — T° by setting
u%(xg0) = zto and u%(xy,)=to. Define u':n'—T! by setting u'(x,,)=(p/z)t,
and u*(x,o) =t,. Let SL,(Q,) act on # so that u commutes with the group action.

This means that
o* Xoo)_ (4 b\ [ xo0
Xo1 ¢ dJ\xo,
G )
X11 pc d X11

Let IT satisfy the relation IT% = p. Weestablisha Z,[IT ] actionon T=T°@ T
by declaring that ITt, = (p/z)t, and ITt; = zt,,. There is a unique action of IT on
n =1°®n! such that u=u® Du' commutes with I1; we let Z,[IT] act on # in this
way. Then the action of IT commutes with the SL,(Q,) action as well.

and

Norms

In the previous section we constructed Z/2Z-graded sheaves T=T°@ T! and
n =n°®n* together with a graded map u = u° @ u! between them. We would like to
describe models for this data on # »- In order to do this, we place additional
structure on this data.

Definition 6. Let X be a set with a Grothendieck topology, and let F be a sheaf of Q,
vector spaces on X. Then a norm on F is a choice, for every open set U, of a norm on
F(U) which extends the usual norm on Q,. We require that
1. If V< U, then [s], Z1sly-
2. If {U;}i is an admissible covering of U, and se F(U), then |s|y < max|s|y,.
iel

Suppose that X is a rigid analytic space with a formal structure, and that F is a
normed sheaf on X. The norm enables us to obtain a sheaf F on X by defining

F(U)={seF(r ' (U))lsly = 1} )

for open sets U in X.

Let us now define a norm on the sheaves T° and T*. We impose the following
conditions.

1. If U= Uf(r) is an affinoid, then |t*t;|y = 1.

2. If U is an affinoid, f is a function on U and s = ft;is a section in T*(U), then
|s|ly =1flIt;|y where | f] is the usual sup-norm for functions.
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3. If Uis an affinoid, let I be the set of te SL,(Q,) such that U(1)n U + &. Then

islemax|s|U(r)nU'
el

That this gives a well defined norm on T*, and that the sheaves T are invertible,
follows from the following simple lemma.

Lemma 12. Suppose V=U(t)nU(z,)+ . Then the transition function
u=(t¥t;)/(t%t;) satisfies |u|, = 1.

The sheaf# is a subsheaf of 7. We impose a norm on 5 by setting |s],; = ju(s)|y for
any affinoid U and sen(U).

Definition 7. Let T and #} be the sheaves on Jf deduced from T and n by means of their
norms, as in equation (4). Let 4 be the map obtamed by restricting u to T and #. If
A% —n°
denotes the inclusion, then
1Q1:4°®Q,—>1°

is an isomorphism. Let p=(® 1)~ L.

Passage from the rigid to the formal category

We will now see that this data is Drinfeld’s universal data.

Lemma 13. The data we have constructed earlier on # , meet Drinfeld’s conditions
(D), (2), (3), and (4) (See p. 652). More precisely:

1. Let % and T be the sheaves on .;f deduced from the norms on v and T. Then #
and T meet requirements (1) and (2).

2. The restriction of u to A defines a map 1:1) — T which meets requirement (3).

3. If 1:7i > n denotes the inclusion map, then 1~ ' = p meets requirement (4).

Proof. To show that T is a sheaf of 0, [H ] modules, we must verify that, if U
is an open set in éf and seT(r~1(U)) satlsﬁes [s| <1, then | ITs| £ 1. On the open
set U()=r(U(x)), (c(t)z+d(x))t, generates T°(U(r)). Now II(cz+ d)ty=
(cz + d)(p/z)t,. We compute
[(cz + d)(p/2)t1 lu = [(cz + d)(p/z)(z/(az + b))T*t, |y

= |plcz + d)f(az + b)t™t; |y

= |p/(x2)lyw

<1,

A similar calculation shows that ITT* = T°.
On an open set U of #,, we see that

AO(U) = {axo0 + BXo1:1(z + P)toly £ 1}
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where U =r~Y(U). Since 4(U) consists of the elements of a two-dimensional vector
space over Q,, of norm less than one with respect to some norm, we see that 7°(0)isa
two-dimensional Z, lattice. The same argument applies to 7t

By construction, we see that u(f) = T. On any U(z), we see that

u(c(t)xoy + d(t)xop) = (cz + d)to = T*to,
so that u® 1:4°® 0 - T° is surjective. A similar argument gives the result for 4.
It is not hard to verify that /) is a Z,[11] module, and, finally, the map p identifies
71°®Q, with Q,®Q, by construction. [J

Our remaining task is to check _the compatibility conditions. We begin by

indentifying the subsets S, and §; of 5 ,. Notice that these sets are closed subsets of
H.
Lemma 14. Let

So(r) =r({PeU(r):|p| <|12(P)| £ 1})

8, =r({PeU(1):|p| = |1z(P)| < 1}).

Si= U S
1e8L,(Q,)
Proof. On the set U(1) = r(U(1)), we know that ITt, = (p/z)t, and that ITt, = zt,.
Therefore the zeros of IT on U(1) are defined by the regions where p/z and z are non-
units in ©U(1). These are respectively the reductions of the sets in #° »Where|p/z| <1
and |z| < 1. The group action enables us to deduce that Drinfeld’s sets S, and S, on
the formal scheme # , are

Then

Si= | S

1€SL,(Q,)

Corollary 15. A point P of # p is rational over F, if and only if it belongs to S, S, .

