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1 Introduction 

CR manifolds, the abstract models of real hypersurfaces in complex manifolds, 
are 2n + 1 dimensional manifolds M with a codimension one subbundle H 
of the tangent bundle, which carries a complex structure. The "CR" refers to 
Cauchy-Riemann because for M C C n+l, the subbundle H consists of induced 
Cauchy-Riemann operators. There is a wealth of geometry and analysis as- 
sociated with these structures, especially when the CR manifolds are strictly 
pseudoconvex. For example, two strictly pseudoconvex domains are biholomor- 
phically equivalent if  and only if  their boundaries are CR equivalent. 

A fundamental problem in CR geometry is to find computable invariants 
associated with the CR structures. The global CR invariant we will consider 
in this paper is the Chem-Simons type invariant/~ discovered by Bums and 
Epstein [B-E 1]. It is a real-valued global CR invariant of  a compact 3- 
dimensional strictly pseudo-convex CR manifold whose holomorphic tangent 
bundle is trivial. (Cheng and Lee independently found this invariant, and extend 
the definition of B-E invariant to a relative invariant on an arbitrary compact 
3-dimensional CR manifold, cf. [C-L].) We will evaluate this g asymptotically 
on the boundary of small Grauert tubes. Before posing the question in a more 
precise form we will first say a few workds about Grauert tubes. 

Let X be a real analytic manifold. Then every coordinate patch U C R n 
can be thickened to obtain an open set r c C n. Since the coordinate changes 
of X are real analytic maps, by taking power series expansions and by 
shrinking C U  to get convergence, they can be extended holomorphically to 
such enlarged domains and thus they can be used as holomorphic transition 
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functions for a complex manifold CX. This complexification process makes it 
possible to extend real analytic objects given on X to holomorphic ones on 
the complexification. Granert [Gr] used this idea in his famous proof about 
embeddability of abstract real analytic manifolds. One remarkable byproduct 
of Grauert's construction is the existence of a neighborhood M of X in CX 
and a smooth strictly plurisubharmonic function p 

p : M --* [0, 1) 

such that X is the zero set of p. This p is not canonically defined, since cp 
keeps this property for any c E (0, l). Recently Guillemin and Stenzel (and 
independently Lempert and Sztke) proved the uniqueness of p under two ad- 

v/'~-T ~ ~ 
ditional hypotheses: the Kiihler metric with K~ihler form - - ~ o a p  on M is 

compatible with the Riemannian metric on X, and v ~  is a solution of the 
homogeneous complex Mongc-Amptre equation on M -  X. This result can 
be regarded as defining a canonical complexification of Riemannian manifolds 
with real analytic metrics. The set {p < e 2 } is a certain disk bundle over X. 
We call it the Grauert tube of radius e. 

We will concentrate on real 4-dimensional Grauert tubes, and find the B-E 
invariant/~ on the boundaries of these tubes. Our motivation for this study of 
the invariant # in Grauert tubes comes from the volume formula proved by 
H. Weyl. He showed in [Wey] that the volume Vr of an n-dimensional tubular 
neighborhood around a Riemannian submanifold (xm, g) of ~n has a Taylor 
series in the radius r. Specifically, 

Vr =Cm(volume of X) r "-m + Cm,2f (scalar curvature) r n-m+2 dvol 
x 

rn-m+e 
+ 

ee v-,e2~ven (m + 2)(m + 4) . . .  (m + e) ke 

where ke are certain integral invariants of X, determined by the intrinsic metric 
nature of X only. 

We address the following questions. On {p = 52}, as e varies, how do the 
invariants /~ depend on the manifold X and the radius e? To what extent are 
they analogous to H. Weyl's volume formula? 

One of the main results we prove in this paper is Theorem 6.1 which says 
that: # has an asymptotic expansion in 52 

3 2fdA I f  ~ "2~ F (.) # ,,, - k(x)dA + ~ e  f t(gij )dA, 
16~e x l=l X 

where k(x) is the scalar curvature, and A'Zl+2r'r'2-(k)X=Cl~/~ y# ] Fl(gl.~ )) for any 
nonzero real number ~ ,  The leading term was suggested by the calculation 
of a Reinhardt example (cf. [B-E 1]). Using this result, together with group 
representations, we can prove the bihqlomorphic inequivalence of Grauert tubes 
with centers of constant sectional curvature and classify these kinds of tubes. 
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The contents of  the various sections are as follows: 
Section 2 is a quick review of definitions of a CR structure and the Bums- 

Epstein invariant. 
In Sect. 3 we establish the necessary background information and develop 

some properties of  the Monge-Amp6re equation which will play a key role in 
the sequel. 

In Sect. 4 we first show that the invariant/t is well-defined on the bound- 
aries of  Grauert tubes, then point out a natural pseudo-hermitian structure. 

Section 5 will concentrate on the B-E invariant. We prove in this section, 
the invariant/~ possesses an asymptotic expansion in powers of the radius. 

Section 6 is devoting to the calculation of the second term of  the asymp- 
totic expansion of the invariant /~. Our main result is Theorem 6.1, which is 
summarized above, saying that the invariant g of the boundary of  a Grauert 
tube has an asymptotic expansion in the radius of  the tube. The leading and 
the second-order terms are respectively the volume and the scalar curvature 
times some dimensional constant. 

In Sect. 7 we discuss the location of CR spherical structures and the bi- 
holomorphic inequivalence of  Grauert tubes by examining the behavior of/~ 
on their boundaries. Though the answer is not clear for general Riemannian 
manifolds, we do have a definitie result for those Grauert tubes whose centers 
have constant sectional curvature, the main results are stated as Theorem 7.1 
and Theorem 7.2. 

2 CR manifolds and the Burns-Epstein invariant 

Let M be a smooth manifold of real dimension 2n + 1. A CR structure on M 
is defined by choosing an n-dimensional subbundle Ti,0M of the complexified 
tangent bundle IETM of M, such that 

(1) TI,oMA TI,oM = {0}; 
(2) T1,oM is integrable, i.e., i f X  and Y are two sections of Ti,oM, so is 

their Lie bracket [X, Y]. 

We call M a CR manifold with the given CR structure Tl, 0M. Also T~, 0M 
is called the holomorphic tangent bundle, and TI.oM ~ Ti,oM is usually de- 
noted by IEH. In fact, IEH carries a natural complex structure given by the 
map J 

J : CH ---, IEH , 

J ( V ) = i V ,  J ( V ) = - i V  for V E T~,oM. 

The most important example of  a CR structure is of  course that induced by 
an embedding M C IE n, in which we can choose Tl,oM = Tl, o• n+l fq IETM. 
We call this the embedded CR structure. For three-dimensional CR manifolds, 
the integrability condition is automatically fulfilled: any complex line bundle 
V with V f3 V = {0} defines a CR structure. This property, together with the 
fact that there are many nondegenerate CR structures on any compact orientable 
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three-manifold, makes the 3-dimensional CR structures strikingly different from 
higher dimensions. 

A contact form 0 is a real non-vanishing one-form which annihilates T,,0 
(hence annihilates OH);  it is determined only up to a conformal factor. A CR 
structure /'1,0 with a specified choice of  contact form 0 is called a pseudoher- 
mitian structure. The Levi form associated with this 0 is a Hermitian form Lo 
on Ti,0: 

Lo(V, W)  = -idO(V, W)  . 

The structure is strictly pseudoconvex if the Levi form is definite; thus by 
changing the sign of 0 if necessary, we may assume that it is positive-definite. 
Let {XbX2 , . . . ,Xn}  be a local frame field for Ti.0, and let {01,02 . . . .  ,On} be 
a dual coframe field. Then 

dO = igloO,, A O~ + 0 A ~p , 

where O/i = 0~, and go is a real one-form. Calculations on pseudohermitian 
manifolds are simplified tremendously if we work with special coframes. With 
the contact form 0 fixed, Webster [Web] chose a coframe {0~,0~} of Ti,0 by 
requiting 

dO = ig~O~ A 0~ , 

and defined the connection form (co~) as well as the torsion form (z ~) via the 
structure equations 

a0 =0BAco +0Ae, e^0 =0. 
In this setting, the curvature matrix (H~) is 

and the pseudo-hermitian scalar curvature R is defined by 

in the sequel, we will only deal with three-dimensional CR manifolds in 
which the tedious indices of  the above forms could be simplified tremendously. 
First of  all, since M is strictly pseudoconvex, the matrix (g~)  is positive- 
definite. Therefore, we can normalize {Oh Of} so that 

dO = iOi A Of . 

