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Introduction 

Recently, due largely to its importance in fermionic string theory, there has been 
much interest in the moduli spaces ~/gl-e] of Riemann surfaces of genus g with spin 
structure of Arf invariant e e Z/2Z. Algebraic geometers have long studied these 
spaces in their alternate guise as moduli spaces of pairs (algebraic curve, square 
root of the canonical bundle). For topologists these spaces are rational classifying 
spaces for spin mapping class groups. However, despite the fact that ~r162 is a 
finite cover of the ordinary moduli space J/4g, little is known about the topology of 
these spaces. 

In this paper we begin a study of the homology of ~'g[e] by proving that its 
homology groups are independent of g and e when g is adequately large 
(Theorem3.1). In a second paper [H4] we will compute nl(v//g[e]) and 
H2(./r thereby calculating the Picard group of Jlg[e]. Putting this all 
together we know approximately the same amount about the homology of Jt'g[e] 
as we do about that of d/g itself. 

The techniques used here are an extension of those of [H 2] which are in turn 
strongly related to those of [C; Q; V; W] and others. We begin by constructing 
several simplicial complexes from configurations of simple closed curves and 
properly imbedded arcs in a surface of genus g. The homology of the spin moduli 
space is identified with that of the spin mapping class group G, which acts on these 
complexes in a natural way. The Borel construction is then applied to obtain a 
spectral sequence which describes the homology of G in terms the homology of the 
stabilizers of the cells of these complexes. These turn out to be spin mapping class 
groups (in an extended sense) of smaller genus and the result is established 
inductively. The complexes are exactly the same as those of [H 2]; however, the 
spectral sequence arguments are more difficult because there are more orbits of 
cells under the action of G. Furthermore, in Sect. 4 we apply an entirely different 
and much simpler version of the argument of [H 2] to obtain stability in the case of 
a closed surface. 

* This work was supported by grants from the Sloan Foundation, the National Science 
Foundation and the CNR 
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1. Mod 2 quadratic forms, arc systems, loop systems 
and curve systems 

Let F=Fg.1 be a smooth orientable surface of genus g with one boundary 
component. A Z/27-quadratic form on the Z/2Z vector space V = Hi(F; Z/2Z) is a 
map Q: V ~ Z / 2 Z  such that for every x, y in V, Q(x + y) = Q(x) + Q(y) + x.  y, where 
x . y  is the rood 2 intersection number of x and y. Given g the possible Q are 
classified up to isomorphism by the Arfinvariant e = e(Q) = 0 or 1 (see, e.g., [RS]). If 
{xi, y~; 1 <i<g} is a symplectic basis of V,, i.e.: 

xi .x j=yi .y j=O,  xi.yj=6ij, for all i,j, 

then 

= Q(x0.  Q(yl) + . - .  + Q(xg). Q(y~). 

Note that the form Q assigns a 0 or a 1 to every unoriented simple closed curve C in 
F by evaluating Q on the mod 2 homology class represented by C. 

If F = Fo. 1 is included in Fg § 1.1, inducing an inclusion on homology groups 
~ V~+ 1, then Vg+ 1 may be given a quadratic form Q#+ 1 of arbitrary Arfinvariant 
extending Q = Q g by set ting Q# + l(x o + 1) = Q0 + l(yg + 1) = 0 or 1. This elementary 
observation is at the heart of the fact that the stable homology of Mg[e] is 
independent of e. 

Suppose now that Fg,, is a smooth oriented surface of genus g with r boundary 
components. The mapping class group Fo,,=F(F~,,) is rco(Diff+(Fg,,, 0)) where 
Diff+(Fg. ,, 0) is the group of orientation preserving diffeomorphisms of Fg,, which 
restrict to the identity on 0 = OFg, r. The group Fo, r acts properly discontinuously 
(and freely when r > 0) on the Teichmfiller space ~ , ,  of marked Riemann surfaces 
X with r pairs (pl, v~), p~ a point of X and v~ a nonzero tangent vector to X at p~. The 
quotient ~ ,  r/Fg,, is moduli space Jr Since Teichmfiller space is contractible, the 
rational homology of Jtg,~ and F0,, are the same. 

