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The Kobayashi indicatrix (infinitesimal unit ball) of a domain in IE n is known 
to be a biholomorphic invariant. In particular, if a domain is biholomorphic to 
a ball, then the indicatrix is the ball. Until the recent deep results of Lempert [4], 
it was not known to what extent the indicatrix characterizes the domain. Sibony 
had shown earlier that the indicatrix of any pseudoconvex circular domain is the 
domain itself [10]; hence the indicatrix determines such domains up to biholo- 
morphism. This is not true in general. Lempert has shown that, for smoothly 
bounded strictly convex domains, three invariants determine the domain up to 
biholomorphism and a linear change of  variables at a base point. These invariants 
consist of not only the Kobayashi indicatrix but also a quadratic form and a 
hermitian form on a certain vector bundle. In two dimensions, there is an open 
set in a Frechet space, corresponding to domains not biholomorphic to the ball 
but with indicatrix the ball. 

The result of this paper is that, for ellipsoids, if the Kobayashi indicatrix is 
the ball then the ellipsoid is biholomorphic to the ball. This is proved in the 
following equivalent form: if an ellipsoid symmetric about 0 is not biholomorphic 
to the ball, then its infinitesimal Kobayashi metric at 0 is not hermitian. 

In this language, our result answers a question posed by Reiffen in [7] about 
the differential-geometric nature of the Carath6odory metric for ellipsoids. By 
two results of  Lempert ([3] and [2]), for strictly convex domains the Carathe6dory 
and Kobayashi metrics coincide and determine a Finsler metric. One now sees 
that, for ellipsoids, the metric is not hermitian and hence, by a theorem of  Reiffen 
[7], not Riemannian. 

We prove that the infinitesimal Kobayashi metric at 0 is not hermitian by 
proving that the parallelogram law fails to hold. An ellipsoid ~ may be written 
(via a linear change of coordinates) as )-], ] zj] 2 ..~ ,~j Re (z 2) < ,  0 < Aj < 1. By a 
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result of Webster [12], if L ~ is not biholomorphic to the ball then some parameter 
2j, = 2  is nonzero. Fixing J2*J~ with corresponding 2j2 =/t ,  we show that the 
parallelogram law fails for the vectors ita/Ozj, and O/Ozj2 if ~ = 0 ,  and 

�9 �9 | 

O/Ozj, and itO/Oz/2 i f / t . 0 ,  t is either ~,1, or 2, depending on the ratio/~/2. 
In the z/,- and zj~-axis directions, symmetriy and Lempert's uniqueness result 

[2] are used to reduce the problem of  determining Kobayashi extremal disks from 
n dimensions to one. In IE ~ the Kobayashi extremal disks must coincide with the 
inverse of the Riemann mapping function for ellipses. Off the axes, the extremal 
disks are not calculated exactly. We consider competitors lying in complex lines, 
thus reducing the problem again to one dimension, and use the Riemann maps. 
The Kobayashi norm (or a competitor for the norm) of  a vector in the tangent 
space at zero is the derivative at zero of the inverse of  the Riemann mapping 
function. This derivative involves an elliptic integral and the modulus of  a Jacobi 
elliptic function, and the classical elliptic function technology is used to express 
norms (or competitors) as series in terms of certain mapping parameters p of  the 
ellipses. These p are algebraic functions of ~. and/t .  

Hence showing that the parallelogram law does not hold is equivalent to 
showing that one series is greater than another. In Sect. 1 the problem is reduced 
to this stage. In Sect. 2 we compare rates of  growth of  the series and in Sect. 3 
their initial terms. The lemmas of these sections provide the induction step and 
the hypothesis for an easy induction argument in Sect. 4, which shows that one 
series dominates the other term-by-term and completes the proof  of the theorem. 
Finally, we sketch why the theorem as stated is equivalent to the assertion about 
indicatrices. 

The author wishes to thank her thesis advisor, Dan Burns, who suggested 
using the parallelogram law to study the Kobayashi metric and suggested con- 
sidering ellipsoids. The author also wishes to thank Bill Floyd, who wrote a 
computer program which made possible the study of numerous examples. 

1. Reduction to a comparison of series 

We first introduce some definitions and notation�9 A denotes the unit disk 
~C~ r  ICI < 1}�9 For  a strictly convex domain D in IE n, a holomorphic function 
f : A ~ D  will be called extremal with respect to z e D  and v~Tz(D) if 
f ( O ) = z , f '  (0)=ow, with t~ > 0, and for any holomorphic g : A ~ D  such that 
g (0) = z, g '  (0) = av (a > 0), we have a =< a. In this context the Kobayashi-Royden 
infinitesimal metric at z is FD (z, v )=  1/or. Existence and uniqueness of  f for such 
D are due to Lempert [2]; in general FD is given as an infimum, [8]. That FD is 
in fact a norm on the tangent spaces of strictly convex D also follows from 
Lempert [2]. Throughout this paper the base point z = 0, the domain is a fixed 
ellipsoid ~ ,  and we write Ilvll for F~ (0, v). f (A )  will be called an extremal 
disk. The Kobayashi indicatrix at 0 is I0 = [o:FD (0, o) < 1}; it will not be referred 
to until Sect. 4. 

An ellipsoid is the bounded domain in IE n with boundary the real ( 2 n -  l)- 
dimensional hypersurface described by 

a/x/ + b y j = l  , aj~b/>O , z/=x/+iyj. 
j = l  
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Following Webster [12] we make the linear change of coordinates 

1/a  2 
zs ~ + bj" zj to rewrite the above in the form 

k a}-b}  0 < 2 j <  1 . (*) Izjl2+,l:Re%)2= 1 , 2j=a:+ b s , = 
j = l  

Let ~ be an ellipsoid not biholomorphic to the ball in I t ' ,  with boundary 
defined by (*). Then by Webster's ellipsoid classification result [12] some ~.j, say 
)~:~, is nonzero. Fix j2 # j l .  If 2:2.0,  w show that the parallelogram law 

2(l[ul l2+ I[vll2)= Ilu+vll2+ Ilu-vll = 

0 0 
fails for the vectors u - d Z j l  and v = it Ozj~' t is a real number which will vary with 

1 0 0 
the ratio ~.j2/)~j~. If 2j2 = 0, we use the vectors ~ i Ozj, and OzJ2 

Under automorphisms of ~,  Kobayashi extremal disks are mapped to Ko- 
bayashi extremal disks. It follows from Lempert's uniqueness theorem [2, th6o- 
r~me 2] that the extremal disk in the zs,-direction is invariant under the auto- 
morphism z:, ~-~z:,, z:~-~ - zj for j* jL.  Hence the disk lies in the zj,-axis. Similarly, 
the extremal disk in the zj2-direction lies in the zj2-axis. 