Proof. From the lemma, we see that (S, 1S, ) U(1) is the reduction of the annulus
{P:|pl < |z| < 1}. This is precisely the set of points which reduce to the double point
at the rational point of U(1). Then the group action, which permutes the rational
points of # , transitively, gives the result. [

We further extend our understanding of the sets S, and S, in the following
lemma.

Lemma 16. Let us say that a vertex v(1) of the tree J is even or odd according to
whether ord,(det(t)) is even or odd. Then
Hp—So= " r(ry'()

vodd

#,~8 = rirs'0).

veven

Here one should recall that r ;' (v) is an affinoid and that r(r YY)y is a Zariski open set
in the reduction of # , and therefore in I .

Proof. A point P belongs to # »— 8¢ provided that the map IT: T°— T is non-
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zero. On r(U(1)), this means that |p/z(P)|=1, and therefore U(1)—Sy(1)=
{PeU(1):|z(P)| = |p|}. This set is the inverse image of the vertex corresponding to
the linear fractional transformation z+- p/z; this vertex is clearly odd. Translation
by SL,(Q,) gives the complete result. The same type of argument works for
H,—8. O

We are now in a position to establish the compatility conditions.

Lemma 17. The data 4, T, 4, and p satisfy conditions (C1), (C2), and (C3) on # iy

Proof Because of the group action, to establish (C1) it suffices to show that 4 O rsoct »
and # ,r(Sl(l)) are constant sheaves isomorphic to Z @Z,. This is actually quite
simple. If U = Sy(1) is an open set, then

ﬁo(U) = {O‘xoo + Bxgy:l(az + B)tgly = 1}-

where U is the setin # , which reduces to U.But|t,|, = 1 and, for all points PeS,(1)

we know that |az + B| = max (|«||z(P)],|8|). (Remember that on this set z(P) is never

rational by the corollary above, so 1 and z(P) are linearly independent over Q,.)

Since on S, we know that |z(P)| > |p| and f is constrained to lie in Q,, we see that

‘O(U) is the constant sheaf Z,xoo+ Z,xo;- A similar argument shows that
=Z,X10+ Lpxy;.

To show (C2) we must consider three separate cases. A point Peéf belongs
either to S¢ — §,, to §; — Sy, or to SN S,. As usual, the group action allows us to
restrict our attention to points in U(1). Suppose therefore that PeS,(1) — S, (1).
Then |z| =1 on the residue class of #, defined by P. Referring to the previous
paragraph, we see that 3 = Z xo0 + Z,Xo;. Furthermore,

fip = {ax 10 + Bxqy:(a + Bp/z(P))t | = 1}.
Therefore
fip = ZL,X10 + Z,(%1,/D).

We conclude that IT#} = A3 and that #3/IT#3 is a two dimensional F, vector space.
On the other hand, since P is not a rational point, we know that (T /[T T°) ® x(P) is
an extension field of F,. The images under u of x,, and x,,/p are ¢, and ¢t,/z(P)
respectively, and these are linearly independent over F,. This proves the injectivity
of the map in this case. The situation where PeS,(1) — So(1) is essentially the same.
In the third case, P belongs to So(1)n S, (1), and is a rational point of .9? In this case,
T?/I01 T**+ ' is a 1-dimensional vector space over F fori=0andi=1. Usmg what we
know about #, and in particular property (C1) wh1ch we proved earlier, it is not hard
to check that each #'/IT#'* ! is 1-dimensional and that again the map is injective.

Finally, we must establish property (C3). On U(1) this property can be checked
explicitly since we have computed all of the relevant invariants. Then the general
statement follows from the SL,(Q,) equivariance of our data. [J

Corollary 18. Let S be a scheme on whzch p is nilpotent. Let ¥:S —>3ff be a
morphism. Then (¥ ™14, W*T, ¥~ L p) is compatible data on S.

Finally, we can obtain the goal of this entire exercise so far:
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Them;em 19. If D=(n,T,u, p) is compatible data on S, let W}, be the associated map
S—o#, If ¥isamap S— #,, let D(¥) be the induced data on S. Then D(¥p) =D
and ¥y, =Y.

Proof. This equivalence can be obtained by laboriously checking all of the various
definitions we have made. Since this would amount to repeating much of what has
gone before, we leave it to the reader. [

More on the sheaf T

It follows from Drinfeld’s theorem on moduli that T is the tangent space to a family
of formal | groups on Jf To better understand this family, it is worthwhile to
describe T in some detall Our construction of T as the integral elements in the
normed sheaf T on the rigid space #, make this relatively simple.

In our construction of T, we fixed sections toand t. Let us define functions y; on
the tree J by the formula

Hi(v) = —log, 1t;], ;1.

The functions y; measure the rate of growth of the sections ¢; at points approaching
the “boundary” of 5 ,. In addition, we may as well consider only p,, since it is not
hard to verify that

#1{v{)) = polv(m)).

Our choice of a function z on £, enables us to orient the tree J~ so that the
“head” of every edge points toward the point at infinity. Call this orientation w . Let
d(v) be the function on J which assigns to a vertex v the signed distance from the
base vertex v(1) to v, computed with respect to this orientation.