Let r =  1 and let Q be a Z / 2 Z  quadratic form on E Define G = G(Q) = Gg, I(Q) to 
be the subgroup of Fo, 1 that preserves Q; we call G the spin mapping class group 
(we refer the reader to [LMW] and [E.B.] for an explanation of the relationship 
between Z/2Z quadratic forms and spin structures on manifolds). The group G 
contains the Dehn twist on any curve C with Q(C) = 1 and the square of the Dehn 
twist on any curve C with Q(C)=0. The quotient of Jg, ,  by G is one of the spin 
moduli spaces; there are two of these, determined up to isomorphism by the Arf 
invariant, and we denote them J/o, 110] and ~r 1[1]. Once again the fact that 
Teichmiiller space is contractible implies that the rational homology of the spin 
mapping class groups is the same as that of the spin moduli spaces. We will be 
studying the behavior of the homology of the groups Gg, ~(Q) as g gets large. 

We recall now the loop-system, arc-system and curve-system complexes of 
[H 2] and [H 3]. Let F = Fg,, and let p be a point on OlF. A loop system <~o .. . . .  ~tk> 
is the isotopy class rel p of a family of embedded loops {~o, .-., ~k} based at p such 
that for each i ~:j, 

a) ~t~ and 0tj intersect only at p, 
b) ~q is not homotopic to a point and 
c) 0t~ is not homotopic tel p to ctj. 
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Form a simplicial complex AX by taking a k-simplex for each (~o . . . .  , ak) such that 
F -- {~} is connected and identifying (~o ..... ~k) as a face of ( ~  .. . . .  ~ )  when there 
are representatives of the isotopy classes such that {~i} C {~3}. The mapping class 
group Fg,r acts on A X  in the obvious way. (Remark: If �9 = (~o . . . .  , ~k) we will use 
the letter cc interchangeably to denote the simplex, the loop system and the 
elements of the set {ao ... . .  ~k}.) 

We will need a second complex BX defined as follows. Let r > 2 and let pi be a 
point on 0~F, i = 1, 2. An arc system (to,. . . ,  ilk) is the isotopy class of a family of 
properly imbedded arcs {to, ..., ilk} connecting Pl to P2 such that for each i 4=j, 

a) fl~ and ilj intersect only at p~ and P2 and 
b) //i is not homotopic to//j, rel(pl,p2}. 

The simplicial complex BX is defined exactly like AX using arc systems which do 
not disconnect F. Again Fg., acts on BX in the obvious way. 

Finally, a third simplicial complex X is defined as follows. A curve system 
C = (Co ..... Ck) is the isotopy class of a family of disjoint simple closed curves in F 
such that for each i:#j: 

a) C~ is not homotopic to a point and 
b) C~ is not homotopic to Cj. 

The simplicial complex X is constructed in the same way as were AX and BX, 
using curve-systems which do not separate F. Once again F0. , acts on X in the 
obvious way. 

An n-dimensional simplicial complex is called spherical if it is homotopy 
equivalent to a wedge of spheres of dimension n. The following lemma was proven 
is [-H 2 3. 

Lemma 1.1. a) AX is spherical of dimension 2 g -  1. 
b) BX is spherical of dimension 2g. 
c) X is spherical of dimension g -  1. 

l fG is any subgroup of Fg,,, then G also acts on A X  and BX so that they may be 
used to study the homology of G. Being specific, the Borel construction (see, e.g. 
[K.B.]) gives us an augmented homology spectral sequence (E*, d*) converging to 0 
for p + q < the dimension of AX, BX or X respectively with E ~ term constructed 
from the homology of the stabilizers of the simplices and the homology of G. More 
precisely, if p > 0 

where the sum is over representatives of the orbits of the p-cells under the action of 
G and G,, denotes the stabilizer of ap. The augmentation gives E ~_ ~,q=Hq(G). 

We will use these spectral sequences in Sects. 3 and 4 to study H,(G). 