With u and v as above, the automorphism zj2~--~-zs2, z:~-~zj if j~-J2 inter- 
changes u + v  and u - v .  Hence [[u+v[[ = f l u - v i i .  So we need only show that 
Ilul12+ Ilvll== Ilu+vll ~ fails to hold. 

If there were automorphisms of ~ fixing the directions u + v and u -  v, we 
could conclude, as in the axis directions, that the extremal disks each lay in a 
complex line. Since this is not true in general, we estimate the extremal disks. 

Note at this point that, since the vectors in question depend on only two of 

the standard basis vectors 10~ ,..., 0~n I for T~'~ (D), the argument is essentially 

two-dimensional. To simplify notation we suppress lists of zeros and work in IE 2, 
with z for zj,, w for zs2, 2 for 2s,, and p for 2j~. 

Let g denote the extremal disk in the direction u+v.  Then g ' (0 )  
= a ( u + v ) , a > 0  maximal. If  4 is a holomorphic map from A to ~ with 

g '  (0) = 5 (u + v), then 5 < a and II u + v ]1 = 1_ =< 1_.. In particular this holds for a 
o/ o/ 

competitor 4 lying in a complex line. We will compute one such g. Writing 
1 

11 u + v I I - =-~, we will show that 

Ilul12§ Itvl12> I lu+vl l  ~_ . 

It follows from Schwarz's lemma that, for a bounded simply connected domain 
in IE, the Kobayashi extremal function is the inverse of the Riemann mapping 
function. Since the Riemann map for ellipses is known, we may compute 

[~z and ~ w "  
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X 2 y2 
The interior of the ellipse ~ +~- /= 1, a 2 -  b2= 1, w = x + iy, is mapped con- 

formally onto the unit disk A by the function 

( ) da - b~ 2 
P)s in- lw;P ' P = \ a + b J  z = f (w) = kV-~ sn 

[5, pp. 295-296]. Sn is a Jacobi elliptic function which may be defined by means 
of its inverse, 

z d(  
sn-  ~ ( z )  = ~ . 

(1 ~2)(1 k2~ 2) 

It appears here via the Schwarz-Christoffel formula mapping a rectangle to the 
upper half plane, p is, up to constant factors in the exponent, the exponentiated 
ratio of the sides of the rectangle. Therefore the inverse of the Riemann map 
for an ellipse with loci at (-l-c, 0) is given by F(z )=c f -J ( z ) .  Since 
f ( 0 ) = 0 , F "  (0)= c ( f - ' ) "  (0). 

f -  t (z) = sin sn ; p , 

so ( f - ' ) '  (0) -- ~z 
2 K V k "  

We consider first the ca se /2 .0 .  To find "~ 2, consider the ellipse E1 de- 

termined by the intersection of ~ with the z-axis given by [ z [ 2 + 2Re (z 2) = 1, 
or (1 + ~.)x + (l - 2 ) y 2 =  1. We rotate to get the foci on the x-axis and scale to 

get  t h e m  at  ( .~_ l ,  0). c2 2 4  1 ~ 1 2 ~  2 1 - 22, so the scaling map is c = . The new ellipse 

is 22 x 2 + 1 _ ~ y  2 1.Thecorrespondingpispl 
(1--]//1--42) 2 

1 + 2  , ,~ -= - 42 .TheKobayashi 

map is O--~(F(O, 0), where F =  �9 (inverse of the Riemann map for El). 

and 

--  --  ~  
} f ' ( 0 )  12 22 ~2 

1 /  22 7(. 
F" (0) = I /  �9 

1 - 42 2Kl V~l I '  

K~k~ , K~=K(p~) ,  k ~ = k ( p O .  (1.1) 

Similarly, considering the ellipse determined by the intersection of ~ with 
(1 -- [/1 --/.t2) 2 

the w-axis, we find that/92 - -  ],12 and 

0it i 0 i:=t: 1 - ;4  itOw =t20ww 2/t " ~  K~k2,  

K 2 = K(p2) , k2 = k (P2) �9 (1.2) 
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In  order  to find ~ + itS,,, , cons ider  the intersection o f  ~ with a complex 

line o f  the fo rm w = itz, t > 0. This determines the ellipse 

E3: I z{: + [itz [ 2 + 2 R e  (z 2) + p R e  [(itz) 2] = 1 

or [(1 + t 2) - (pt 2 - ~)]x 2 + [(1 + t 2) + (pt 2 - 2)]y2 = 1. No te  that  the foci lie on the 

x-axis if t 2 >  2_; this will be satisfied for  the values o f  t to be selected. Let  

r = p t  2 - 2 and s = 1 + t 2. Then the equat ion of  the ellipse is [s - r] x 2 + Is + r] y2 = 1, 

c2 = 2r sZ r 2, the ellipse with foci at  ( •  i S s + r  x 2 r  2+s_ry2=l,2r and 

s 2 (  V r2"~2 
,0 3 = ~  1 -  1 -  ~SJ �9 The  m a p  ~ we use as compet i to r  for  the Kobayash i  

G - ] / - ~ r .  (inverse o f  the R iemann  m a p  extremal  is ~ -*  (G (~), itG (0 ) ,  where - i/ s2 _ r2 

for  E3). 