Since there is only one connection form co~, and only one torsion form z l, we 
may denote the connection form co~ by co and the torsion form z ! by T. The 
structure equations then become 

(2.1) d O l = O ! . A c o + O A r  c a + o h = O ,  T A O f = O .  

and the pseudo-hermitian scalar curvature R is obtained from the equation 

dee = ROl A Of -(- W01 A 0 - -WOf  A O . 
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Based on this structure, Bums and Epstein [B-E 1] defined a real-valued 
global CR invariant # of Chern-Simons type for a compact, strictly pseudocon- 
vex 3-dimensional CR manifold whose holomorphic tangent bundle is trivial. 
This p can be written down explicitly as 

(2.2) p = f T C 2 ( n ) ,  
M 

where 

(2.3) TC2(H )=  ~ ---~-dogAog+ R O A d o g - 2 O A r A  +exact  form. 

Remark. Cheng and Lee [C-L] independently found this invariant and extended 
the definition as a relative invariant to arbitrary compact three-dimensional CR 
manifolds. 

3 Grauert tubes and Monge--Amp~re equations 

Let X be an n-dimensional differentiable manifold. Bruhat and Whitney showed 
that if X is a real-analytic manifold of dimension n, then X can be complexi- 
fled; i.e., there exists a complex n-dimensional manifold M, and a real-analytic 
imbedding of X in M, such that X is a totally real submanifold of M, where 
totally real means: V E Tx(X) implies JV ~ Tx(X) for the complex structure 
J on Tx(X), any x E X. In addition, Grauert [Gr] showed that there exists a 
neighborhood U of X in M, and a nonnegative smooth strictly plurisubhar- 
monic function p on U such that X is the zero set of p. The fact that p is 
strictly plurisubharmonic implies that the domains 

Me = p - l ( [ 0 , ~ 2 ) ) ,  ~ > 0 

are strictly pseudoconvex. 
Clearly this p is not uniquely defined for a given X, because any posi- 

tive real number c times p still gives a nonnegative strictly plurisubharmonic 
function. However, Guillemin and Stenzel [G-S] (simultaneously and indepen- 
dently, Lempert and Sztke) imposed additional conditions on p to assure its 
uniqueness; they proved the following theorem. 

Theorem (Guillemin-Stenzel) Let X be a compact, real-analytic, n-dimen- 
sional maniJbld with a real-analytic Riemannian metric ds 2. Then there exists 
a neighborhood M of X in the ambient complexified space, and a unique real- 
analytic nonnegative smooth strictly plurisubharmonic function p such that 

(1) x = p-~(o); 
(2) the metric ds2g obtained from the Kiihler form ~ p  is compatible 

with ds 2 (i.e., dS2M Ix = ds2); 
(3) (a~v/~) n = 0 on M - X .  
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Let us say a few more words about the condition (3). Let u : M --, R be 
a plurisubharmonic function on a complex n-dimensional manifold M. The 
homogenous complex Monge-Amp~re equation for u is 

( , , )  (a~=)" = 0, 

or in local coordinates zl,z2 . . . .  , z . ,  

det \ aziO~j ) = O . 

When n = 1, this equation reduces to the Laplace equation Au = 0, and, in- 
deed, the Monge--Amp~re equation is the most natural extension of the Laplace 
equation to higher-dimensional complex manifolds. The above theorem shows 
that M and p are uniquely determined by X and the metric ds 2. We can also 
regard the theorem as defining a canonical complexification of a Riemannian 
manifold with a real-analytic metric. (M,X,x/~) is called a Monge-Ampdre 
model (of bounded type, if x/P is bounded; of unbounded type, otherwise). 
Let 

M~ = p - 1 [ 0 , ~ 2 ) .  

Then Ms is an open, strictly pseudoconvex domain. We refer to this as the 
Grauert tube of radius e. One of the main objects of this paper is to find the 
Burns--Epstein invariant/= on this Grauert tube, and to see how it depends on 
the geometry of X, which we will call the middle manifold or center, and 
the radius e. Since the invariant /~ is defined only on three-dimensional CR 
manifolds; we will fix n = 2 from now on, and point out some properties of 
the Monge--Amp~re solution v~- 

Let p be a positive smooth function on a complex manifold M of dimension 
two. Since 

(OOV~) 2 = - �88  ^ ~p ^ ~ p  - p(a~p ^ a~p)], 

is a solution of the Monge-Amptre equation (**) if and only if 

(3.1) 0p ^ ~p ^ o~p = p(0~p) ^ (o~p) ; 

or in local coordinates z,w, 

(3.2) 2p(p~pw~ - P~Pwz) = PzPiP~ - PlPwP=,~ - Pzp~pwi + pwp,~pzz. 

These differentials could also be expressed in terms of real coordinates xbx2, 
Yl,Y~, w i th  z = x l  + i y l ,  w = x2 + i ~ .  Then the equation (3.2) takes the form 

(3.3) 
2p[(P~txt + Pylyt Xpx2x2 + p ~ )  - (p~,~x2 + Pyly2) 2 - (pxly2 - pxz.vl )2] 

= [(p~,)2 + (py,)~](px,~ + py~y,) + [(p~,~ Y + (py~ Y](p~,x, + py, y, ) 

- 2(p~pxz + py~p~zXpx~ + p y r e )  

+ 2(p,~py~ - p ~ p , ~ X p , ~  - p~,~ ) .  
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Let (gij) denote the Riemannian metric on X. The metric compatibility 
property (2) of the Guillemin-Stenzel Theorem holds if and only if 

i.e., when we pull back and evaluate the Kiihler metric on real vectors tangent 
to X, it coincides with the Riemannian metric (gij). Therefore, locally p must 
have the form 

($) p(z ,w) : p(xl ,yl ,x2,  Y2) 

= 2[/i t (xl, x2)yl 2 + 4gt2(xt, x2 )Yl )'2 + 2922(Xl, X2 )y22 

+ higher order terms in Yl and Y2. 

On the other hand, Q ( z , w ) -  p(s is a real-analytic, non-negative smooth 
strictly plurisubharmonic function which satisfies all of three conditions listed 
in the Guillemin-Stenzel Theorem. By uniqueness 

( ~ )  p ( z , w )  = Q(z ,w) -- p ( ~ , ~ )  

= 2gll(Xl,X2)y~ + 4g12(Xt,X2)ylY2 + 2g22(Xl,X2)y 2 

+ higher order terms in ( -Yl)  and (-Y2).  

Comparing (g) and (~g), we see that it is not possible for odd-order terms in 
yl, y2 to appear. Setting 

g P -  Ogij(Xl'X2) g'Pt~- Ogij(Xl'X2) 
dXp ' dxpdXq ' 

p can be expressed more precisely as follows: 

Proposition 3.1. 

(3.4) p(z,w) = 2gll(Xl,X2)y 2 + 4gl2(Xl,X2)yly2 + 2g22(Xl,X2)y22 

X X 2 2 + q)l(Xl,X2)y 4 + q)2(XI,X2)Y~Y2 + (P3( t, 2)YlY2 

+ tp4(xbx2)yly32 + tpS(xl,x2)y 4 

+ higher even-order terms in Yl and Y2. 

The coefficients tpj(xl,x2), 0 < j ~ 5 are smooth functions o f  the metric (gq) 
. (k)~, = _ and their k-th derivatives (gq j 1 < ]]k[[ < 2. More precisely, 

P P rs fllabcdefpgabgcdgef "~- ~lhijmnr$ ghighjgmn 
(pI(XI,X2 ) = 

g l l g 2 2  - -  g12g12 

for some real numbers fllabcdefp and ~lhijmnrs. 