2. Description of the action on AX, BX, and X 

Let F be a surface of genus go >= 1 with one boundary component and let Q be a 
Z/2Z-quadratic form on V=HI(F;~E/2Z) of arf invariant ~. Fix a point p on OF 
and let ~ = (Yo, ..., ~,) be a loop system based at p with F -  {y~} connected. Write 
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F(~) for the stabilizer of y in Fg. 1,  G(Q) for the stabilizer of Q in F and G(y) = G(Q) 
c~F(~). If F(y) is the surface obtained by splitting F open along ~, F(y) may be 
identified with the mapping class group Fg.,, where F(y) has genus g and r boundary 
components. G(y) is then identified with a subgroup of Fg,,. 

In order to study H.(G(y)) we will need to describe the orbits of the action of 
G(y) < Fg.r on the complexes AX, BX, and X. Here these complexes are constructed 
using loop, arc and curve systems on F(~) and we will always assume that the points 
Pl and P2 are chosen from the collection of points which become identified to p if 
we reglue F(?) to obtain F. In this way each loop/arc system 0c in A X  or BX gives 
rise to a loop system (7, ~) in F. Furthermore, each loop/arc/curve has a Q value of 
0 or 1 which must be preserved by G(7). We need now to describe the orbits of the 
action of G(?). 

Consider A X  first. Fix k ~ 0 and let f2 k be the set of all unordered groupings 
(l /2) (i3 i4) "'" (iZk+ 1 i2k + 2) of the elements of {1,2, ..., 2k + 2} into pairs. Clearly 
I2 k is finite (its order is (2k+ 1)!!=(2k+ 1)(2k-  1)... (3)(1)). Each loop system 
~= (0~ o .. . . .  cck) determines an element P(~) in I2~ (see [H2],  [H 3]): in a small 
neighborhood of p there are 2k+2  segments emerging from p, number them 
consecutively and pair the numbers corresponding to the ends of each arc. In [H 2] 
we showed that for k < g the association of P(~) to ~ gives a 1 - 1 correspondence 
between the orbits of the k-cells of AX under Fg,, and the elements of O k. However, 
since G(y) is smaller there will be more orbits. In particular each 0c t has a Q value 
which must be preserved by G(~) so we will also need to associate to 0~ the k + 1 
tuple Q(00=(Q(~o) ... . .  Q(OCk) ) in ( Z / 2 Z )  k+ 1. 

Lemma 2.1. Two k-cells o~ and ~' of AX  are equivalent under the action of G(7) if and 
only if P(~)= P(~') and Q(o 0 = Q(~'). When k < g -  1 all elements of O k x (Z/2Z) k+ 1 
O c c u r .  

Proof. Clearly if there exists an f in G(7) such that f(~) = ~' we must have P(~) 
= e(~') and Q(~)= Q(0 0. Conversely, suppose P(~)= P(~') and Q(~)= Q(~'). Since 0~ 
and ~' are nonseparating P(~)=P(0~') implies that there is an f0 in F(7) with 
fo(~) = ~'. Because Q(00 = Q(~') fo preserves the Q value of the loops in 7 and 0~. 
Complete Vu~ to a maximal loop system Vu0~/~ in F, it then consists of 2g curves 
which form a basis for H1F. If Q(fo(~i)) = Q(/~i) for all i, fo lies in G(y). Otherwise we 
will do induction on s, the order of]~, to show that fo may be altered to create f as 
required. 

Let A = ~ 7 ,  Fo = F -  A. If s = 1 F o is an annulus with core circle C intersecting 
/~1 in a single point. If Q(C) = 0 and Q(fo(/ff0) :~ Q(/~I) form f = forc (Zc is the Dehn 
twist on C). Then Q(rc(~I))=Q(~I)+ 1 so f is the required map. If Q(fo(C))=0, 
forming f=Zso~c~fo also works, thus we may assume that Q(C)=Q(fo(C))= 1. 
Now (]~, C) is a direct summand 1Io of V=H~(F) as is (fo(/~),fo(C)). Certain 
linear combinations of elements of A with C form an orthogonal basis to {/~, C} 
and provide us with orthogonal decompositions V= Vo~V~=fo(Vo)~fo(V1). 
Since fo fixes the arfinvariant of VI it must do so for 1Io and as Q(C) = Q(fo(C)) = 1 it 
follows that Q(#0=  Q(fo(~l)). This means that f = f o  is the desired map. 