~z + it 2 ~ : l _r  2_ 
S 2 

0 O 2 4 K23k 3 ( 1 . 3 )  ~z+it~w _ =  [~,(0)12 = s .  rt 2 
2 _r 

S 

g~: Izl2+ Iwl2+~.Re(z2)< 1. As before Now,  if p = O  we have 

~z 2 _ 1 - 2  2 4 K~kl so . _  
22 zt 2 ' 

it~z 2=t21 -22"~  " (1.4) 

The  intersection of  g" and the w-axis is just A, and'  

0 0 I12 
To  compute  it Oz +Oz _' we consider the ellipse E4 determined by the inter- 

section of  ~ with the line z=itw. E4 is }zl2+lwl2+;tRe(z2)=l, or  
(1 + t 2 - 2t  2) x 2 + (1 + t 2 + 2 tZ)y  2 = 1. Let  p = 2t  2 and s = I + t 2. The equat ion o f  

the ellipse is [s - p] x 2 + [s + p] y2 = 1, c z 2p - s 2 _ p 2 ,  the ellipse with foci a t  ( + 1,0) 

is x2 + 2p  y 2 =  1, and ,04 = 1 -  1 - ~ - ]  . The compet i to r  for the 
s - p  _ / , ,  

Kobayash i  disk is the m a p  h~: ;~*(itH(O, H(O), where H =  V~zz__P2 �9 (inverse 

of  the R iemann  m a p  for  E4). 

it 0 + ~ 2 --P2 
0 ~w 2 OZ v,. 1 s2 4 K~k4 (1.6) 

it + = ih , (0)12  = s -  2 p- .rt-- 5 . 

S 
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4 
All the norms computed  above involve the quanti ty ~5 K2k,  for which Jacobi 

[1, p. 160, eq. (13)] found the following series expansion: 

4 ~ -'- 1 q. pZn-1 
~Z --~ K 2 k = 4  P~ ~ (1 _ _ p 2 n - l ) 2  �9 

n = l  

(Cf. also [11, p. 108, eq. CX (10)].) 

2. Comparison of  growth rates 

Let 
n-~ 1 "t-p 

G(,o)=4 ~, p (l-Z~g:#2._,-)2 

and let G, denote  the n th term of  the series. Let  H,, (p) = G, +, (p)/G,, (p). 

Lemma 2.1. H,~ (p) > 0 for  p ~ l (0,~) andn>= 2. 

Proo f  
(1 +pZn+l) ( 1 - p 2 " - 1 ) 2  

H.  (p) = p .  (1 __p2n+ 1)2" (1 + p 2 . - 1 )  and 

1 - -  p 2 n  - -  1 

H,~ (t9) = (1 - -p2n+~)3 (1 +p2n--X)2 Pn(P)  , w h e r e  

Pn (P) = - pSn + (6n - 3) p6n + l .jr_ ( __ 6n - 3) p 6 , -  ~ + 2np4, + z _ 2np 4 , -  2 

+ (6n + 3)p 2n+t q- ( - 6n + 3)p 2n- 1 + 1 . 

In order  to show that P,  (p) > 0, consider separately the cases n = 2 and n > 3. 
P2 (0) > 0, P2 (�89 > 0, and P~' (p) < 0 for p e (0,1); hence P2 (P) > 0. If  n > 3, group 

the terms o f  Pn (P) pairwise (first and second, third and fourth,  etc.). The positivity 
o f  each pair is easily checked for p e (0, �89 [] 

1 
We now fix values for  t. If p = 0, we let t = ~. If  M* 0 we may assume by 

symmetry that /z  >__ A. Let/z = c2 and split the region 0 < ~. <- p < 1 in three: region 
I, where 1 =< c < 1.6; region II, where 1.6__< c < 10; and region III, where c > 10. 

1 In region I, let t = 2; in region II, let t = 1; and in region III, let t = ~. 

Define 

p (x)  - -  

I -V x2) 2 12- , x e (0, 1) 
x 

, x = O .  

Then p is a cont inuous function f rom [0, 1) to [0, 1) and, in the nota t ion o f  Sect. 1, 

(;) (p) P l = P (~-), P2 = P (]-/), P 3 -  P , a n d  P4 = P . R e c a l l  t h a t  ). e (0, 1), # e [0, 1), 



On the Kobayashi-Royden metric for ellipsoids 61 

r = u t  2 - 2, S = 1 + t 2, and p = f12. It is easily seen that p- ~ [0, 1) for all t and that  
r s 

- ~ [0, 1) for the values o f  t selected above. 
s 

Lemma 2.2. The inequalities p~ > xP4 and P2 > toP3 are satisfied by the following 
values o f  to:for l l=O,K=4;  for /t=1=0,1r in regions H and III, and !c =2 .19  in 
region I. 

Proof We abuse nota t ion by writing "P3" in regions I, II, and III even though 
the explicit dependence on 2 and c changes with t. 

Consider first the case/a = 0. Then 

, 1/ t = ~  p 4 = ~  1-- 1 - - ~ J  , and limpJp4=25.a+o 

For  2 ~ (0, 1), p~ = 4,04 if and only if 

1 ~ 2  100 (1 _ ] / / /1  2 2 ~  2 2  (1-1/i-2 ) =-U 

or, equivalently, 922 (22+ 2 4 ) =  0. But the polynomial  is positive for nonzero 2. 
It follows from l i m p J p 4 > 4 ,  p~*4p4 for 2 ~ ( 0 , 1 ) ,  and continuity that  

A50 
Pl > 4p4 for 2 ~ (0, l). 

The  case/~ =t= 0 is similar, except that  the p 's  now depend on both 2 and c. In 
each of  regions I, II, and III, one shows that limpz/p3 is greater than the relevant 

~0 
x and that  a polynomial  in 2 and c is positive. In regions II and III these 
polynomials are 

PIE (2, c) = 2219c 2 (c - 1)222 + 48e + 16] 

P u I  (2 ,  c) ----- 2219e 2 (e - 4)222 q- 2 0 0 c  2 q- 8 0 0 c  q- 16 (e -- 4) 2] 

Both are clearly positive for positive e and nonzero 2, and the conclusion follows 
by continuity. The analysis in region I is slightly more  delicate and is deferred 
to the appendix. [] 

Lemma 2.3. For p ~ (0, 1/to), H~ (xp) > H, (19) for n >= 2 if  tr = 4 and for  n >= 3 if  
x = 2 . 1 9 .  