Proof. Became the Taylor expansion of p in yt and Y2 contains even-order 
terms only, (3.4) is proved. The idea for proving this proposition is to insert 
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the expression (3 .4)  into the equation (3.3), and collect those y ~  terms with 
l + k = 4, then equate the coefficients of  each monomials y~ ~ on both sides 
of  the equation. We first observe that 

(Pxp)2 ,.~ g~g~YiYJYkYl + O(lyl6), 

(py,)2 ~ Op~Opjyiyj + O(ly14), 

pxp:,, " g~y ly j  + O(ly[4), 

pypyq "" Opq + ~ ? j ~  + O(ly14), m + n = 2.  

Collecting yl 4 terms in the first part of  (3.3), they are 

i ! 2 2  + 4 ~  1 . 4  (3.5) 32gtl[g22gll + g l l ~  2 -- 2g12gl 2 -- 2g12g12 -- 2gl lgn  ~lg12JYl 

+ 32gllgllcp3y 4 "q-(224gllg22 -- 32g12g12)qTly 4 �9 

In the second part of  (3.3), those yt 4 terms are 

(3.6) "16 2 2  16" I t 1 2  [ f f l l g l l g l l  -[" Y 2 2 ~ l l g l l  - -  3 2 g 1 2 g l l g l l  -~" 6 4 g 1 2 g ] l g 2 1 1  

2 2 22 64g l lg t lg l l  - 64gH~lg12 1 l - - 64g~2gltg12 + 32gHgHgH 
12 4 

Therefore 
P P rs 

q)l(Xl ,X2 ) = [Jlabcdefpgabgcdgef "a t- ~lhijmnrs ghighjgmn 

224(gllg22 - -  g l 2 g l 2 )  

for some real numbers flta~aeft, and Ythij,nnrs, by comparing (3.5) and (3.6). 
Similarly, we can obtain ~Pi,j = 2, 3, 4, 5, which will possess the same kind of 
expressions. 

We pursue Proposition 3.1 a bit more by choosing a specific coordinate 
system, the geodesic normal coordinates at the origin of X,  which will be 
important to us at various times. Let (xt ,x2)  be the geodesic normal coordinates 
on X centered at 0, and let ( z ,w )  be the holomorphic extension of (Xl,X2), 
z = xl + iyl,  w = x2 + iy2. Then the Monge-Amp~re solution v ~  is locally 

2 2 (3.7) p ( z , w ) =  2y~ + 2y2 + ~kxly2 ]kxlx2yly2 + ~Icx22y~ 

+ oqky~ + ce2ky~y2 + o~3ky2~ + u.4kyty 3 + 0~5ky42 

+ higher order terms in x and y 

where k is the scalar curvature at 0, and ~j are certain constants. 
For those ( x l , y t , x2 , y2 )  E c~Ms, we also observe that yl ,y2  can be solved 

as the following asymptotic expansions in e: 
(3.8) 

f -l ~ sin O, t oo . 

! 

- I  - 1  - , �9 2" 1 
Y2 = (2022) T ~ c O s 0  -- (21~)T g, 12g22 Tt~sln 0 -t-j~_lrlj(Xl,X2,0)e, j-v , 

l, VI = gHg22 --g~2g~2, 0 E [0,2n) and t 0 are certain smooth functions. 
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In particular, if  we choose the geodesic normal coordinates on X, then yl and 
y2 can be approximated by 

Yi = ~ e s i n 0 + h . o . t .  inx ands, y2 = ~ c o s 0 + h . o . t .  i n x a n d t ,  

where h.o.t, stands for "higher order terms". 

4 Formulation of the problem and the pseudo-hermitian structures 

Let (X, gi2) be a real-analytic, oriented, compact, two-dimensional Riemannian 
manifold, M~ = {p < e2} be the Grauert tube of radius e around X, and aM~ = 
{p = ~2} be the boundary of the tube. We would like to show that there exists 
a CR structure on aMe with trivial holomorphic tangent bundle, and therefore 
prove that the invariant/t is well-defined on aM~. 

Theorem 4.1. Let (M,X, V/'fi) be the Monge-Ampdre model of  a compact, 
oriented, real-analytic, two-dimensional manifoM X, and dM~ = {p = e 2 } be 
the boundary o[" the Grauert tube o f  radius ~ around X. Then the natural CR 
structure on aM~ has a trivial holomorphic tangent bundle. 

Proof Let 
~l = ~P = pzdz + pwdw. 

We observe that the vector 

a 
r "  = - 

is a local choice of a generator of  the holomorphic tangent space T1,0(OM~.). 
Choose a section of the dual of Tl,o(OM~) to be dual to V: 

(4.1) r = ~/det(gij(z, w ) ) p~ dz - pedw 
IP=l 2 + IPwl 2 

Then 

(4.2) ~p A r /=  ~/det(gij( z, w ) ) dz dw , 

which is the complexification of the volume element ~/det(gu(xl,x2))dxidx 2 
of  the oriented Riemann manifold X. Therefore it is globally defined and is 
non-vanishing in a small neighborhood {p < ~} of X. As ~/is defined globally, 
we conclude that ~p is globally defined and nowhere vanishing, at least as a 
section of  the dual of  the holomorphic tangent bundle of  dM~. This proves the 
natural CR structure on dMe has a trivial holomorphic tangent bundle. However, 
the "trivial holomorphic tangent bundle condition" is a homotopy condition. If 
it is true for 0 < ~ << 1, then it is true for all non-singular levels of  p. 

Remark. If  X = X/F,  II'I = k ,  is not oriented, but its k-th covering .~ is ori- 

ented, then d ~  - t he  Grauert tube of  radius ~ around .~-has trivial holomorphic 
tangent bundle, which could be viewed as a k-th tensor power of  Tl,o(aMe). 
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A discussion in [B-E 1] about this situation shows that the definition of the 
invariant/z can be extended to such ~M~. 

The existence of/~ leads to the seeking of the pseudo-hermitian structure, 
i.e., we are trying to find out those dual one-forms Ol, Of, connection form w, 
torsion form ~, and scalar curvature R on OM~. For our convenience, from now 
on, we will use the following abbreviations: 

A = p~p:~ - p~,p:~, B = P~,Pws - Ps A = P~Pw~ - P ~ P ~  > O. 

Restrict all of the calculations to the level surface ~M~ = {p = ~2}. Then (3.2) 
is equivalent to 

(4.4) (1) ~p A ~,o A ~p = 2~:2A 

(2) Apw - Bpz = 2E.2A, 

also, 

(4.5) Aw - B= = 2(p=ipw~ - P~Pw~) = 2A .  

By (1) of (4.4), ap4~0 and ~4:0 on {p = ~a}, therefore dp4~O off {p - 0}. 
So, 

gradp = (pz, pw, Pi, p ~ ) # O  on 'Me.  

On the other hand, for any tangent vector X E Tp(aM~), 

0 = d p ( X )  = (pzdz + pwdw + pidY.+ p ~ d ~ ) ( X ) .  

Therefore, when we consider the actions of one-forms on the tangent bundle 
of aM~, without loss of generality, we may assume locally p~ # 0 and 

(4.6) d ~  = pzdz + pwdw + pz-d~. 

Choose the contact form 0 by 

0 = - i a p  = - i ( p z d z  + p w d w ) .  

By (4.1), a natural globally defined section of the dual of the holomorphic 
tangent bundle to ~Me will be 

. p~dz  - p~-dw 
r = x /de t (g , j ( z ,w) )  ~ ~ " 

However, to construct a pseudo-hermitian structure, we need to construct an- 
other one form 01 so that dO = iOz A Of. Consider q~ locally as a one-form; it 
is only well-defined modulo addition of  multiples of 0. We let 

(4.7) 01 = 2A~(Ipz[  2 + Ip,12)q~ + i~/det(gq(z ,w))ot(Bp~ + Ape)O 

= #(Adz + Bdw), 
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for some complex-valued functions ~ and /L The structure equation 
dO = iOi A Of will determine a unique extension of ~p as a globally defined 
one-form 01. We solve 

1 

then 

Similarly, 

where 

-1  
a =  ~.2 h- 

Adz  + Bdw 

= v% �89 

c o = i a O + b ( O i - O f ) ,  z = c O f  

AAw - BAz pwAr - pzB~ -B(peA~, - p~,Ae) A,~ 
4e2A 2 + 2~2Ap~ 4~:232pff 2Ap~ '  

1 
b = 2v~eA--------~(-peA,~ + p,~Ae), 

i iB 
c - 2~2Apw(-peB,~ + p~Be) + ~ ( - p ~ d , :  + peA~) .  