When s > 1 and Q ~ )  = Q(fo(/~)) for some i we incorporate/~ into A and induct. 
If there is a simple closed curve C in Fo with Q(C) = 0  and Cofl~ equal to one point 
for some i we replace fo by foXc to fix Q(fl~) and induct. Thus we may assume that all 
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curves C in Fo which meet any fl~ in one point have Q value 1. It is easy to see that 
this implies that Fo is a punctured torus, so that s = 2, with Q(fl~) = 1, i = 1, 2. Also, 
fo(Fo) is a punctured torus, and if Q(fo(fli)) = 0 we may form f t  = Zcfo where C is the 
nonseparating closed curve which is the core of the annulus fo(Fo - fli). This leaves 
only the possibility that Q(fo(fl3)= 1, i=  1,2 in which case fo lies in G(y). 

Suppose now that k < g - 1 .  Choose any element of Qk x (7./2Z) k+l and let 
a = ( a o  . . . . .  ~k) realize the element of Ok (0t exists for any k<g,  see [H2]  for an 
argument). It is not hard to see that for each i there exists a simple closed curve C~ in 
F - ~ ,  such that C~ intersects ~j in 3~ points and Q(C3=0 (this is where we use 
k < g - 1). If the Q value of ~ is wrong replace it by Tc,(ai) and rechoose the other Cj. 
This completes the proof of 2.1. [] 

Next we look at BX. Each arc-system fl determines an element P(fl) in the 
symmetric group Xk + 1 as follows. Order the arcs counterclockwise as they emerge 
from 91, the order that they encounter d2 (measured clockwise) gives P(fl). As for 
loop systems each arc-system fl = <flo ..... ilk> has a Q value Q(fl) = (Q(flo), ..., Q(fl~)) 
in (Z/2Z) k+ 1. The proof of Lemma 2.1 is easily adapted to show 

Lemma 2.2. Two k-cells fl, fl' of  B X  are equivalent under the action of G(y) if and 
only if P(~) = P(fl') and Q(fl) = Q(fl'). When k < g all elements of  Z k +, x (Z/2Z) k + 1 
are realized. 

Finally, we look at X. Each curve system C = (Co,.. . ,  Ck) has a Q-value but, 
unlike the A X  and B X  cases, when 2 curves have the same Q-value they are 
permuted by an element of G(y) which fixes the other curves in the system. The only 
invariant then is N(C) which we define to be the number of C~ such that Q(Ci) = 1. 
Once again the above techniques adapt easily to show: 

Lemma 2.3. Ttvo k-cells C, C' of X are equivalent under the action of  G(y) if and 
only if N(C)= N(C'). 

When k < g -  1 all possibilities 0 <= N(C) <= k occur. 

3. Proof of stability in the bounded case 

In this section we will prove our main result that the homology of the groups G(?) is 
stable. 

Suppose now that ~:' is a loop system obtained from y by adding another loop a. 
The stabilizer G(y') includes naturally in the group G(?). We will need to distinguish 
four cases: 

Case t. a connects two components 91 and 0 2 of OF(y) with Q(O 1) and/or Q(c32)---0 
(Q(Oi) is the Q value of a closed curve in the interior of F(~) homotopic to ~i)- 

Case 2. cc is a loop in F(y) with Q(a)= 1, 

Case 3. same as case 1 with Q(dl)= Q(82)= 1, 

Case 4. ce is a loop in F(?) with Q(a)=0. 