Proof 

n ,  (top) = x 
Hn (P) 1 (Kp) 2n + l -~- (Kp)  2n -1  1 -4- p2n 4-1 ~ J  �9 

Since p < 1/x < 1, the last two factors are each greater than 1. We now find 

lower bounds for the first two factors. Let  f ~ ( y ) =  ~ ; ~ s j ,  y = x p ,  

y e(O,  1). The zeros of  f ' ( y )  in (0,1) coincide with the zeros of  p l y )  
= 2y 2"+t - (2n + 1)y 2 + ( 2 n -  1). By Descartes 's  rule o f  signs, p has either two 
positive roots  or none.  Since p (1) = p  " ( 1 ) = 0 ,  p is nonzero in (0, 1) and hence 
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so is f~ ' .  I t  follows that,  for y ~ ( 0 , 1 ) ,  f , , (y)>min[f(O),  l i m f , ( y ) ] =  
yl" l  ( 2n- -  1) 2 ( 2 n - -  1~ 2 

2 ~ /  " No te  that  \ 2n  + l /  is an increasing function o f  n. 

1 + y 2 . + l  
Let g ,  (y) = 1 + y 2 , -  1, Y -- xp, y e (0, 1). The zeros of  g~' (y) in (0, 1) coincide 

with those o f  qn (Y) "= 2Y 2"+ 1 ..~ (2n + 1)y 2 - (2n - 1). By Descar tes 's  rule of  signs 
and the intermediate  value theorem,  q, (y) has exactly one zero in (0, 1). Hence, 
so does g" (y). It  is easily verified tha t  this zero gives a min imum for  gn (Y).  

Og,, 
Since O n  > 0 for  y e (0, 1),g,  is an increasing function of  n. Hence so is 

min ,  [g,(y):y e (0, 1)]. In order  to find a lower bound  for  g,(y), we consider 
g2 (Y) when x = 4 and  g3 (Y) when x = 2.19. 

The  zero o f  g~ (y) in (0, 1) is that  o f  q2 (Y) = (Y + 1) 2 (2Y 3 - 4Y 2 + 6y - 3). The 

cubic has the unique real root  Y2 = ~ 2 + - (10)  1/3 . Evaluating,  one finds 

that  g2 (Y2) > 0.8. Hence,  if x = 4 and n => 2, 

H~(xp) 

H.ha) 
2 x .  min f2 (Y)" min  gE(Y) 

y e (0 ,1)  y e (0 ,1)  

> ( 4 ) ( 9 ) ( 0 . 8 ) > 1 .  

To  find the zero Y3 of  g3' in (0,1), consider q3 (Y) = 2Y 7 q- 7Y 2 - 5. Using New- 
ton ' s  me thod  to approx imate  Y3, the intermediate value theorem to verify the 
approx imat ion ,  and the mean  value theorem to determine a lower bound for  
g3 (Y3), o n e  finds tha t  g3 (Y3) > 0.9. Thus  for  x = 2 . 1 9  and n_>_3, 

H.(xp) 
H.ha) 
- - . ~  x" rain f3(Y)" min  g3(Y) 

y e (0 ,1)  y e (0 ,1)  

>(2 .19 )  2(4__~)(0.9)>1 . D 

L e m m a  2.4. I f  lZ = O, Hn (Pi) > H, (p4) for n >= 2. I f  lz ~- O, 1t, (P2) > H ,  ha3) for n >= 2 
in regions I I  and I I I  and for n >= 3 in region I. 

Proof. I f  p > rcr with K > 2 and  p, t r e  (0, 1), then H , ( p )  > H, ha/tc) > H,(tr) by 
L e m m a s  2.3 and 2.1. The result follows by  L e m m a  2.2. [] 

3. C o m p a r i s o n  of  ini t ia l  t erms  

1 - x 2 1 - -  X 2 

Let  F ( x ) = - - ~ x  Gha(x)) and let F , ( x ) = - ~ x  Gn(p(x)). Note  that  

Fn+l(x) = 11, ha (x)). F, (x); this will be used in Sect. 4. In this section we prove  
several inequalities for  FI, F2, and F3. 

L e m m a  3.1. I f  #=O, 1 + t2Fl (~,)=sF~ (p/s). I f / z . O ,  Fl(~,) + tEFl (fl)=sFl (r/s). 
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Proof Recalling that s = 1 + t 2, the lemma follows immediately from 

1 - - X  2 1 - ] / /1  - - X  2 
F, (x) = - - .  4- 

2x x 

1 _ X2)2 1+ (1-1/1 

I1 ~ 
We now express F2 (x) as a rational function o f  x. 

1 - - x  2 (1 - - ] /1  --x2) 3 1 3-1( lx  
~ X2)  6 

. 4 .  

-- 2x 2 (1 -- x 2) (1 - 1/1 -- x2) 3- x6 + (1 -- ]/1 - xZ) 6 
[X 6 - -  (1 - - / 1  - -  X2)6] 2 

x 2 (4 - 3 x 2) 

(4 - x2) 2 

Lemma 3.2. I f  lu = O, t2F2 (2) > sF2 (p/s). 

1 Proof In this case we have t = ~, 

1 )2 (4 - 322) 5 
t 2 F 2 ( 2 ) -  4 ( 4 _ 2 2 )  2 and sF2(p/s)=4 22. 1 0 0 - 3 2 2  

' ( 1 0 0 -  22) 2 " 

Let x = 22 ~ 0. Then showing that  tZF2 (A) > sF2 (p/s) is equivalent to showing that  
f ( x )  > 0, where 

f ( x )  = (4 - 3x) (100 -- x) 2 -- 5(100 - 3x)(4 -- x) 2 

= 32,000 - 2 6 , 5 6 0 x -  16x 2 -F 12x 3 . 

f is obviously positive for  x ~ (0, 1) . [] 

The remaining lemmas in this section deal with the case p *  0. The idea o f  
their proofs  is identical to that o f  Lemma 3.2, but  complicated by the appearance 
of  c and by the high degree and large coefficients o f  the polynomials  which occur. 
The skeleton o f  all the proofs is the same: one shows that  a polynomial  f ( x ,  c) 

1 
(where x = 2 2 )  is positive for 0 < x < ~ 5  and the appropr ia te  domain  for c. 