Finally, the scalar curvature R is uniquely determined by the equation 

do) = ROI A Of + WOI A O - WOf A O, where 

1 
R = - a  - 2b 2 v/.~eA�89 - b~pe - bwpz + bzpw), 

i 
W = l a b + b 6 +  ~ ( a z p w  - a w p z ) -  i - ~ ( B b e  - Bbz + Abw - -Ab,~). 

x/2~A~ 

5 The asymptotic expansion of  the invariant/a 

The main purpose of this section is to show the invariant/~ of the boundaries 
of Grauert tubes are very much like Weyl's volume formula, which says that 
the volume of a tubular domain around a Riemannian manifold depends only 
on the geometric nature of this Riemannian manifold and the radius of the 
tube; furthermore, it admits a Taylor expansion in powers of the radius. In 
our case, the invariant/~ also possesses an asymptotic expansion in powers of 
the radius, but this time, we get some singularities as the radius goes to zero. 
The leading order term of  this expansion is suggested by the calculation of a 
simple Reinhardt example. (of. [B-E 1])_ We start by interpreting # in terms 
of  the pseudo-hermitian structure {0, 0t, 01, co, ~, R} computed above. We now 
can compute the invariant p. First, 

dco A co = (iaR - b W  + bW)Ot A Of A O, 

RO A do) = R201 A Of A O, 

0A'c A'~ = --ccO! A 0 f A 0 .  
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Proof Since 

0 1 0  1 0  0 1 0  1 0  
"~g = 2 OXl i 2 ~y l '  0-~ = 2 0Xt + i 2 Oyl " 

We obtain the following type of functions, when taking the z derivatives of p, 

( . )  (even-order terms ) + i(odd-order terms ). 

Similarly, it is also true for the ~,w,~ derivatives. Inductively, when taking 
one more derivative of  p, one will have 

(even) +/ [odd +/(even)] = even +/ (odd)  = (*) 

So, any 0 and 0 derivatives of the function p reduce p to be of the type ( ,) .  
Also, the product or the quotient of any two functions of this type will still pre- 
serve this type. Now, we cheek the functions in the integrand: p~, Aa, b, c, R, W 
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So,  on 0M,,  

U = f Tc2cn)  
{au,} 

_ i..~_ f [ - . ~ i ( i a R _ b - f f + b w ) + l R 2 + 2 c ~ ] O t A O f A O "  
- 8n2{p=~} 

In local coordinates z = xl + iyl, w = x2 + iy2, 

dz A d~ A dw = 2idxl A dx2 A dyt + 2dxt A dyl A dy2. 

The volume form 

Ot A Of A 0 = -~[p=pc, p ~  - PwP~Pz~ - PzPfPw~ + PzPwP~] dz A d~ A dw 

= -i(2e2A)dz A d i A d w .  
P~ 

Therefore, 

e'2---~- f ~ - " " - b-W + bW) + R 2 + 12c6]dxtdyldy2 (5 .1 )  # = 127~2{p } p~7 [ 4t(taR 

i s  2 d ~ 2 
+ ~ f ~ [ - 4 i ( i a R  - bW + bW) + R + 12c-~]dxldx2dyz. 

lzn (p=~} p~ 

Lemma 5.1. Each integrand of (5.1) is the sum of an even-order, real-valued 
Junction and an odd-order purely-imaginary-valued function. In other words, 

integrand = f e + i f o 

where f e is a real-valued, even-ordered function and f o is a real-valued, odd- 
order function. 
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all have the type ( , ) ,  so do R2,c6,aR, bW, --.l The only one we need to be 
P~ 

careful about is 

i(iaR - bW + b W )  E/[/(even +/ (odd) )  - b(W - W)] 

E even + i odd - [even + i(odd)]i(odd) E even + / ( o d d ) .  

Putting all of the above arguments together gives the result. 

Lemma 5.2. It has an asymptotic expansion in e 2. 

Proof. By the above lemma and (5.1) 

S 2 is 2 
It = 1--~n2 f ( f e + i f o )dxld y ld  y2 + 1--~2 f ( f e + i f o )dxjdx2d yl 

g2 1~2 
= 12rc2f fedxldyldy2 - 1--~2f fodxldx2dyl  

ie 2 
+ ~ [ f fodx~dy ldy2  + f f , dx~dx2dy , ]  . 

Since p, is real, the imaginary part has to vanish. So, 

e 2 e 2 

(5.2) It = 1 - ~ 2 f f e d x l d y , d y 2  - l-~-~2ffodxldx2dyl.  

We then interpret Yl,Y2 in terms of e and 0 as in (4.1). Both f e d y l d y 2  and 
f o d y l  give even-order terms in e. Therefore, there is no odd-order terms in e 
appearing in the asymptotic expansion of/~. 

Once we know It has an asymptotic expansion in e 2, it is quite natu- 
ral to ask where does it start? Is it a Taylor series in e 2 similar to the 
H. Weyl's volume formula or do we have some singular terms? This answer 
was suggested by the computation in [B-E 1] about the Reinhardt domain 
(loglzl[)2+ (loVlzll) 2 < r 2, which has the invariant # = s~-~r" We reach the 
following lemma. 

Lemma 5.3. The asymptotic expansion o f  It in e 2 starts f rom e -2, e ~ e 2 . . . . .  
and so Jbrth. 

Proof. Collect each leading order term of  the integrands in (5.1). Then 

(_9~ 
the integrands = i 8g-~Ee4 + h.o.t., 

and the orders of # in e start from - 5 , - 4 , - 3 , . . . ,  where the leading term 
comes from the second part of (5.2), 

~:~ -9I-1 3 g[:]222Y (5.3) 12rt2 f .  , d x ldx zdy l  = ~ f dxldx2dyl 
~Y22Y2e" 32/t2e2 ' 

which has order -2 .  This completes the proof. 
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In order to obtain some further properties of/~, we replace yl and Y2, by 
and 0 as in (3.8). 

-~ �89 
(5.4) dxldx2dyl = -~--~g22sin OdOdA, 

where dA = i-1�89 is the volume element of the Riemarmian manifold X. 
The second term of # in (5.2) is then 

the order of f o  is - 5 , - 3 , - 1  .... 
(3O 

:"' E ~21SFI(xIiX2)HA, 
#=-! X 

for certain smooth functions Ft of the metric gU and its derivatives _(k) Sim- Yij.  
ilarly, 

c o  

dxtd yld y2 "~ Y'~:,2ztlt(xl,x2, O)dOdA . 
1 = i  

Substitute this into the first part of (5.2), and also notice that order (re)  ~ -4:  

/~2 f 2 co 
f edx ldy ldy2 ,  ~ ~" ,2t 

127c2{p=~2) l z l t  I = l  xo  

1/~" I--0 )( 

We include this as part of the following proposition. 

Proposition 5.4. 
o o  

# ~ 2t (k) ,,~ e fF:fgi: )dA 
l-----I X 

where ~̂2t+2~r tt̂ " ~2-(k ~ = F~(gl.~ )) ./'or any nonzero real number ,~. 

Proof Let Gij = )g2gij be a new metric on X. Then 

= {p = d }  

(a) = it2 = 2 g n ~  + 4gl2YiY2 + 2922~ + q~ly 4 + r + . . . }  

(b)  _. {(~/~)2 = 2GIIY~I + 4 G I 2 Y l y 2  + 2G22Y 2 + r 4 + r + . . . } .  