Theorem 3.1. The inclusion G(~:')--+G(y) induces 

H~(G(y'))-§ 
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which is a surjection for: 

a) g__> 4 k -  2 in case 1, 
b) g_>_ 4 k - 1  in cases 2 and 3, 
c) g > 4k in case 4, 

and an isomorphism for 

a) g__> 4 k -  2 in case 1, 
b) g__> 4k + 1 in cases 2 and 3, 
c) g >= 4k + 2 in case 4. 

Corollary 3.2, Hk(,//g ' t [Q]) is independent of g and Q for g ~ 4k + 1. 

To prove Theorem 3.1 we will make use of the spectral sequences associated to 
the action of G(y). For p < g -  1 the spectral sequence for A X  has E~, o equal to the 
free abelian group on the elements of f2p• p+I and (using freely the 
correspondence between these elements and orbits of loop systems) 

P 

d~.o((~o, . . . ,~k)) = Y (- l ) i~0i((~o . . . . .  ~,  . . . . .  ~ k ) ) ,  
i=O 

where ~o i identifies (So,.. . ,ai . . . .  , ~k) with the representative of its orbit. Define 

O . ]ET1 ....~1~"1 
A . ~ ' p , O  "t~p+ 1 , 0  

by 

DA((1 i2)(ia i4)... (i2,+ 1 i2p+2), (go ... . .  ~p)) 

=((1 2)(3 i2+2)...(i2p+1+2 i2p+2+2),(1,~0,...,cSp)). 

Then DAd + dDA = 1. It is easy to show that all elements off2p x (TZ./2Z) p + 2 with first 
Q value 1 exist when g >= p + 2, so E~. o = 0 for p ~ g -  2. 

Similarly for BX, E~. o is the free abelian group on the elements of Zp+l 
• (7./2Z)p+ 1, p < g ,  with the same formula for d~.o. Define 

DB : E~,o--+ E~+ I,o 

by 

Dn(a, (go . . . . .  3p)) = (2(a), (1, go .. . . .  6p)), 

where 2 is the inclusion of Zp+ ~ into ~p+ 2 as permutations of (2 ... . .  p + 2}. Again 
DBd + dDB = 1 and all elements of 2:9+ z x (7./2~P + 2 with first Q value 1 exist when 
g ~ p +  1, so EpZ, o = 0  for p<g- -2 .  

For q > 0, 
1 

a a f a c e  o f  ~t' 

where 

is the inclusion and 

Zt~,, ~) : G~, - ,  G~ 

(p~ : G~-~G~o 
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is induced by the identification under G(7) of ~ with the appropriate orbit 
representative % (I-Brown]). The important thing to notice here is that each 
map ;et~,,~) may be identified as an inclusion G~,--,Gr so that Theorem 3.1 applies 
to it as well. 

We are now in a position to prove 3.1 inductively, so assume it is known for all 
homology groups of dimension less than k. The proof has two parts, each with a 
lemma and its application to the four cases. 

Part 1. Surjectivity 

Using A X  and B X  we obtain two spectral sequences. 

Lemma 3.3. The map 

d~,k : e~,k ~ El- l,k = Hk( G(y)) 

is surjective for the A X  spectral sequence when g > 4 k -  1, and for the B X  spectral 
sequence when g > 4 k -  2. 

Proof. First look at AX. For each loop system ~ = (~o, .--, ~p), we have genus (F(7 
w 0 0 j > g - ( p + l  ). If q<k ,  and ~ is a face of~' ,  then 

Z(~,, ~) : G~, ~ G o 

induces an isomorphism on H~ when g - ( p  + 1)> 4q + 2 and a surjection when 
g - ( p  + 1)> 4q. Furthermore, if ~t 1 and ct 2 are rank p faces of ~' which are identified 
by G(~), say s then we claim that 2" X(~, ~,)induces the same map as does 
Z(~,,,:) for g - ( p + 2 ) > 4 q - 1 .  To see this, let F(~ua')  have genus g o > g - ( p + 2 ) .  
Then there exists a subsurface FoCF(~ua '  ) of genus go with r boundary 
components (the same number as F(7)) such that a' is completely outside Fo. The 
map ,~ may now be chosen to fix F o. By out inductive assumption 