(1 )  
Essentially, either f ~5, c > 0 and Oxx < 0, or  one bounds  f by a function with 

such behavior. We indicate the polynomial  which arises in each case and defer 
the elementary but tedious computa t ions  to the appendix. 

Lemma 3.3. In region II,  t2F2 (fl) > sF2 (r/s). 
l 

Proof Let p = c A ,  1 . 6 < c < l O .  O < / t < l  forces 0 < 2 < -  Since t = l ,  
c222 (4 - -  3C222) C 

fiFE (~) -- (4 -- e222) 2 Recalling that  r = /a t  2 - 2 and s = 1 + t 2, 
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2~,2 (c - 1)2116 - 322(C - 1) 2] 
�9 Let  x = 2 2 .  T h e n  showing  tha t  t2F2(t a) sF2 (r/s) - [16 - 4 2 (e - 1)2] 2 

> sF2 (r/s) is equ iva l en t  to showing  tha t  the f u n c t i o n  

f (x, c) = c 2 (4 - 3 c 2 x) [ 16 --  (c - 1 )2 x]2 _ 2 (c - 1 )2 [ 16 - 3 (c - 1 )2 x] (4 -7"e2 x) 2 

1 
is posi t ive  for  1.6=<c < 10 a n d  0 < x < ~ .  

L e m m a  3.4. In region III ,  t2F2~u) > sF2(r/s). 

1 Proof Let l t=c2,  c>= 10, a n d  t = ~ .  T h e n  

1 c222(4--3c22) (~-s) 5 2 2 ( c - - 4 ) 2 [ 1 0 0 - - 3 2 2 ( c - - 4 )  2] 
12F2(t.i)=-4 (4__ c222) 2 a n d  sF 2 �9 =; 

Let x = 22:i: 0. O n e  shows tha t  

f (x, c) = e 2 (4 - 3 c2x)[100 - (c - 4)2x] 2 - 5 (c - 4)21100 - 3x  (e - 4) 2] (4 - c2x) 2 

1 
is posi t ive  for  c_-> 10 a n d  0 < x < ~5. [] 

U n f o r t u n a t e l y ,  the a n a l o g u e  o f  L e m m a s  3.3 a n d  3.4 fa i ls ' in  reg ion  I. W e  prove  
ins tead  the fo l lowing  two l emmas .  

L e m m a  3.5. In region I, F2 (2) + t2F2 ([2) > sF 2 (r/s). 

Proof Let /1  = c2, 1 < c < 1.6, a n d  t = 2. T h e n  

(4 - 342) (4 - c222) 2 + 4c  2 (4 - 3c222) (4 - 42) 2 
F2 (2) + tZF2 (g) = 42. (4 - 42) 2 (4 - c222) 2 

a n d  

1.222 [ t00  - 3 ( 4 c  - 1)242] 
s F 2 ( ~ ) = 5 ( 4 c -  ) [ ~ 7 ~ c 7 - 1 ~  . 

Let  w = 22:1: 0. O n e  shows tha t  

f (x, c) = [(4 --  3 x) (4 --  c 2x) 2 "4- 4 c 2 (4 --  3 c 2x)(4 --  x)21[ 100 --  (4 c - 1)2x]2 

- 5 (4c - 1)2[100 - 3 (4c - 1)2x] (4 - x)  2 (4 - c2x) 2 

1 
is posi t ive  for  l < c < l . 6 a n d 0 < x < ~ 5 .  [] 

W e  n o w  express F3 (x) as a r a t i ona l  f u n c t i o n  o f  x. A ca l cu la t ion  us ing  the 
iden t i ty  a s • b 5 = (a + b)  (a 4 --T- a3b + a2b -T- ab 3 q- b 4) shows tha t  

x 1~ + (1 - ]//1 - x2) ~~ = 2 (1 - [/1 - x2) 5 (5x  4 - 20x  2 + 16) 

x ~~ --  (1 - -  ]//1 - x2) ~~ = 2 ~ (1 - -  V'l _ ~ ) 5  (x 4 _ l Z x  2 + 16) 
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and hence that 

F3 (x)  = 
1 -- x 2 (1 -- ]//1 -- x2) 5 

"4 
2x  x 5 

= 2x 4 (1 - x 2) (1 - l/1 -- x2) 5 

- -  X 4 (5X 4 - -  20x 2 + 16) 
m 

(x 4 -  12x 2 + 16) 2 

Lemma 3.6. In region I, t2 F3 Q.t) > sF3 (r/s). 

1 - 11/i  - x 5  '~ 

1 
[1 -- ~ 6  (1 -- ~ ) 1 o 1 2  

x l~ + (1 -- 1]/]-~--x2) 1~ 

[x  ' ~  (1 - 1/1 - x2)1~ 2 

Proof. Let It = c;t, 1 < c < 1.6, and t = 2. Then 

and 

t2F3 Q/) = 4c4~. 4 ( 5 C 4 ~  4 - -  20C2~t 2 + 16) 
(C4/~ 4 -  12C222 + 16) 2 

s F  3 ( ~ ) =  5"/~4 (4c-1)415/~ 4 ( 4 c - 1 )  4 -  50022(4c - 1)2+ 10,000] 
Dt4(4c - 1) 4 - 300,~2(4c - 1) 2 + 10,000] 2 

Let x = 22 =1= 0. One shows that 

f (x, c) = 4c 4 (5C4X 2 - -  20c2x + 1 6 ) [ ( 4 c -  1)4x 2 -  300(4c- -  1)2x + 104] 2 

- 2 5  ( 4 c -  1)4[(4c--  1)4x 2 -  1 0 0 ( 4 c -  1)2x + 2,000] 

(c4x 2 -  12c2x + 16) 2 , 

1 
is positive for l _ < c < l . 6 a n d O < x < ~ .  [] 

4. Proof of the theorem 

Theorem. Let ~ be an ellipsoid in IE n, n_>_ 2, symmetric about O. Then ~ is bi- 
holomorphic to the ball in 112 ~ if  and only if  its infinitesimal Kobayashi metric at 0 
is hermitian. 