In addition to this orientation on 7, there are two choices of an SL,(Q,)
invariant orientation. Let us denote by w, the SL,(Q,)-invariant orientation which
agrees with w_ on the edge joining v(1) and v(m).

Recall that we can identify the edges of Z with the elements of the coset space
I°(p)\SL,(Q,). We write e(t) for the edge corresponding to 7. We select some coset
representatives in the next lemma.

Definition 8. If R is a ring, let U°(p)(R) denote the group of invertible matrices in
M ,(R) having unit determinant and upper right entry divisible by p.

Lemma 20. Suppose X e M,(R) where R = W(F,) is an unramified extension of Z,.
Then there exists a unique matrix ec U°(p)(R) such that

i p
eX:(—P" 0)

where 1+0 and A= i {r> ", for elements reF,.
¥=0

Case 1. eX is of the form
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P o
X = .
¢ (i p’)

i—1
where A= Y. (r)>p* and r,eF,.
k=0

Case 2. eX is of the form

We leave to the reader the verification of the following simple fact.

Lemma 21. IfteSL,(Q,) is equivalent to a (multiple of a) representative in Case 1 of
Lemma 20, then wo(e(7)) = w(e(7)); otherwise w(e(t)) = — w,(e(7)).

Let us call an edge e(t) with tin case 1 even and with 7 in case 2 odd. Let y, be the
function on the edges of Z defined by

L wole) + wy(e)
0 wole)=wyle).

Xole) = {
Using this, we determine y.

Proposition 22. The function u, satisfies

Ho@)= Y. Xo(@Ws(e)

v(1)—v
Proof. Recall that

ltoluw =

cz+d|ye

If e(7) is even, it follows that uy(v(z)) = py(v(mr)) since |cz +d| is a constant on
U(z). If e(7) is odd, then, although |cz + d| is not constant, we see that |az + b| is.
Recalling the definition of U(t), we see that pg(v(mr)) = pe(v(7)) + 1. This shows
that the “derivative” of uq is ¥, as claimed. [J

To put this result in perspective, let us interpret it in terms of “asymptotics” for
the sections t;. As is well known, we can identify the ends of 4 with the points of
Q,u{o0}. Suppose that xeQ, and p(x) is the corresponding half line in 7
originating at v(1).

Corollary 23. If xeQ,u {00}, then function p, satisfies:
li ”O(v) — {— l.f erp

ul—'n?c dv) if x=00

N NP

where the limit is taken over the sequence of vertices v in p(x).

Proof. First, notice that the even and odd edges in 4 alternate. Then as x — oo,
every other edge gets counted positively in y,, since p(co) heads “towards infinity.” If
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x€Q,, then eventually p(x) heads “away from infinity.” Therefore u, counts every
other edge negatively. [

Corollary 24. The sheaves T and T~ have no non-zero global sections.

Proof. Suppose s is a section of T°. Write such a section as f,(z)t, for some rigid
function f,. We know from rigid geometry that —log,|f| grows linearly, with
integer slope, along half lines p(x). It therefore follows from the previous corollary
that f must be bounded as v — c0. On the other hand, f must get arbitrarily small
along p(x) for erp, and therefore f=0.

If foto ! is a section of 71, then once again we see that f must be bounded, since
otherwise it would grow too fast But f must vanish at infinity, and therefore f = 0.

Recall that u, (v(7)) = po(v(tm)) Similar arguments, with 0 playing the role of oo,
will therefore work for T1. [J

Let T, denote the tangent sheaf to #,. T, carries a norm defined by setting
d

- = 1. The associated sheaf on # » is the tangent sheaf T’ 7,

gt )

d L .
Proposition 25. Themapty nt;—z e induces an SL,(Q ,)-equivariant isomorphism
z

2
of normed sheaves AT —T,, and therefore
2 -~
ANT=Tg

Proof. T A T is spanned by t, A t; it is normed by setting

lto A tHy =tolyltily-
Observe that
(az + b)(cz +d)

z

T*(to A ty) = to A1y

The given map therefore commutes with the SL,(Q,) action. Next, recall that
ad — bc
Pl(cz + d)*

It is not hard to deduce from this and the definitions of the group action that

d(v)= —

ra o)

—log,|to A t1|r9r o = = po(v(r)) + 1 (v(2))

—log, |z N

dz r7 o)

The moduli problem

A useful SFD-module

In order to describe Drinfeld’s moduli problem, we need to choose a fixed SFD
module @ over F,. We define @ by specifying its Dieudonne module. Recall that
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A <0y is a copy of the unramified extension of Z,, of degree 2, and that we have
labelled the two embeddings A — W(F,) with 6, and ¢,.

Definition 9. Let M be the W(F ))[F, V] module with V-basis g° and g* satisfying the
relations Fg' = Vg'. 0y, acts on M via the rules I1g' = Vg' and 1(a)g* = o,(a)g’ for ac A.
Let @ be the SFD module such that M(®) = M.

Suppose m is an endomorphism of @. Then m induces a linear endomorphism of
M(®) which preserves the grading and commutes with the actions of F, V, and IT.
We associate a matrix T(m) to m by the rule

m(g°) _f 9°
=T t .
(m(Vgl)> " (Vg*
Lemma 26. The map T: End(®)—M,(W(F »)) establishes an isomorphism between
End(®) and the subring of M ,(Z,) consisting of matrices with lower left entry divisible

by p.