Hq(G(Fo)) ~ H~(G(7 ~ ce')) 

is surjective for go => 4 q -  1, establishing the claim. 
Now, when k > p + q and g >__ 4 k -  1, we have 

g > 4 k - l > 4 p + 4 q + 3 > _ _ p + 4 q + 3  

which implies E2, ,=0.  When k = p + q ,  q < k  and g > 4 k - 1 ,  we have 

�9 g > = 4 p + 4 q - 1  > 4 q + p + l  

(since p >  1), so E 2 q = 0  again. The lemma now follows for AX.  
For  B X  if fl= (flo . . . .  ,flk) is an arc system then genus (F(~wf l ) )>g-p .  The 

argument is now the same as for A X  except for the adjustment of g by 1. [ ]  

Next we use this lemma to establish surjectivity of the map on Hk for Cases 1 to 
4. 

Case 1. The B X  case of Lemma 3.3 gives us that when g > 4 k - 2  and ~'i is obtained 
from ~ by adding an arc fli connecting ~ with d2 with Q(fl~)= i, then 

(* i) Hk( G(Yo))~ nk( G(y l))--+ nk( G(y)) 
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is surjective. Suppose that labels are chosen so that Q(3,) = 0. We may assume that 
fli =z(flo) where z is the Dehn twist on a curve parallel to d r  However, it is 
immediate that z t-l) '  acts trivially on the image of Hk(G(v~)) in Hk(G(7)), so 
surjectivity is established in Case 1. 

Case 2. The AX case of Lemma 3.3 gives us that when g ~ 4 k -  1 and ~i is obtained 
from y by adding a loop ~i with Q value i, then 

(*~) Hk( G(~o))~ Hk( G(Y I))~ Hk( G(Y)) 

is surjective. We may assume that ~o and 0~ 1 are chosen so that together they form 
an edge ~=<%,~1> with P(~)=(1 3)(2 4). Then the map 

nk(G(~:uot))~ nk(G(Yo)) 

is surjective for g--1 > 4k--2 by case 1. This means that 

Hk( G(y l))~ Hk( G(Y)) 

is surjective which is Case 2. 

Case 3. Look again at BX; as before 3.3 gives (* I) surjective for g_-> 4k-2. We may 
choose the fli so that together they form an edge fl= <fl0, ill) with P(fl) equal to the 
identity permutation in X 2. Then the map 

Hk(Gfyufl))-+ Hk(G(~h)) 

is surjective for g___4k-i by Case 2, either i. This proves Case 3. 

Case 4. Finally, we return to AX where (*2) is surjective for g__>4k-I. Case 3 
applies to show 

Hk(G(vua))~ nk( G(Y l)) 

is surjective when g -  1 => 4 k -  1 (~ as in Case 2). This establishes Case 4. 

Part 2. Injectivity 

Case 1 does not require the spectral sequence argument. If (say) Q(d,) = 0, then we 
may attach a disk to ~ t and extend by the identity to define 

G(r , G(~) 

such that ~. X = i ()f the inclusion). This means that Z. is injective on Ilk for every g. 
Note that when Q(a,) = 1 this map is defined but it maps G(y) onto all of F(y') so this 
argument does not work for Case 3. 

1.emma 3.4, The sequence 
171 ...}171 .._}171 _..}171 ('3) J"~ 2. k J"~ I. k ~t'~O, k "t'~- 1.k 

is exact for A X  when g >- 4k + 1 and for BX when g >= 4k. 