Let dAr and dAo denote the surface integrals of'the metrics giy and Gij, re- 
spectively. By (a) 

c o  

e fFt(gq )dAg. 
1------i X 

But, from this point of view of (b), 
o o  c o  

fl E 21 2 2 (k) ~21 P'J2/+2r:: t~2_(k),,.a �9 ~ Ft(  a,j )d.4g E r J ^  .r" l l / I .  Yij ]r . 
l=--I X I = - I  X 
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Comparing these two/a, one proves 

,~2l+2L-, -~2 (k)x (k) ,-J(,~ .% ) =  Ft(~ij ), I ~_ -1  

This proposition implies the next corollary immediately. 

Corollary 5.5. 

F �9 :2 2 ~(k), (k) -,~ ~ii )=  F-l(g~: ) 

2 (k) -2 (k) Fo(,~ V~j ) = 2 Fo(g~j ), 0~,~ e R .  

77 

We have proved that the leading term of # is .-2 (,) fxF_l(gij )dA, and any 

rescaling of this metric (gij) will not change (k) F-l(gii ). From the geometric 
point of view, it seems quite possible that this function F - i  is actually a 

(k) 
constant. We will prove this fact here. Notice that each Ft(gij ) is a geometric 
integrand which can be evaluated at the origin, and all of the calculations in 
previous sections work for any coordinate system. We now choose a specific 
one, the geodesic normal coordinate. 

For the leading order term, it is sufficient to choose the first approximation 
of p, i.e., let 

p = 2 y  2 + 2 y  2 +  h.o.t, i n x a n d y  

Inserting (5.4) into (5.3), then replacing Y2 by the first approximation ~r 
we obtain 

(5.5) the leading te rm-32n2e2: fo~2y2COsOdOdA-  3 ifdA 
16he x " 

As for the second order term, we have 2 (k) -2 (k) F0(2 9ij )= 2 Fo(Yij ) which 
suggests that the scalar curvature might be the best candidate for Fo. Let 

[-4i(iaR - b'-W + bW) + R 2 + 12c~] -- [I].  

We go back to (5.1) again, and examine the first part of #, which is 

e2 f -~[I]dxldyldy2 

where 
(a) e2A[I] is real, and has orders starting from -2 ,  0, 2, 4,. . .  
(b) dyldy2 is a real two-form with even orders no less than 2 
(c) ~ has orders -1 ,  0, 1, 2, . . .  

So, the only chance we get e ~ terms is by taking 
(a) order of e2A[I] = -2 ,  i.e., taking e2A[I] = 9D 
(b) order of dyldy2 = 2, i.e., taking first approximation of yl and Y2 

•  (c) order of p~ 
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We need to make some explanation of (c). Recall the expression of p in (3.7), 

(5.6) 
i 2 i 1 1 

p~ = 2 i y  2 + "~]o:lY2 - -~kxlx2y  I - -~k3:tYlY 2 a t- ~]t:x2y~ 

1 3 3i 
+ ~ct2kyi + 2iot3kY~ Y2 + -~r ~ + 2~sky~ 

+ higher order terms in x and y .  

Therefore 
1 1 

p~ 2iy2 [1 + h.o.t, in x and y] 

where the coefficients of those higher order terms are polynomials of the scalar 
curvature k. 

(5.6) together with (a) (b) and (c), shows that those terms which can be 
left after we integrate out the angular 0 term are those curvature terms. We 
conclude that the e ~ term coming from this part is cfxk(x)dA-some constant 
times the integration of the scalar curvature over X. 

In the second part of (5.2), since dy2 always has order 1, there are two 
possible cases to get an e ~ term. 

Case (I): order of e2A[I] = -2 ,  i.e., taking e2A[I] = 9[:3 4---r~, and order of 
! = 1 ,  P~ 

Case (II): order of e2d[1] = 0, and order of ~ = -1 ,  i.e., ~ = 2iy2" 

We left some crucial points to be checked in either case. In Case (I), it is 
! term. By (5.5), when restricted to the origin of X, the order-one term the p~ 

of ~ is 

(*) 3 - 1  [lot2kY ~ + ot2ky 2 + .~t4kyly 2 + o~sky 2 . 
2iy2 [4 Y2 

This tells us again 

9 n  
f ~e 2 ( * )dxi dx2dyi = (const) fk(x)dA.  

X 

Case (II) is a little bit complicated. We have to check carefully what happens 
when the order of e2A[I] is zero. We divide this into two subeases. 

(1) order of [I] = -4 ,  order of d = 2, then [ I ]  = ~ and A is a polynomial 
of k, 

(2) order of A = 0, i.e., A = I-1, order of [I] = -2 ,  we check functions in 
[I] for which the curvature k can't appear in the denominator; it is a polynomial 
of k. Both of these two subcases check the e0 term is of the form 

(constant) f k(x )da . 
X 
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We conclude that: 

3 
(5.7) /~ "~ 2 fdA  + (constant) fk(x)dA + h.o.t. 

16xe x x 

6 The constant term 

We will devote this section to the calculation of the invariant g for a one- 
parameter family of  compact, homogeneous CR manifolds which are the bound- 
aries of  Grauert tubes. We compute these # through two different approaches, 
one is via the formula we got in (5.7) to find the invariant of  a Grauert tube, 
another way is by examining the standard CR structure. Both will give us the 
same #. We could therefore determine the coefficient of  the second order term 
and double check the constant ~ of  the e -2 term obtained from the previous 
section. Let Q denote the standard hyperquadric in C 3, defined by the equation, 

Q = {(z,, z2,z3 ) 6 ~3:zl2 + z22 + z32 = 1 } ,  

S, be the 5-sphere of  radius V9 in C 3, 

s ,  = { ( z t , z 2 , z 3 )  e c3:  Iz, I = + Iz=l 2 + Iz312 = r } ,  

OM, be the intersection of Q and S,. In terms of real coordinates xj + v/Z'Ty/= 
z j, we could veiw dMr as an embedded submanifold of  ~6  defined by the 
equations 

{ ~ 2  - -  v2 . v2 __ r+l 
"~1 1- "~2 -1- "~3 --  T '  

(6.1) c~Mr : 2 2 _ r - l  Y~I + Y2 + Y3 --  - - T ,  

XlYl + x 2 Y 2  +x3Y3  ---- 0. 

This shows that r has to be greater than or equal to one. 3M, is a three 
dimensional hypersurface when r > 1, whereas it degenerates to a totally 
real unit sphere S 2 in R 3 as r goes to one, S 2 = {(x,,x2,x3) 6 R 3 : x 2 +x22 + 
x~ = 1}. 

The first attempt is to find a Monge-Amp&e solution u on Q -  S 2 with 
the desired properties described in Sect. 3, which was done by G. Patrizio 
and P-M Wong in [P-W]. Since Q can be sliced by the level surfaces dMr, 
which are the intersection of Q and Sr, we shall take u as a function of 
r = z1s + Z27~2 + Z3Z3 = Izl 2, with ZI,Z2,Z 3 E Q, then 

~u = u'~lz[ 2 

~ u  = u " a l z l  2 A 0lzl 2 + u ' a~ lz l  2 . 

u is a Monge--Amp%re solution if and only if (d~u) 2 = 0. A solution is 

(6.2) u(r) = cosh-lr.  

Thus u is a Monge--Amp%re solution on Q -  S 2, is positive for r > 1, equals 
zero if and only if r is 1, and is a plurisubharmonic function. Notice that cu, for 
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any positive constant c, preserves all of the above properties. So the solution 
is not uniquely determined. On coordinate neighborhood U = { (xbx2 ,x3)E  
$2 tx 3 > 0}, we consider the projection 

r : U-- ,  R 2 

( x , , x2 , x3  ) --, (xl,x2) 

which gives a local coordinate system, the metric inherited from the Euclidean 
space is 

! - x~ XlX2 1 - x~ 

g "  = 1 - x f  - x~,' g '~  = 1 - x~ - x ~ '  g~2 = l - x~ - x~, " 

To assure the uniqueness, we need to find c such that the K~ler  metric 

( aa"2 ~ when pulled back to the center, agrees with (gq) where zj is the ~ , .  ,% 

complexification of x: for j = 1,2. Let s = r - 1. We could also write the 
Taylor expansion of u 2 at s = 0. 