Proof. It  is well known that, if a domain  is b iholomorphic  to the ball, its Ko-  
bayashi metric at any point  is hermitian. For  the other implication we assume 
that  ~ is not  b iholomorphic  to the ball. As discussed in Sect. 1, we may  for 
simplicity and without  loss o f  generality carry out  the p roo f  in C 2. Recall that  
the ellipsoid is defined by 

Iz12+ [wl2 + A Re(z2) + ~ R e ( w  2) < 1 

with ~. * O. 
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If  g = 0, consider the vectors it and ~ with t = ~ .  Comparing (I .4), (1.5), 

and (1.6) with the definition of F(x) in Sect. 3, 

it ---- 1 + tEl(2) = 1 + ~. tEF~ (2) 
n = l  

Zt~z+~w =sF = ~, sF, . 

and 

inductively that the series ~, t2F.(2) dominates the series 
n = 2  

term-by-term. By Lemma 3.2, tEF2(2)> SFE(p/s). Suppose that 

i z+ito  2_= . 
n = l  

It suffices to compare only t2Fn 02) and sF, (r/s) since F~ (2) is positive. In regions 
II and III, the induction begins at n = 2 and uses Lemmas 3.3 and 3.4. In region 
III the induction begins at n = 3, using Lemma 3.6; one then uses Lemma 3.5 to 
complete the argument. Failure of the parallelogram law results from 

~ 
0 it > ~z+it~w _ >= +it . [] 

We now indicate briefly why the Kobayashi metric at 0 is hermitian if and 
only if the indicatrix is biholomorphic to the ball. I f  the metric is hermitian it 

and 

We prove 

~. sF,(p/s) 
n ~ 2  

t2Fk (2) > SFk (p/s). Then 

by Lemma 2.4, completing the induction argument. Since 1 + tEF~ (2) = sFl (p/s) 
oa 

(Lemma 3.1) and the series are positive it follows that 1+ ~, /2Fn(2) 
~,, n = l  

> sF, (p/s). Hence 
n = l  

it~z 2+ ~W Z> itffz+~w ~ ~ i tO+~W 2 

and the parallelogram law fails. 
The proof for the case/~ :~ 0 is essentially the same as for/~ = 0. The vectors 

considered are ~ and it where t = 2, 1, and �89 in regions I, II, and III respec- 

tively. From (1.1), (1.2), and (1.3) 

~Z 2 i t ~ w 2 ~ ,  ~, + = F. (2) + t2F. (It) 
n = l  n = l  
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gives an inner p roduc t  on the tangent  space. The  linear m a p  sending each element 
of  an o r thonormal  basis to a s tandard basis vector  in C n is a b iho lomorph i sm 
between 10 and the ball. Fo r  the o ther  direction, suppose the indicatrix is biho- 
lomorphic  to the ball. Then (since Io is circular), by H. Car tan ' s  uniqueness 
theorem the two are linearly equivalent. Define an inner p roduc t  on the tangent  
space by pulling back  the Euclidean inner product  via the linear map.  The  no rm 
induced by this inner product  agrees with the Kobayash i  norm.  

Appendix 

End of proof of Lernma 2.2. In region I, l _ < c <  1.6, t = 2 ,  
P2 = (1 - ]/1 - X222)2/(C222), and P3 = (5 -- 1/'25 -- (4c - 1 ) 2 2 2 ) 2 / ( ( 4 r  - 1 )222) .  

limp2/P3 = 25c2/(4c - 1) 2. I t  is easily seen tha t  this is minimized for c =  1.6 and  
~o 
that  the min imum is greater than 2.1904. Fo r  2 ~ (0, l/e), p2=2.1904P3 if and 
only if 

1 1.482 
c222 (1 - 1//1 - c 2 2 2 )  2 - (5 -- ]//25 -- (4C - 1 ) z22 )  

( 4 c -  1)222  

or, equivalently,  P/ (2 ,  c) = 0 where 

P~(2, c) = 22 (1.417052c2(4c - 1)222 + 8.7616 + 24.34304c - 18.51776c 2) 

>__ 22 (1.417052c2(4c - 1)222 + 8.7616 - 5.285376c) 

>= 22 (1 .417052c2(4c-  1)222 + 0.3049984) . 

The inequalities follow f rom the fact that  c < 1 . 6 .  Thus  Pz(2, c ) > 0 .  Hence  
p2> 2.19p3for 2~(O, 1/c),ce[1,1.6). [] 

Proof of Lemma 3.3. I t  suffices to show that,  for  fixed c e [1.6, 10], f ( 1  ) , c  > 0  
\ t ~  / 

o f  ( c 2 )  ( 1 )  ~ and O x  < 0 for  x e 0, �9 f ~5, c = F(c), where F(c) = - 9c 4 q- 420c 3 

+ 10c 2 -  2 2 0 c +  55. But 

F(c) = c 3 ( -  9c + 420) + 10C 2 - -  220c + 55 

3 3 0 C  3 q- 10C 2 - -  220c + 55 = 1 0 c  2 -F C (330C 2 -- 220) + 55 

>__--10C 2 + 6 2 4 c + 5 5 > 0  , 

where the first inequali ty follows f rom c < 10 and  the second f rom c => 1.6. Hence  

, c > 0. Expanding  f (x ,  c) and differentiating, 

0_f= _ 544c 4 _ 640c 3 + 704c 2 _ 384c + 96 
0x  

+ 2c2(20c 4 + 4 8 C  3 - -  2 0 0 C  2 -t- 176C -- 44)X 

-1- 3 C 4 ( 3 C  4 -  12c 3 + 18c 2 -  12c + 3)x 2 . 
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The coefficient o f  x 2 is A (c) = 9c4(c- 1) 4 > 0 for c e [1.6, 10]. Hence, for 
( 1 )  0 f  (Of] Of] ) 

x e  0, 2 ,~x<max~.OXlx=o, OX]x=~ j .  