Proof This is exactly the same as the proof of 3.3 with adjustments to g. [] 

Now we move to the proof of injectivity in the remaining three cases. 
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Case 2. Looking at (.3) for AX, let v I-0], v [1 ] be the representatives of the vertex 
orbits and e~[81, 62] the representatives of the edge orbits. Here 0 < 81, 82 < 1 are 
the Q values of the loops, el corresponds to (1 2)(3 4), e2 to (1 3)(2 4) and % to 
(1 4)(2 3). For el let A be the 2-cell corresponding to ((1 3) (2 5) (4 6), (81,0, 82)). 
Then ~(A) = -- el [81, 82] + e2 terms. Furthermore, 

Hk( G(7) d)~ Hk( G(]:)J 

is surjective when g - 2  > 4 k - 1  by Cases 1 and 3 of Part 1. A similar argument 
holds for e3 using (1 4)(2 6)(3 5). Also e2[0,0] and ezl'l, 1] clearly map to 0. 
Finally, the 2-cell corresponding to ((1 4)(2 5)(3 6), (0,1,0)) eliminates e2 [1, (3] in 
terms of e2I-0, 1] and e2[0, 0] when g -  1 > 4 k -  1. Hence 

(@) nk(G(Y),2to, 11)--+n~(G(Y)vtol) �9 nk(G(~')~tl j)--+ nk(G(~:))~0 

is exact. But Case 1 applies to show that 

Hk(G(7)~to. 11)--+nk(G(~:)vtol) 

is an isomorphism. This gives Case 2. 

Case 3. Using (*3) for BX, let wl-0], w[0-] be vertex representatives and f~[81, 62] 
edge ones where 0 < 81, 82 < 1, f l  corresponds to the identity permutation and f2 to 
(1 2). Then 

Hk( G(Y) r~[o, t])--*nk(G(~)wtil) 

is an isomorphism for each i when g>4k+ 1 by Case 2. The face for ((2 3), 
(0, 61, 82)) eliminates f2181, 62] in terms of f l  when g -  1 > 4 k -  1. The faces for 
(identity, (0, 6,8)) eliminate f118,8], 8 = 0  or 1, when g - 1  >4k  and the face 
(identity, (0, 1, 0)) eliminates/'1 [1, (3] in terms off1 [0, 1], g -  1 > 4k. This means that 

nk(G(Y)/~to, l j)-+ nk( G(Y),,toj)~ nk( G(Y)wtl l)~ Hk( G(r)) --*0 

is exact, establishing Case 3. 

Case 4. Finally, using (*3) for AX again we have the exact sequence (@) of Case 2. 
Case 3 tells us that 

n k( G(7)e2to, 11)--+ n k( G(Y)~t l j) 

is an isomorphism for g-- 1 > 4k + 2. Case 4 follows. [] 

4. The case of a closed surface 

Let Gg. 1 be the stabilizer of the quadratic form Q on V = HI(Fo, 1; Z/2Z). The map 
v:F#, 1-+Fg obtained by attaching a disk to ?Fg. 1 induces an isomorphism of V 
with Vo = HI(Fg; Z/2Z) so Q may also be regarded as a quadratic form on Vo. Let 
Gg be its stabilizer in Fg; v also induces v~:Gg, l~Gg by extending e~ch 
diffeomorphism to the identity on the attached disk. In this section we will prove: 

Theorem 4.1. The map v.:Hk(G#.l)--+Hk(Gg) induced by v~ is surjective when 
g > 4k + 3 and an isomorphism when g ~ 4k + 7. 
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Combined with Theorem 3.1 this implies that the rational homology of Gg is 
independent of g and Q for g large. 

Suppose that C is a nonseparating simple closed curve in F~ with 
Q(C) = 6 and let a be an arc contained in C. Form F ~ by splitting F ~ open along C 
and F by splitting F ~ open only along C -  :t. Then F is genus g with one boundary 
component and F ~ is obtained from F by splitting along cc We will prove that 

2, : Hk(G#. l(a))-+Hk(Gg) 

induced by the map 2: F 1--*F ~ which sews the boundary components of F 1 back 
together is a surjection/isomorphism for k in the ranges of 4.1. The theorem will 
then follow from Theorem3.1 since 2 , = v , . i ,  where i:Gg, l(a)~Gg.1 is the 
inclusion. 