Proof. Since meEnd(®) must commute with F and V, we must have T(m)e M ,(Z,).
The condition on the lower left entry comes from the fact that m(Vg!)e VM(®).
These considerations show that T'(m) lies in the desired set. Conversely, if T is a
matrix satisfying the stated condition, it uniquely determines an element m of
End(®@). O

We use this lemma to identify End(®)® Q, with M,(Q,). We point out that, if
me End(@)® Q,, then the height of m is zero if and only if ord,(det(T(m))) =0.

Remark 27. The SFD-module @ can be obtained more directly. Let G be the
reduction mod p of a Lubin group of height 2 over W(F »)- It is well known that
End(G)=0p. Let @ = G x G. Weidentify End(®) with M ,(End(G)). If ac W(F,) is of
degree two over Z,, we let [a]; denote the corresponding endomorphism of G, so
that [a]¢ acts on the tangent space of G as a mod p. Then for ae 4 < D, we define

_ [oo(a)]e 0
m"’“( 0 [cn(a)]G)'

Finally, we choose ITeEnd(G) so that IT? = p and IT[a]; = [a]cIT and we let
7 o
[110= < o H)

Rigidified SFD-modules

We will now recall Drinfeld’s moduli problem. (See [Dr, p. 109].) Let Nilp be the
category of Z, algebras on which pis nilpotent. For any Bin Nilp, let SFD(B) denote
the set of isomorphism classes of triples (i, G, p) where:

1. y is a homomorphism F,— B/pB.

2. G is an SFD-module over B of height 4 at each point of Spec B/pB.

3. p:¢, @~ G is a quasi-isogeny of height zero.



664 J. Teitelbaum

GL,(Q,)® D* acts on SFD. If (g,,g,) belongs to this group, then

(gl’gZ)'(!//’ G’p) = ('poFr_na G%, pgl_lgz_ : Fl’Ob")

Here n(g,,9,) = ord,(det(g,)) + ord (N(g,)), Fr:F‘p—vl—?p is the Frobenius map,
and Frob is the natural quasi-isogeny from Fr,"® — @. G is the SFD-module G
with the endomorphism action conjugated by g,.

Now we state Drinfeld’s theorem.

Theorem 28. (Drinfeld [Dr, p. 109]) The functor SFD is represented by the formal
scheme H# »®Spf W(F,,) The action of GL,(K) x D* on SFD corresponds to the
natural action of PGL,(K) on Jf and to the action (g,, g,)— Fr—"9192 on Spf W(F,,)

In practical terms, Drinfeld constructs, for every triple (Y, G, p) over B, data
(n, T,u, p) on Spec B giving a point of # »® Spf W(l—?p). Let us briefly outline his
construction, which is described in [Dr, p. 110]. Let M = M(G) be the Dieudonne
module for G, with its grading and I7 action. Let N=M x M/~ where
(Vx,0) ~ (0, ITx). Let A:IN — M be the map A((x, y)) = IIx + Yy. N carries a grading,
and there is a well defined map N - M/VM induced by projection onto the first
component. Further, there is a canonical, universally defined map L: M — N such
that AL =F. Define ¢:N —N by setting ¢(x, y) = L(x) + (,0). Then

1. n={xeN:@(x)=x}.

2. T is the tangent space to G; it is canonically isomorphic to M/VM.

3. u is induced by the projection map N—M/VM.

4. Fix an isomorphism »°(®) with Z,@ Z,. Then the quasi-isogeny p induces

p:Q,0Q,=1"Y,2)®Q,-n°(G)®Q,.

As we see from this, an essential element in Drinfeld’s construction is knowledge
of the data (y, T, u, p) for the basic module @. We compute this data now.

Drinfeld’s data for @

As a first step in classifying SFD modules over F » let us compute the invariants
associated to our fundamental module @. This is essent1a1 since, as we remarked
above, n°(@)®Q, serves as our constant sheaf Q,®Q, when giving the data
(n, T,u, p) for an arbitrary SFD module G.

Lemma 29. The map L: M(®)— N(®) is defined by the relations L(g') = [4',0].

Proof. We must compute universally. Suppose that
ITY° = (xo >y + V(x; 9% 4 -+
Iyt = {yo»y° + V<xppy! + -

defines an SFD module I" over some W(l—-?p)-algebra R (see [Dr, Proposition 2.1]).
We know that xyy, = p. We compute

pY° =<{p>y° + V{xBy, + x;xo > + -+
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Therefore
eFy° = (xByy +xyx0 09! + -

where ¢ is a unit in W(F,), and indeed ¢ = 1 (mod p). We conclude that
eFy® = (x5 'y, +x, DIy’ + Vu

for some ueM(I"). In our situation, we must specialize to x,=y,=0 and
x; =y, =1, with all other x; and y, being zero. We conclude that L(g°) = [¢°,0],
and L(g')=[¢",0] O

Corollary 30. ' for @ is spanned over Z, by [¢,0] and [V4'*!,0].