0~J  - 5 4 4 c  4 - 6 4 0 c  3 + 704c z - 384c + 96 
O X  

x = 0  

= 32 ( -  17c 4 -  20c 3 + 22c 2 -  12c + 3) 

< 3 2 ( - -  17c4+ 2c2--  9) 

< 3 2 ( -  1 5 c 2 -  9) < 0 

of 
Oxx x=~ = - 4 9 5 c 4 -  58c3 + 358c2 - 68c + 17 

< - 4 9 5 c  4 - 2 2 2 c  2 - 5 1 < 0  

where the inequalities follow from c > 1. Hence O f >  0. Therefore f ( x ,  c)> 0 

f o r c ~ [ 1 . 6 , 1 0 )  a n d x e ( 0 , 1 z ) ,  n 

Proof of Lemma 3.4. 

f ,c =-~(5,436c4+35,424c3-62,144c2-34,816c+34,816) 

>1 
___ c2 (5,436c 4 + 2,886, 144c + 39,816) > 0 , 

where the inequality follows f rom c => 10. Expanding f (x ,  c) and differentiating, 

of 
= (61,440 - 61,440 c + 74,240 c: - 29,440 c a - 26,560 c a) 

Ox 

+ 2c2( - 29,696 + 29,696c - 9,536c2 + 1,056c 3 - 16c a) x 

+ 3 c a (3,072 -- 3,072 c + 1,152 c 2 -- 192 c 3 + 12 c 4) x 2 . 

The coefficient o f x  2 is A (c) = 36ca(c - 4) (c a - 12c 2 + 48c - 64). It is easily verified 
that  the cubic factor  has only one real root, which lies in (0, 10). Hence A (c) 
does not  change sign for c_>_ 10, and l i rn  A (c) > 0 implies A (c) > 0 for c >= 10. 

Hence, for  x e 0, < max x=o'  Ox x=~ " 
C 

O f  x=o z = 61,440 - 614,400c + 74,240c - 29,440c 3 - 26,560c 4 

2 4 =< - 5 5 2 , 9 6 0 -  220,160c - 26,560c < 0 

of 
x=~ = 11,264 - 11,264c + 58,624c 2 - 27,904c 3 - 26,556c 4 

_< - 1 0 1 , 3 7 6 -  220,416c 2 -  26,556e 4 < 0 
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The inequalities follow from the fact that  c_>_ 10. Hence ~-~J< 0 and f (x, c) > 0 

f o r c > 1 0 a n d x ~  0, . [] 

Proof of Lemma 3.5. The method is similar to that  o f  Lemmas  3.3 and 3.4, except 
that  the derivative to be shown negative is cubic rather than quartic in x. Instead 
o f  dealing with it directly we majorize it by a polynomial  in c. 

f(~,C)=~6{--9,216cS-'}-6,816C7 + 28,528C6-- 2,608C 5 
\-- 16,600C4--766C3+611C 2-112c+7 / 

>16 
= c3 ( -- 9,216c 5 + 6,816c 4 + 28,528c 3 -- 2,608 c 2 -- 16,600c -- 766) 

> 1 6  
= ~ - (  -- 9,216c 4 + 6,816c 3 + 28,528c 2 -- 2,608 c -- 17,336) 

128 
= c2 ( - -  1,152c 4 + 852c 3 + 3,566c 2 -  326c--  2,167) 

g (c) = -- I, 152 c a + 852c a + 3,566 c 2 -- 326 c -- 2,167 has only two real roots, o f  
which one is less than 1 and one is greater than 1.6. Hence g (c) does not  change 
sign on [1, 1.6); since g (1) > 0, it follows that g (c) > 0 on [1, 1.6]. Hence the same 

is true o f f  ( ~ ,  c ) .  

af  O---x = ( - 424,960 - 471,040 c - 399,360c 2 - 1,085,440c 3 - 732,160c 4) 

+ ( - - 5 1 2 +  33,792c + 491,520c2 + 1,003,520c3 + 791,040c4) 
+ 365,568c 5 + 120,832c 6 x 

+ (576 -- 9,216c + 45,696c 2 -- 89,856c 3 -- 312,000c 4 -- 232,704cS'~ 2 
_ 139,776c 6 _ 36,864c7 + 36,864cS ) x  

+ ( - -  320c 2 + 5,120c 3 - -  2 0 , 8 0 0 c  4 + 3,200C 5 + 70,400C 6 

+ 20,480 C 7 -- 20,480 C 8) X 3 

=/1o (c) + A~ (c)x + A2 (c)x 2 + A3 (c)x 3 �9 

aT 
We now find a funct ion h(c) such that  Oxx < h ( c ) < O  for  

c ~ [ 1 ,  1 .6 ) ,x~  (0 ,12) .  Consider  first 

A3 (c) - 70,400c 6 = 320c2( - 1 + 16c - 65c 2 + 10c 3 + 64c 5 - 64c 6) 

--< 3 2 0 c 2 ( -  1 + 1 6 c -  65c2+  10c 3) 

_<__ 320c2( - 1 + 1 6 c - - 4 9 c  2) 

=< 320c2(--  1 -- 33c) < 0 , 
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where c <  1.6 was used in the second inequality and c >  1 in the first and third. 
0 f  

Since x < ! 2 ~ 1, 70, 400r < 70,400. Hence Ox < Ao (c) + 70,400 
c 

+ AI (c)x + A2 (c)x 2. We now consider Az (c). 