(6.3) uZ(z) = (cosh- l (s  + 1)) 2 ,,~ 2s - }s 2 + ~ s  3 + O(s4).  

Taking derivatives of the expansion (6.3) implies 

O z , ~ z j  = o z , ~ z j  

S 2 S2 

On c3Mr: 

then 

= r -  I = i,,I ~ + Iz~l ~ + ~/ (~  - ~ - ~ ) ( ~  - ~ - ~ ) -  I ,  

19, I = ~ 
~ - ~  s= ~ -~ -~  = g~' 

$2 

- -  21z312 21z312 se 

The last equation holds because zl = i l ,  za = i~, z3 = i3 when restricted 
to S 2. 
This checks 

$2 
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We rescale u by taking c = 72" Then the unique Monge-Atnp&e solution 
defined by Guillemin-Stenzel for this tubular domain is 

p ( z )  = 1112(Z)= I ( r  Z2Z 2 q-Z3Z3))  2 , 

and the three-dimensional hypersurface OM, is the boundary of a Grauert tube 
centered at S 2 of radius e, 

cosh-l(r) 
I?,: 

v5 
It is therefore possible to compute the invariant # of OMr. Notice that the 

center is the unit 2-sphere which has constant scalar curvature 2 and surface 
area 4n. The expansion (6.3) also shows e 2",,~ O(s 2") on the level surface 
3M~ = {u 2 = e2}. By (5.6), 

3 2 fdA + cfk(x)dA + O(e 2) = ~s -I + ~ + 8cn + O(s). 
(6.4) P = 16rre s2 s2 

On the other hand, since OMr is defined by the equation (6.1), we could 
also view OMr as the unit tangent bundle of a unit sphere. It is diffeomorphic 
to SO(3), the special orthogonal group, and the diffeomorphism is given by 

where 

(xI,  YI,X2, Y2,x3, Y3 ) ~ g = ( r ~ l X l  r~---21Yl r~2-1 A1 ) 

~r~X2 ~r2~-lY2 ~ A 2  

~r~X3 ~ r ~ Y 3  ~ A' 

(AI,A2,A3 ) = ((xl,x2,x3 ) x (Yl, Y2, Y3 ) ) . 

To simplify the notation, we use the abbreviation 

a -  r + l '  b -  c -  x / ~ _  1 

And the Cartan connection form on this group is (o, 
12 = g-ldg = ~t 0 

Where 

e so(3) 

= ab(yldxl + y2dx2 + y3dx3), 

fl = bc(Aldyl + A2dy2 + A3dy3), 

= -ac(Asdxl +A2dx2 +A3dx3), 

are three independent lefl-invariant one-forms on S0(3). The fundamental prop- 
erty of this Caftan connection is that 

d12 = - fl A 12 
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which shows 

Choosing 

then 
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dot = - f l  A 7, dfl = - T  A ot, dy = - a  A fl . 

0 = = + i y ) ,  

dO=iO~AOf,  dO~=iOAO~.  

This choice of {0,01,0f} provides a CR structure o n  ~gr, but it is not nec- 
essarily the embedded structure, the one inherited from the complex structure 
of C 3. However, since all S0(3 )  invariant CR structures are obtained from the 
perturbation of this {01,0f}, there exists t G ( -1 ,  1), such that 

/~! - (1  - t 2 ) ~ ( 0 l  q- tOf) 

gives the embedded CR structure. In other words, in terms of the local coordi- 
nates zl,z2,z3, none of the di, l,dY,2,ds terms is contained in the one fun~ 0.~, 
when written in terms of dz 1 and ds j = 1, 2, 3. We collect those dY, j terms 
in 01 + tOf. They are 

[ , ] - ~ ( a c  - bc) + t - ~ ( b c  + ac) (Aldil  + A2dh  + A3d~3) . 

So, we choose 

(6.5) t =  a - b  = ~ r  2 _ , l _ r ,  t e ( - 1 , O ) .  
a + b  

This set of {0,0~,0~-} is the embetldetlCR structure of aMr, with 

dO=i~ A~I- , 
d ~  = O~ ^ ( - ih)O + 0 A ( - i k )~ -  , 

1 + f  2t 
w h e r e h = - -  k = - -  

1 - t 2 '  1 - t 2 " 

Therefore, 
�9 t og = -ihO, x = -tkOf, R = h .  

The local form defining # is 

 c2(rt) = ( 1 -- 3k2)0 A dO, 
16n 2 

and the invariant 

- 1  
(6.6) p = f TC2(H) = 1-~2(1 - 3k 2) f 0 A dO. 

aMr OMr 

We use the substitutions s = r - 1, and write k 2 as the asymptotic expansion 

k2 ~ - 1 + 
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It is left to calculate f,~MO A dO, where 

(6.7) 0 A dO =a2b2(yldxldy2dx2 + y ldxldy3dx3 q- y2dx2dyldxl  

+ y2dx2dy3dx3 + y3dx3dyldXi + y3dx3dy2dx2) 

To compute the surface area, we introduce two independent spherical coordi- 
nates on OMr. Let 

xl = a-lsin(~p - n)  cos O, Yl = b- l s in  tl cos ~ , 
x2 = a-lsin(~p - 7r)sin O, Y2 = b - ls in  tl sin ~ , 

(6.8) 
x3 = a - !  cos (tp - ~), Y3 = b - l  cos rl, 
0 < tp, t/ < 7r, 0 < 0 , (  < 2re 

The condition x ly l  + x2Y2 + x3Y3 = 0 makes it possible to interprate r/ in terms 
of  ~0, 0, ~, with 

t l = tan - l ( - eo tgsec (O  - ~)) .  

Integrating the first term of  (6.7) over ~Mr, with help from Maple, we have 

_ 2f~2f~: [. sin3(2q~) sin 2(O _ ~) sin 2~ 
o o 0 32( sin2~p cos2(O - ~) + cos2tp) 2 

cos3 tp sin <p cos 2 ~ ] 4 z 
sin2tp cos2(O _ ~) + cos2tpj d~p dOd( = ~Tr . 

By symmetry, integrating out each one o f  the rest of  the terms in (6.7) will 
have the same value %z 2. So, f~mr 0 A dO = 8re 2, Vr > 0. Therefore, by (6.6) 

(6.9) kt --- -~2(1 - 3k 2) = --~ [1 - 3(�89 - t  - �88 + O(s))] = ~s - l  - 7 + O(s ) .  

Equating this # with that in (6.4) proves 

- 1  
c - - - - .  

81r 

We have thus arrived at the decisive theorem of  this paper. 

Theorem 6.1. Let  X be a two-dimensional compact, real-analytic oriented 
maniJbld with a real-analytic metric (Oij), and let (M,X,x/-fi) be the 
Monoe-Amp~re  model o f  X. Then 

(1) the invariant It is well-defined on the level surfaces 

cgME = {p = e2}. 

(2) II o f  OM~ has an asymptotic expansion in e 2, 0 < e << 1. 

oo k 
~ ,., 3 2fdA- l fk(x)dA + Ee2tfFt(g~))dA 

16m x ~Trx /=l x 

where k(x)  is the scalar curvature, and 
<k) Fl(9~)),  for  any nonzero real number 2. ,~21+2Fl(22gij ) =  



84 S.-J. Kan 

(3) There is no biholomorphic map from M~ I to M~ if  *t *~2, 0 < et, 
~2 ~(. 1. 

Proof. (3) Since/~ is a global CR invariant, 0M~t and 0M~ 2 are CR equivalent 
only i f /h t  = ~t~2 which, by (2), can't be true. A direct application of Feffer- 
man's extension theorem [Fe] (any biholomorphic map between two compact, 
strictly pseudoconvex domains can be extended smoothly up to their bound- 
aries) proves (3). 

7 Grauert tubes with centers of constant sectional curvature 

We have showed that there is no biholomorphic map between two Grauert tubes 
M~t and M~2, for el,ez small enough, although they clearly are homotopicaily 
equivalent. We would like to discuss more about the geometric properties of 
the Grauert tubes, and see to what extend the inequivalence holds. The result is 
not clear for general Riemannian manifolds, but, we do have a definite answer 
for those G-rauert tubes constructed above centers of constant curvature. 