Proof. Using the previous result, we see that L(Vg'*1)=[Vg'*?,0]. Then
o([xg' +yVg' ", zg' + wVg' "1 1) = [(x” + 2)g" + (y° + w)Vg'™ 1, 0].

Our element belongs to y when x=x% y=31%, and z=w=0. [J

The period function

We can now define a “period function” on SFD, combining our work in Sect. 4 and
Drinfeld’s construction.

Definition 10. Suppose that (y, G, p) is a point of SFD(R) where R is any ring in pro-
Nilp of characteristic zero. Then we set

z(, G, p) = ulp([g',00))/ulp([Vg'**,01)). )

Lemma 31. The functions z, defined in(5) are well defined on SFD(R) for any R in pro-
Nilp of characteristic zero, take values in the fraction field of R, and satisfy pz,z, = 1.
Further, the map

W, G, p)— (2, G, p).¥)
establishes an isomorphism between SFD(W(F ) and
(#,8Spf WE NW(E,) = Qy — Q, x Hom(W(F,), W(F,)).
Here we implicitly identify Hom(F ,,F,) and Hom(W (F,), W(F ).

Proof. This follows from our discussion in Sect. 4. We fix the basis x, = [¢° 0] and
x; =[Vg!,0] for n%®), thereby identifying n°(®)®Q, with Q,®Q,. Then
comparing with Lemma 5, we see that z,, is just the function defined there as z, when
7 is the identity in SL,(Q,). Some linear fractional transformation of this function is
defined for every point in SFD(R); since we assume R of characteristic zero, z, is
defined everywhere. It follows from the action of IT that pzyz; = 1, and therefore z, is
defined everywhere as well. Comparing then with the universal data on # p» WE see
that z, can be viewed as a rigid analytic parameter on SFD, establishing an
isomorphism between SFD(W(F,)) and Q% —Q, x Hom(W(F,), W(F,)) as
claimed. []
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We emphasize that z,, takes values in the fraction field of R, and therefore should
properly be viewed as a rigid analytic function on #°), rather than as a function on
H .

Construction of an SFD module with given period

Given an xeQ¥ ~Q, and a y: W(F,)—» W(F,), we will now construct a triple
(¥, G, p)such that zo(y, G, p) = x. We proceed by first constructing the special fiber of
G over F and then lifting it to W(F,).

Some “modular forms” on SFD

The data (y, T, u, p) associated to a W(F,)-valued point P of H » can be combined
pro + prl L),,}O@Qp_i, TO®QP9

to yield an injective map
q(P): Qo + Qpx; ~ Qi

where t, denotes a basis for T°. In fact, g(P) is an invariant of P up to projective
transformations. This is clear, since ¢(P) and g(Q) are isomorphic precisely when
z(P) = 2(Q) for ze GL,(Q,), where z is one of the coordinate functions defined in
Lemma S.

Consider now the quotient space H ,,(W( ))/GL,(Q,). Elements of this set are
precisely the injective maps Q,x, + Q,x, —>Q up to isomorphism,; this in turn is
just the set of 2-dimensional Q,, vector spaces V in Q , up to the equivalence V ~ xV
for er“’ Let us now classify such subspaces V.

Any 2-dimensional V < Q“r will be spanned by two elements x and y. Since x and
y are independent over Q,,, the vectors [x, y] and [x°, y] are independent. Therefore
we may write

[x,y] = a[x",y°]+ B[x", y"]. (6)

The following lemma is quite simple to prove:

Lemma 32. The invariants o and § do not depend on the choice of basis x and y, and
are therefore invariants of the space V < Q"’ Conversely, given o and  in Q"’ the set
[x,y] which solve (6) form a two-dimensional Q, vector space in Q"’ Finally,
if V and V' are two 2-dimensional Q -subspaces of Q“’ then V=xV'if and only if

[a(V), B(V)] = [a(V)* ™, BOVY" 11
Corollary 33. Define i(V)=a(V) *1/B(V). Then V ~ V" if and only if i(V) = i(v.

We remark that, as is well known, the quotient of P}p by PSL,(F,)is a projective
line with a canonical choice of parameter. In a sense, the function i reduces mod p to
this canonical parameter. To clarify this, we leave to the reader the task of relating i

to the cross ratio.
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Suppose now that we consider the subspace V spanned by 1/(x —x°) and
x/(x — x?), for reasons which will be clearer later. Then we obtain invariants « and
B which serve as “modular forms.”

Definition 11. For elements xe A;’, define

2
x—x7

™

#lx) = x—x°

Blx)= — (x—x°)y"77. ®)

The functions o(x) and B(x) defined here are the invariants associated to the Q-
subspace of QU spanned by 1/(x — x°) and x/(x — x°). Also define

Jx) = ord,(x — x°). ©

These functions are “modular” with respect to GL,(Z,).

Lemma 34. Suppose 1€ GL,(Z,) and
_fa b
=\l. 4/
ofzx) = (ex +d)' " a(x)

B(ex) = (cx +d)°’ ™" B(x)
Jxx)= —2ord,(cx + d) + j(x).

Then

The significance of these modular forms will become abundantly clear later, but
for now let us point out that projectively equivalent points in H p(W(Fp))
correspond to triples (, G,p) in SFD(W(F,)) which have isomorphic G parts
(although possibly different p and i parts.) As a result, the modular forms « and 8,
and the invariant {, determine the isomorphism class of G in a triple (¥, G, p) as an
SFD-module, disregarding the rigidifying data.