A2 (c) = 64(9 - 144c + 714c 2 - 1,404c 3 - 4,875 c 4 - 3,636c s - 2,184c 6 

- 576c 7 + 576c 8) 

< 64(9-- 144c + 714c 2 -  1,404c 3 -  4,875c 4 -  3,636c 5 

- 2,184c 6 + 345c 7) 

< 6 4 ( -  1 3 5 -  690c 2 -  4,875c 4 -  3,636c 5 -  1,632c 6) < 0 , 

where c < 1.6 was used in the first inequality, and 1 < c < 1.6 in the second. Hence 
0 f  
- -  < Ao (c) + 70,400 + A~ (c)x, and we consider AI (c)x. 
0x 

A1 (c)x < (33,792c + 491,520c2 + 1,003,520c 3 + 791,040c 4 

+ 365,568c 6 + 120,832c6)x 

< 525,312 + 1,003,520c + 791,040c 2 + 365,568c 3 + 120,832c 4 , 

where in the first inequality we used the positivity of  x, and in the second that 

x < ~ < 1. Hence 
c 

0 f  
Oxx < Ao (c) + 70,400 + 525,312 + 1,003,520c + 791,040c 2 + 365,568c 3 + 120,832c 4 

= 170,752 + 532,480c + 391,680c 2 -  719,872c 3 -  611,328c 4 

= h ( c )  . 

O f  
Using the fact that c >__ 1, it is easily seen that h (c) _< - 236,288. Hence Oxx < 0 

f o r c e [ I , 1 . 6 ) ,  x ~ ( O ,  12). r-1 

Proof o f  Lemrna 3.6. The method is similar to that of the preceding lemmas, 
except that f ( x ,  c) has much larger coefficients and higher total degree. In order 
to show that it is positive we estimate it from below by a more tractable poly- 
nomial. We may write f (x) = a (x, c) - b (x, c), where 

a (x, c) = 4c 4 (5c4x 2 -- 20c2x + 16) [(4c - -  1 ) 4 x  2 - 300(4c - 1)2X + 1 0 4 ]  2 

b (x, c ) =  2 5 ( 4 c -  1)4[(4c - 1)4x 2 -  lO0(4c -  1)2x + 2,000](c4x 2 -  12c2x + 16) 2 . 

We will now find ~ (x, c) and/7(x, c) such that a (x, c) > ~ (x, c), b (x, c) </7(x,  c), 
and ~ (x ,  c) - ~ ( x ,  c) > O. 

Clearly a(x, c) > 4c4(5c4x 2 -  20c2x+ 16)(10,000- 3 0 0 ( 4 e -  1)2X) 2. Let 

e~(x, c)= lO,OOO- 3OO(4c-1)2x. ~ > O for c e [1,1.6], x ~ [o, ~ l  ; t~, and hence 
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1 
~2, is m i n i m i z e d  when  x = ~  a n d  c =  1.6. W e  use the  c r u d e r  l ower  b o u n d  

2 > 43,320,000 a n d  let  ~ (x,  c ) =  17,328. 104C 4 (5C4X 2 -  20c2x + 16). 

Le t  B (x, c) = (4c - 1 )4x  2 - 100(4c - 1)2x + 2,000. I t  is eas i ly  seen t h a t  B < 2,000 

fo r  c �9 [1, 1.6] a n d  x �9 / 0, ~ 1 .  L e t / 7 ( x ,  c ) =  5" 1 0 4 ( 4 c  - 1) 4 (C4X 2 -  12c2x + 16) 2. 

T h e n  f (x ,  c) > ~ ( x ,  c) - / 7 ( x ,  c) = 104 7 ( x ,  C) where  

f (x,  c) = 17,328c 4 (5c4x 2 -  20c2x + 16) --  5 ( 4 c - -  1) 4 (C4X 2 - -  12c2x + 16) 2 . 

, c = - 125 + 2 , 0 0 0 c - -  12,000c 2 + 32,000c 3 - 14,672c 4 

> 200c  (9 - 60c  + 160c 2 - 74c  3) . 

The  cub ic  is pos i t ive  a t  c = 1 a n d  c = 1.6 a n d  has  nega t ive  s econd  de r iva t i ve  fo r  

c----> 1" H e n c e f  ( c  1-5 ) , c  > 0, c �9 [1, 1.6]. 

W e  n o w  s h o w  t h a t  3xx < 0 fo r  c �9 [1, 1.6], x �9 0, . 

O f _  1,920c z _ 30,720c3 + 184,320c 4 - 4 9 1 , 5 2 0 c  5 + 144,960c 6 
Ox 

+ ( - 1 ,760c 4 + 28,160c 5 - 168,960c 6 + 450 ,560c  7 - 277 ,280c8)x  

q- (360c  6 - 5 ,760c 7 q- 34,560c s - 92 ,160c  9 + 92 ,160c1~ 2 

q- ( - 20c  8 + 320c 9 - 1,920c 1~ + 5 ,120c N - 5,120c12)x 3 . 

D e n o t e  b y  A ( c )  the  coeff ic ient  o f  x 3. I t  fo l lows  f r o m  c > l  t h a t  A ( c )  

=< c s ( - 20 - 1,600 c), so 3 x  < 3 x  - A (c)x 3. Le t  g (x,  c) = ~ 

T h e n  

2 3 4 g (0, c) = 1,920 --  30,720 + 184,320c - - 4 9 1 , 5 2 0 c  + 144,960c 

< 1,920 - 20 ,720c  + 184,320c 2 - 259,584c  3 

< - 28 8 0 0 - -  75 264c  z < 0 , 

where  the  f irst  i n e q u a l i t y  fo l lows  f r o m  c < 1.6 a n d  the  s e c o n d  f r o m  c >_ 1. 

g , c = 5 2 0 - - 8 , 3 2 0 c + 4 9 , 9 2 0 c  2 -  133,120c3--40,164c 4 

=<_ - 7 , 8 0 0 -  83 ,200c  2 -  40 ,160c  4 < 0 

since c >= 1. D e n o t e  by  B (c) the  coef f ic ien t  o f  x 2 in g (x,  c). 

B (c) = c4(360 - 5,760 c + 34,460 c 2 - 92,160 c 3 + 92,160 c 4) 

__> c 4 (360 + 28,800) > 0 
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( ') since c >= 1. It  follows that g (x, c) < 0, hence ~xx < 0, for x e 0, ~ . Therefore 

f " ( x , c ) > 0 a n d f ( x , c ) > 0 f o r c ~ [ 1 , 1 . 6 ) a n d x e  0, . D 
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