The first case we will consider is when the center X is exactly the two- 
sphere. The discussion in Sect. 6 shows 

M , :  = 1 (7.1) 
t [zl[ 2 + [z2[ 2 + Iz312 < r ,  r > 1 

are Monge-Amp6re models which have the two-sphere xt 2 + x22 + x32 = l as 
their common center. The invariant pr of level set aMr is, by (6.6), 

-1  6t 2 
( 7 . 2 )  = - T  + ( l  - ' r > 1 .  

(7.2), together with the fact that t = ~ -  1 - r and r are in one-one corre- 
spondence, proves that/~r is a strictly decreasing function with 

- 1  
lim/~v = co, lim #r = 
r-'-* I r--*oo 2 

In other words, /~,1 4=#,z whenever rl 4=r2. Thus any two Grauert tubes as- 
sociated to the unit sphere with different radius can't be biholomorphically 
equivalent. 

Among all CR structures, the spherical ones - those that are locally CR 
equivalent to the three-sphere in C 2 - are especially interesting geometrically. 
We would like to see whether there is any spherical Grauert tube or not. In 
[B-E 1], the authors showed that the critical points of #, viewed as functional on 
the space of CR structures, are exactly the spherical structures. Take derivative 
of (6.9), 

(7.3) d~t ' 12t(1 + t z) 
dt (1 - #)2 ' 



The asymptotic expansion of a CR invariant and Grauert tubes 85 

which is zero only at t = O, i.e., #, can only be stationary" if r = co. In other 
words, there can't be any spherical structure for r < co. As r goes to 0, we 
make a holomorphic change of coordinates, Z~ = 3,  J = 1,2, 3. Then 

(7.4) 
[ + + = o 

OMoo: [ ]Zl[ 2 + ]Z212 q-IZ3] 2 = 1 . 

We claim aMoo is locally biholomorphic to the unit sphere 

s 3 = {(z,w) e r + 1 12 = 1}, 

by defining the map 

(7.5) 

r : S 3 --~ OM~ 

(Z 2 - W  2 i(Z 2 +W 2) ,2gw)  

k ' 
= (z ,z2,z3). 

cp is clearly well-defined, holomorphic, onto. Furthermore, S3/G is CR diffeo- 
morphic to aMoo where G = { I , - I } ,  i.e., aMoo is locally biholomorphic to S 3, 
and #(OMoo)= �89 3) = ~! .  

More generally, this is also true if the center X is a compact Riemannian 
manifold of  positive constant curvature k. Then X is isometric to (S2/F, l g ) ,  
where F are discrete subgroups of the group 0(3)  of  isometries of S 2, which 
act freely and properly discontinuously on S 2, and g is the inherited met- 
ric of  S 2 from R 3. Actually, there are not many of them: S 2 and p2R are 
the only two complete, two-dimensional manifolds of constant positive curva- 
ture. 

Since 0 and 0f are 0 (3)  invariant (see Sect. 6), the invariant /~r is well- 
defined on the boundaries of  these new Grauert tubes (it also follows from the 
Remark after Theorem 4.1). They are 

(7.6) #r~V = f /~C2(/-/) = 7~1/#. 
~Mr/r 

Thus, I#,r preserves the same decreasing property of #r on the quotient space 
aMr/F. 

We next turn to the fiat case. We will consider the spaces, for r > 0, 

j 'y~ + y2 2 = r 2, 
a M r  

(xbx2) e R 2 . 

The pseudo-hermitian structure 

- 1 [  I - i  0 = ~ y dzl + )'2 dz2], Of = ~-r [y2 dzl - yl dz2] 
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is preserved by the isometry group of  IR a, as are o~ = - i O ,  ~ = iOf and R = 1. 

So, gr is well-defined on dMT/F, for any discrete subgroup F of  the isometry 
group of  R 2, which operates freely and properly discontinuously on R 2. 

3 

is a strictly decreasing function of  r,. 

~im o #r = oo, 7--,oolim #7 = 0 .  

where c(F)  is a positive constant depending on F only. 

d~7 - 9  
dr = l~n2r 2c(F) < O. 

Therefore, there is not any spherical structure. As r approaches oo, 

Moo = lim Mr 
7---I.oo 

is a Reinhardt domain, whereas it is not so clear what aM7 looks like as r 
goes to oo, comparing with (7.4), (7.5) above. 

We sum these results up as follows: 

Theorem 7,1. Let X be a two-dimensional, compact Riemannian manifold 
o f  constant curvature k ~ O. Then X can be complexified to obtain an un- 
bounded Monoe-Amp~re model (M,X,q~). The Grauert tubes {~o < vl} and 
{~o < v2} enclosed by different Monge-Amp~re levels can't be biholomorphi- 
cally equivalent. Furthermore, on the level surface {q~ = v}, v > O, one has 

(1) For the case k > 0: The pseudo-hermitian curvature R, is always 
positive, decreasing f rom go to 1 as the radius gets larger. The invariant #v 
decreases f rom go to -~. There is no spherical CR structure on {q~ = v}, v < 
0o whereas the CR structures are becoming spherical as v goes to O. 

(2) For the case k = ~. The curvurture R~ is a constant 1 for  every v > O. 
The invariant #, is a positive, decreasing function, and there is no spherical 
CR structure on any {q~ = v). 

In the sequel, the Monge-Amp~re models whose centers possess constant 
negative curvature will be our chief objects. Quite naturally, the hyperbolic 
space H 2 which is given by x~ + ~ -  x] = - 1 ,  x3 > 0 with ds2= d ~  + 
d ~ -  dx~ is the first one to be thought about. Complexify it, then take the 
intersection with ]zl[ 2 + ]z2[ 2 -]z3] 2 = r, we obtain 

(7 .7)  a 7: ,fq + 4 - 4  =1 
I, Izl 12 + Iz212 - Iz312 = r, r ( -  1 , 1 ) .  
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In terms o f  real coordinates, dM, could be viewed as an embedded submanifold 
o f  IR 6 defined by equations 

f ~2  ~ ~2 ~2  ~ r - - I  "ti "r" ~2 --~3 -- T ' 
(7.8) OM, : 2 ,+t 

I~ X l y  I + x2y  2 -- x3y  3 = O, 

which shows C3Mr are the tangent sphere bundles o f  the hyperbolic space 
H 2. OMr degenerates to the two-dimensional real hyperbolic space as r ap- 
proaches - 1 .  Since the goal is to find the Monge-Amp6re  solution u on Mr 
so that u is constant on each level set dM,, we might therefore assume that 
u is a function o f  r = [z! 12 + [z2[ 2 - Iz312. We reduce the Monge--Amp6re con- 
dition to 

2r 
2u" + r-T-~_ 1 u = 0 .  

Then 
u(r )  = f ( r  2 - l ):'~ d r  = c o s - l r  + d ,  

d is a certain constant, determinec[ by the initial condition u(center )  = 0. I f  we 
fix the angle branch as [lr,2rr], the initial condition u - l ( - 1 ) =  0 will imply 
d = - n .  For our convience, we make a change o f  variable and then take Taylor 
series o f  u 2 with respect to the new variable s. Let s = r + 1 E (0,2) .  Then 

u2(r) = [c c o s - l ( s  - 1) - c7c] 2 = 2c2s @ ~c2s 2 + ~c2s  3 + 0(84) .  (7.9) 

So, 

I (7.10) c3zi~zj tt2=(s=0} \ dzidzj + 3 dzidzj ] ]s=O " 

We consider local coordinates obtained by projection as described in Sect. 6, 
the metric (gi j )  - induced from the quadratic form d x  2 + dx  2 - dx  2 and ]R 3 -  
o f  H 2 is then 

1 + x 2 - x l x 2  1 + x~ 
( 7 . 1 1 )  g "  - l = l g 2 :  = 

On the other hand, since 

s = r  + 1 = lzll 2 + 1z212 - V/(1 + z  2 + z g X  1 -t-~ 2 + ~2) -t- 1,  

then 

= ffl 1, = g12, = g22, ~i(~7,j H2 &l ~ l  u2 &l~2 u2 ~z'~2 u2 

1 + xl 2 + X22" 

= 0 .  