For  convenience write GO= Gg and G l =  G#. l(a). Spaces K ~ =K(G i, 1) can be 
constructed so that K ~C K ~ and the inclusion of K ~ into K ~ induces the map/ l , .  
Define Hk(G ~ G 1) to be Hk(K ~ K1). Using the long exact sequence of the pair we 
see that Theorem 4.1 is equivalent to the statement that 

Hk(G ~ G~)=0, g > 4 k +  3. 

Let X ~ be the curve system complex o fF  ~, i = 0,1. The group G i acts on X ~ and/1 
induces an inclusion of X ~ in X ~ compatible with the actions. Furthermore, for 
p ___ g -  2/1 gives a bijection between the orbits of p-cells under the actions of G i on 
X ~. It follows from Lemma 1.1c that there is a relative, augmented spectral 
sequence (E*, d*) converging to 0 for p + q < g -  3 whose E 1 term is: 

1 _ _  0 1 . Ep, q-  0 Hq(G,p,G,~,~,~), p>=O, 
qp 

with 

E~ 1,q = Hq( G~ GI) �9 

Here, in contrast to the AX and BX cases, there exist elements of G i which fix a cell 
ofX i setwise but not pointwise. Therefore homology is with 7. p coefficients, that is 
to say 7, coefficients twisted by the orientation character X,p: G ~ Z / 2 Z  (see 
[K.B.]). Note that X,p does not depend on i. Since g > 4 k + 3  implies that g>p 
+ 4 q +  3 whenever p+q<k, Theorem 4.1 now reduces to: 

Lemma 4.2. H~(G~ G~p;~p)=0  for p>O and g>p+4q+ 3. 

Let ap correspond to the curve system 4 =  (Co, .,Cp). Then G i is all �9 " ~ r p  

elements of G i which fix cd setwise. Define ~ to be the subgroup of all elements 
which fix c~ pointwise. Then there is a short exact sequence 

where s(ap)=Qmc)x Qp+ 1-too with Qk the group of signed permutations of k 
letters. (Here the sign corresponds to the fact that each C~ may have its orientation 
reversed and the permutation groups come about because elements of G ~ may 
interchange any two curves ofqf which have the same Q value.) Since S(ap) does not 
depend on i, and z , . l d ~  = 1, Lemma 4.2 reduces to the same statement with G ~ 
replaced by G~ and iE~ replaced by Z. 



Moduli spaces of Riemann surfaces 333 

To go further, consider the surfaces F~ obtained by splitting F i along cg. As we 
did when we passed from F ~ to F 1 we may think of F~e as obtained by first opening 
up an arc C j -  ~j of each Cj in U to obtain a surface ffi with p + 1 + 2i boundary 
components and then splitting along the p + 1 arcs {~j}. Reglueing each C j - ~ j  
gives ffi-~Fi and induces 

r(~9-~r(vg. 
Let G(F i) be the inverse image of G i and let M i be the stabilizer of {~j} in G(Pi). ~p 
Then M ~ may be easily identified as one of the groups G(?) of the previous .p 
sections. There is an exact sequence 

1 -~2~ p+ 1 i ^i 

Here ~E p+I is generated by 

where C~ splits into C + and C i in 8F~ and z denotes Dehn twist. As easy 
application of the Lyndon-Hochschield-Serre spectral sequence reduces Lem- 
ma 4.2 to the same statement with G~ replaced by M~p and ~ . .  replaced by Z. 

The setup to show that Hq(M~ M~.)=0 is the following. The group M~t= is a 
subgroup of Fg_p_ 2, 2p + 4 where the boundary curves are Cf coming from the p + 1 

• o curves C j, and C coming from the curve C. Similarly Mop is a subgroup of 
F0_p_l,2p+2. Let co be a simple closed curve splitting F~-p-2,zp+4 into two 
surfaces, one of which is a genus zero surface with four boundary components at 
the curves co, C • and C +. Let M be the subgroup of M~. consisting of mapping 
classes of diffeomorphisms which are the identity on this subsurface. Then 
Theorem 3.1 implies that 

Hq(M)~ H,(M~,) 
is an isomorphism for g - p -  2 __> 4q + 1. Lemma 4.2 and Theorem 4.1 follow. [] 
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