The desired SFD-module mod p

We will construct the special fiber of our desired SFD module using Dieudonne
modules. The Dieudonne module M(G) of the G we seek will be a free, rank 4,
W(F ,)-module, with an action by F and V such that M/VM is 2-dimensional over
F,. In addition, M(G) will carry a grading from the endomorphism action, and an
action of IT. To give the quasi-isogeny p, it suffices to give a W(K )-linear map from
M(y, @) to M(G) which preserves the grading and commutes with the various
operators IT,F, and V. We point out that the module M{(y, @) is isomorphic to the
module obtained from M(®) by the extension of scalars induced by . In concrete
terms (see Definition 9), this means that M(y,®) is the free W(F,)-module on
{g°,Vg',g", Vg°} with W(F,) action a-g' = y/(0(a))g".

We now re-cast our search for G in terms of matrices. Suppose we are given an
SFD-module G, and that y = {y° 7'} is a V-basis for M(G). Then we associate to an
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isogeny p: , @ — G matrices T'(p,y) by setting

r@) \_ i el 7
(r(VgH-l)) =T (pa V) (V'})i+1>' (10)

We point out that either one of T° and T determines the other. We can put the
matrices T into simple forms by changing our V-basis, as we now see.

Lemma 35. Elements 8° and 5' of M(G)® Q,, form a V-basis for M(G) if and only if

5i ’}’i
<V5i+1) = Xt<vyi+1)

Proof. We can write, for any V-basis §° and §!, the equations

Jor some XeU°(p)(W(F,)).

&' =ay'+ bVy'*!
V5i+1 =C')1i+ dV’))i+1.
The matrix X defined by these must have W(F‘p)-coefﬁcients and be W(F,)-

invertible. In order that 5'* ! to belong to M(G), it is necessary and sufficient that p
divide c. [

Lemma 36. Let p:iy . ®— G be an isogeny where G is not isomorphic to Y, ®. Then
there exists a V-basis y for M(G) so that one of the T'(p,7) has the form of
lemma 20, Case 1. In the notation of that lemma, we must have p~9(A° — )eW(F )~
and therefore r,e¥, for k=0,...,j— 1 and r,eF,—F,.

Proof. Fix some V-basis y’' for M(G). Then the previous lemma shows that we may
modify y' and thereby replace T'(p,y') by XT'(p,y’) for any XeU°(p)(W(F,)).
Therefore we may find y so that T°(p, y) is in one of the special forms of lemma 20.
But a simple check shows that if T° has the form of case 2 of that lemma, then
T* has the form of case 1. Now a calculation shows that, if T is as in case 1, we have

Hyizv,yi
H,yi+1 =p—j(i _ la)?i +Vyi+l-

As a result, we must have p™/(A—A%)eW(F,)*. O
Lemma 37. Suppose given a map y:W(F,)— W(F,), an element i€ Z/2, and a matrix

i P
T"<—V 0)

with AeW (F,) such that p~i(A— A°)eW(F,) and i+ j is even. Then there exists a
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unique set consisting of an SFD-module G over Fp, a quasi-isogeny of height zero
p: Y, @— G, and a V-basis y for M(G), such that T'(p,y)=p ¢ *92T.

Proof. Let y* and y'*" be the elements of M(y, ®)® Q, which satisfy

¥ o B g
(V,yi+1>:p( t(r l)t(vgwl)'

Then the Y’ are a V-basis for the desired SFD-module. []

Corollary 38. Let  and i be as in the preceeding lemma, and let

a b
T=<c d)ESLZ(Qp)'

If d/be W(F ) and a°b — b"ac W(F ) then there is a unique set consisting of G, r, and y
such that T'(p,y)=T.

Proof. The conditions on T imply that there is an ee U°(p)(W(F,)) and an neZ so
that p"eT has the form described in Lemma 37. [

Now we can define the special fiber of the triple we seek.

Definition 12. Let er’;,’ —Q,. Let M(x) be the matrix

1 J(x)
M(x)=(x—x”)‘1(__xxa _1)((1) (’;) . (11)

Ify: Fp —F, is a homomorphism, let P(x) be the triple (, G(x), p(x)) where G(x) and
p(x) are the SFD-module and quasi-isogeny determined by the map i, the matrix M(x),
and the class of j(x) mod 2 by Corollary 38. Notice that since ord,(det(M(x))} =0,
P(x) is a well-defined point of SFD(F ).

Let us now make explicit the structure of M(G(x)). The matrix M(x) givesusa V-
basis y for M(G(x)) via the formula

gj(x) ) yj(x)
(VgﬂxH 1 ) = M(x) (Vyj(x)+ 1 ) (12)

Given that this map commutes with F, V, and [T, it is not hard to compute the
following rules.

Lemma 39. The V-basis defined in (12) satisfies the following relations:
Hyj("’ — m,j(x)+ 1 (13)
Fylo | = o) + VB0, (14

Notice that these relations suffice to determine the module M(G).
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The invariants of P(x)

Let us compute the data (i, T, 4, p) for the point P(x) defined above. The following
lemma makes our calculation easier.