So, the K~hler metric is 

~z~a~j 1.2 = 2c2 ~ [u2 = 2c2g~J " 
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Now the condition of compatibility implies c = ~ ,  and the Monge-Amp~re 
solution for this hyperbolic model is 

(7.12) u ( z . z 2 , z 3  ) = ~ c o s - ' ( I z l l  2 § Iz2t 2 -Iz312)  - ~ , ~ ,  

which is preserved under the group action of 0+(2, 1), and can't be extended 
beyond r E ( -1 ,  1 ). 

A close examination cheeks that all of the above calculation can be done in 
higher-dimensional spaces. Thus, they provide bounded Monge-Amp&e models 
to any complete manifolds of negative constant curvature. 

We could also view aMr/F as an one-parameter family of locally homo- 
geneous CR manifolds, and compute the invariant/~r on dMr/F. Again, F, a 
subgroup of 0+(2, 1 ) acts freely and properly discontinuously on H e. The map 

{ cAi byl axl "~ 
(xbyi,x2,y2,x3,Y3) ~ g = |cA2 by2 ax2 ) E S0(2, 1), 

\cA3 -by3 -ax3 

gives a diffeomorphism from Mr to SO(2, 1), where 

(AI,A2,A3 ) = ( (xbx2,x3 ) • (Yh YZ, Y3 ) ) , 

and 
2 2 b =  , c =  - -  . 

a =  l - r '  l + r  

The Cartan connection form on this group is 

o = g- ldg  = Q 

where 
o~ = bc(Aldyi + Azdy2 + A3dy3), 

fl = ac(.,41dx I q-.,42dx2 .-I- A3dx3 ) , 

= ab(yldxl + yzdx2 - y3dx3). 

are three independent left-invariant one-forms on S0(2, 1). The fundamental 
property of Cartan connection implies 

d ~ = - / ~ ^ r ,  d/~=rA~t,  d r = 0 t ^ / ~ .  

Taking 

then 

o = - ~ ,  o~ = ~ ( ~  - i ~ ) ,  

dO = iO~ A 'Of, dO~ = iO A Of. 
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Therefore, {0, 01, Of} provides an 0+(2, 1 )-invariant CR structure on tgM,, and 
the embedded CR structures could be obtained through a deformation {0, 0~, ~-} 
of this CR structure, with 

(7.13) 

= ( l - t 2 ) ~ r t ( o l + t O f ) ,  t E ( - l , l ) .  

{ t -  t~/i-Z~-r2 r E ( - 1 , 0 )  
u ' 

t =  O, r = O ,  

I-  IY~-rz r E ( O , l )  

gives the embedded CR structure at the corresponding level dMr. 
The connection 09, torsion z and curvature R are 

2itt2 0, z . l + t 2 "t 
o9 = 1 - = t --~---~ V f , 

The invariant #r of a M r / F  is then 

(7.14). Pr = f 7~C2(//)= 1 [ 
OMr/r ~ 1 + - -  

- 2 t  
R = m  

1 - t 2 " 

3__ t2_ ] f 
( 1 -- t 2 )2 j au~/r 0/x dO 

Similar computation as in (6.7) and (6.8) shows 

f O A d O  = c ( F )  > 0 
8Mr/F 

is a r-independent constant. A calculation gives directly: 

d#r 12t(1 + t2) c F 

dt = 0 - - ~ 7  ( ) '  

which obtains zero at t = 0. So, there is at most one spherical structure at 
r = 0. On 8/140, x~ + x~ + x~ = .~_!, therefore x3 4=0. There are actually two 
symmetric, connected pieces in 8Mo, one has x3 > 0, the other one has x3 < 0. 
We will consider the x3 > 0 piece in the sequel. Since 

,f 4 + zg - = - 1  
(7.15) aM0: l lz~l 2 + [zzl 2 -Iz312 = 0 ,  

Iz312 = Iz~t 2 + Iz212~0. The map 

f :  8/14o --'* S 3 - {S 3 N F. z } 

\z3 z3 / 

is locally biholomorphic. This shows 3Mo, as well as its quotient space aMo/F,  

is spherical. 
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Combining (7.13) and (7.14), we show that /~ decreases from co to a 
constant/t0 as r goes from - 1  to 0, then climbs up to oo at the same speed, 
that is to say 

(7.16) /ts = / t - s ,  s E (0, 1).  

Since/t  is a global CR invariant, (6.15) gives the necessary condition for M-r  
to be biholomorphic to/14,. As for the sufficient condition, we need the help 
of  another CR invariant, the CR invariant 2(N) associated with every compact, 
orientable, strictly pseudoconvex 2n + 1 dimensional CR manifold N, defined 
by David Jerison and John Lee in [J-L]. 

Let u be any smooth real function on N, and let R be the Webster scalar 
curvature for a fixed one-form 0. The invariant 2(N) is defined by 

,~(N) = in f{Ao(u)  : Bo(u) = 1, u E Coo(N)} 

where, when n = 1 

Ao = f(41du[2o + Ru2)O A dO 
N 

Bo = f lu:O ^ dO. 
N 

When the CR structure has constant positive curvature R, Ao(u) > O, for 
every u E C~176 this implies that 2(N) ~ 0. In the case R = - c  < 0, we 
can take a constant function u so that Bo(u) = 1, then the associated Ao(u) = 
f N - c u 2 0  A dO < 0, therefore, 2(N) < 0. 

The Webster scalar curvature R-r  is a negative constant on OM-r, 

R--r 
,-(1 - , / 1  - : )  

x/1 - r 2 - (I - r 2) ' 

whereas it is a positive constant Rr on OMr, 

It is thus clear the OMr and aM_r have different invariant 4, therefore they 
can't be biholomorphically equivalent. 

Finally, we summarize these results as a theorem, the negative curvature 
case of  Theorem 7.1. 

Theorem 7.2. Let X be a two-dimensional, compact Riemannian manifold 
o f  constant curvature k < O. Then the M o n o e - A m # r e  model (M,X, q~) is 

o f  bounded type with sup q~ = x/_L. ~ .  We have exactly one spherical level 

set {c# = vs}, vs = 2 ~  is where /tv attains its minimum. The pseudo- 

hermitian curvature Rv is positive when v < vs and is negative when v > vs. 
Furthermore, the tube {q~ < el} f f  not biholomorphic to {q~ < v2},for vt 4:v2. 
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The calculation in this section has actually extended the construction of 
hyperbolic tubes by Lempert in [Lem]. Let us remark that in that paper, Lem- 
pert didn't require the compatibility of the metrics and proved that the func- 
tion q~o(z)= 2tan- l ( tanhdn(z ) )  is a non-negative plurisubharmonic function 
on Bn/F, satisfies the Monge-Amp~re equation on B n / F -  An~F, equals 0 ex- 
actly at An~F, goes to ~ as z --~ aBn/F, and q~2 is a strictly plurisubharmonic 
function on Bn/F, where B" E IE n is the unit ball, A n is a hyperbolic space 
considered as the unit ball in IR n endowed with the Caley-Klein metric, and 
dn(z) measures the Kobayashi distance of z to An. We add the compatability 
condition to his model (Bn/F, An/F, ~o), then the uniqueness of Monge-Amp~re 
model, together with Theorem 7.2, imples: 

qJ(z) = 2x~tan-I ( tanh  dn(z))  , 

dn(z) measures the Kobayashi distance of z to A n. 
Furthermore, Theorem 2.5 of [L-S] asserts that there is a biholomorphic 

map f which sends our previous model (Mo/F, Hn /F ,u )  to Lempert's model 
with 

u(z) = q~( f (z ) ) .  

On the level surface OMr, the uniqueness implies 

2 t a n - ' ( t a n h d n ( f ( z ) ) )  = c o s - I t  - 7r. 

So, the Kobayashi distance from the image f ( d M r )  of BM, to A n is 

= -~ log - + 1 - r 
d n f ( z )  = tanh- l  lv/T-S-~_ r2 ~/1 r 2 - -1  " 
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