Lemma 40. Let G be any SFD-module of dimension 2 and suppose (x,y)eN(G)
satisfies @(x,y) =(x,y). Then u=IIx + Vy satisfies Fu = Iu.

Proof. Write L(x) =(a, b), where L is Drinfeld’s map discussed on page 25. Then,
from the definition of ¢, we must have

H@+y)+Vb=Ix+Vy.
Re-arranging gives
Ha+Vb+ HOy=1Ix+Vy
and therefore
Fx+Hy=1IIx+Vy.
Apply II to both sides of this equation to obtain the result. [
It is also worth pointing out the following.

Lemma 41. Suppose G is an SFD-module of dimension 2 and that xe IIn(G). Then
there is a unique ue M(G) such that x = (u,0) in N(G).

Proof. We can write x =(a,b) in N(G), with bellI M(G). Therefore b= I1v for
veM(G), and we see that
(a,b) = (a, v) = (a + Vv, 0).

The uniqueness follows from the injectivity of V and IT. [

Now let us consider our special situation. Notice first of all that
ITM(G(x))®* ! = M(G(x)/'.

Therefore '™+ 1 = »i® and [T T®*! = T9, In the terminology of Sect. 4, we
see that P(x) belongs to the set S, — S+ 1. These remarks also simplify our task,
since we need only compute one of the graded pieces of our data; we obtain the other
by applying IT. Combining these remarks with the previous two lemmas, we obtain
the following.

Corollary 42. n/™ is the following set:
7™ = {(u,0)eN(G):ueM(G) and Fu = Iu}.

<1}

Lemma 43. Define a sublattice L.(x) of Q;‘,’.
ax +b

G

L{x)= { (a,b):

X—X
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Define a map v:Q,® Q,—»N'P(G(x)) by (a,b)—(v(a, b),0) where

v(a,b)= ((ax + Byyi® — (ax® + b)VyI=+ 1y,

x—x7

Then the lattice n’™(G(x)) is precisely the image of L(x) under v.

Proof. Using what we know about F and IT, we see that v = ry/™ 4 Vgy/a+1
satisfies Fu = ITu if and only if

r=ar’ + pre

s = pro’,
These relations imply

r=oar’ + pre.

Now we recall that the solutions to this equation are precisely the Q, span of
1/(x —x?) and x/(x—x7) in Q. (See (6) and the subsequent discussion.) To
say that the element (a, b) lies in L(x) is the same as saying that v(a, b) has integral
coefficients relative to the basis {y™), Vy#**1} for M/™ and therefore that (v(a, b), 0)
belongs to N(G(x)). [

In the next section we lift all of our data to W(F,).

Lifting to W(F,)

We will use the technique of the universal extension, as described in [Haz, Chap. V,
Sect. 30], to lift the point P(x). We learn there that, if G is a formal group of
dimension d over W(F,) with reduction G, over F, of height h, there exists an h
dimensional formal group E and an exact sequence

0->R—-ES5G-0

where R is an additive formal group of dimension 4 — d. E depends only on G,. The
Dieudonne module of E is the Cartp(W(F »)) module generated by the symbols x(g)
for elements geM(G,) with the relations x(Fg)=Fx(g) and x(ag)=ax(g) for
aeW(F,). Furthermore, &(x(g)) reduces mod p to g.

Additive subgroups of E classify lifts of Gy according to the following theorem.

Theorem 44. (Cartier; see [Haz, Par. 30.3.27]) Lifts G of a fixed commutative formal
group G, over F, of dimension d and height h to W(li,) are classified up to isomorphism
by lattices L = VM(G,) such that L is a free W(F,) submodule of rank h —d, M/L
is free and the map L/pL—(VM)/pM induced by inclusion is an isomorphism.

We briefly recall how the correspondence of the theorem is realised. Let R(L) be
the additive formal group with Lie algebra L. The Dieudonne module of R(L) is
generated by symbols &(n) for neL such that Fdé(n)=0 and dé(an) = ad(n) for
aeW(F,). Let u: M(R(L))—M(E) be the unique Cart,(W(F,))-map such that

w(6(n)) = x(n) — Vi (V™ n).
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Then the quotient E/u(R(L)) is a formal group of dimension d which lifts G,.
Conversely, if G lifts G, let

L= {neM(Gy):&(x(n)) = 0}.

Then L determines G as above.

Since E is a functor of G, if G is an SFD module, E will inherit the structure of
SFD-module. If we wish to lift G, together with its endomorphism structure, we
need to specify a lattice L = VM(G,,) which is stable under the action of @5, This
means simply that L is a graded submodule, stable under the IT action. If these
conditions are met, the maps ¢ and x will commute with the endomorphism action.
We exploit this to obtain our main theorem.

Theorem 45. Let (), Go(x),p(x)) be the point P(x) in SF D(F ») determined by
YeHom(F,,F,) and by xeQ} — Q,,. Let L(x) be the lattice in M(G,(x)) spanned by
the elements Vy°(x) and Vy'(x), where y°(x) and y'(x) are determined by the matrix
M(x) as in equation (12). Let G(x) be the formal group over W(F ») determined by the
lattice L(x) in M(G¢(x)). Then zy(y, G(x), p(x)) = x.

Proof. Lis clearly graded and stable under the action of I1. Further, L/pL is easily
seen to be isomorphic to VM(Gy(x))/pM(G,(x)), and M(G,(x))/L is free of rank 2. It
follows that G(x) exists, so we need only compute the invariants of G(x).

Recall that we have shown (Lemma 40) that n™)(G(x)) consists of all elements
(4,0)eN(G(x)) such that Fu= ITu. Drinfeld proves that elements of n(Gg(x))
lift uniquely to elements of #(G4(x)). ([Dr, Proposition 2.3]). We have this lift at
hand; namely, if ueM(Gy(x)) satisfies Fu = ITu then Fsx(u) = ITex(u) since the
section xk commutes with I7 and F. We conclude immediately that #/®(G(x)) =
erer ™ (Go(x)).

The tangent space T to G(x) is isomorphic to M(G)/VM(G); this in turn is
canonically isomorphic to M(G,)/L. (See [Haz, Chap. V, Sect. 30].) Therefore T is
spanned over W(F,) by the classes of ex(y°) and ex(y").

In light of the previous remarks about T, the map u: ™ — T/ is defined by

u(ex(ry’® + sVypio+ 1)) = rex(y’™)  (mod VM(G(x))).

Finally, recall that p(x) is defined by the matrix M(x) in (12). Applying what we
know so far, we see that if j(x) is even we have

u(ecp(x)([g°% 01)) = u([p"™*(x — x*) ™! (xex(y°) — x"Vex(y")), 0])

X

= pi2 ex(y°) (mod VM)

x—x7

and a similar calculation tells us that

ex(y°) (mod VM).

u(exp(x)([Vg',01)) = p'™"?

x—x*
It follows that in this case, we do indeed have
Zo(¥, G(x), p(x)) = x.
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A calculation in the case j(x) odd tells us that

(J 1/2

— ex(yl)  (mod VM)

ulexp(x)([g',01)) =

(+1)2

u(excp(x)(Vg°,01)) = ;-ex(y!) (mod VM),

This is turn implies that z (¥, G(x), p(x)) = 1/(px). Using Lemma 31 we see
that z, = 1/(pz,) = x, as claimed.

The final section of this paper will give power series for the logarithms of the
groups G(x).

Power series
Our representation of G(x) as a quotient of the universal extension of G,(x) makes it
quite simple to describe the logarithm of G(x), thanks to Hazewinkel.

Theorem 46. Let (, G(x), p(x)) be the point of SFD constructed above. Let
F(x)}(T,, T,) be the column vector of power series such that

F(X)(TO,T1)=<;°>+-~- (15)
and
FO(To, ) = T+ o, F(r) + E o2 o)

where we have written

. T{s")
T ={ °
(7
0 p
n_(l 0),

Then F(x) is the logarithm of G(x). In other words,

G(x)(X; Y) = F(x)" ' (F()(X) + F(x)(Y))

defines a formal group law over W(Fp) isomorphic to G(x). Fix an action of Op on this
formal group so that IT acts via the above matrix (i.e. as F~ (I F)) and so that ac A
acts as F~1([a]F) where

SRR

and

‘/’O'j(x)+ 1)

where we recall that the o, are the two labelled embeddings of A— W(F,). The
resulting SFD module G(x)(X, Y) is isomorphic as SFD module to G(x).

Proof. All of this is simply a translation of the statements about Dieudonne
modules we have made before. The necessary integrality results follow from the
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functional equation lemma of [Haz, Par. 10.2]. The recursion relation for F follows
from [Haz, Par. 30.2.32] and Lemma 15. The action of /I then follows from (13). The
action of A « (0}, comes from the definition of the grading and the action of 4 on

v, 0. O

Let us remark that if 7 is in SL,(Q,), we must have G,, isomorphic to G,. The
modular properties of « and  make this isomorphism immediate if we substitue 7x
into the recursion relation in (15) and see what happens. We leave this to the reader.

Conclusion

All of our results are stated for 2-dimensional modules with action by the quaternion
division algebra over Q,. Drinfeld’s results are true in much greater generality. We
remark that our results generalize easily to the case of 2-dimensional modules with
action by quaternion algebras over extensions of Q, by applying the theory of
formal @-modules. We suspect that Drinfeld’s higher dimensional modules over
W(F,) are determined by formulae similar to that in Theorem 46, but with o and f
generalized to moduli for higher dimensional Q,-subspaces of Q}'; however, we
have not investigated this in any detail.

Although this work amplifies Drinfeld’s original paper by supplying many
details in certain cases, it is seriously limited in that it considers lifts of SFD modules
to unramified rings only. The most interesting points in the p-adic upper half plane
are the points defined over ramified rings, which reduce mod p to the singular points
on the special fiber. What happens there? We do not have a simple answer.

Drinfeld’s moduli for formal groups on the p-adic upper half plane is the basis for
his proof that Shimura curves have p-adic uniformizations. In a later work, we hope
to exploit improved versions of the techniques in this work to better understand the
arithmetic of Shimura curves. In particular, in the course of work on p-adic L-
functions, we have been led to construct certain “p-adic periods” associated to the
cohomology of sheaves on Shimura curves which depend essentially on the existence
of a p-adic uniformization. We hope to use Drinfeld’s moduli to obtain a more
natural construction of these periods in terms of the Gauss—Manin connection, and
thereby to gain a better understanding of how they might come to appear in special
values of p-adic L-functions.
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