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1. Introduction and motivat ion 

Let C be a geometrically irreducible curve over a field k, let k be an algebraic 
closure of  k, and let m be any positive integer not divisible by the characteristic 
of k. The Jacobian variety J of C comes equipped with a principal p~ar iza-  
tion A, which is in particular an isomorphism from J to its dual variety J .  The 
polarization A gives us an isomorphism between the m-torsion J m  of J and its 
Cartier dual, and this isomorphism turns the natural pairing Jm • Jm ~ l~m into 
the Weilpairing em:Jm • ~ I~,n. Suppose D and E are k-divisors on C whose 
mth powers are principal, say m D =  d i v f  and mE = div g, where f and y are 
k-functions on C. The following well-known theorem tells how the Weil pairing 
on the classes of  D and E in Jm(k) can be calculated. 

The o rem 1, Let [D] and [E] denote the classes of the divisors D and E in Jm(-k). 
Then we have 

1-[( l ~m(ordp D)(ordp E) yordp D 
em([D], [E]) = x x ' - - "  fordp E (P) '  (1) 

P 

where P ranges over the geometric points of C. 

Using Weil reciprocity one can easily show that to prove Theorem 1 it is 
enough to prove the theorem in the special case where the divisors D and E 
have disjoint supports, and in this Case Eq. (1) can be written in the more familiar 
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form era([D], [E]) = 9(D)/f(E). This case of the theorem follows from results 
found in [2, Sect. 6.4], but as far as we know the theorem is not stated explicitly 
in the literature except in the case where the curve C has genus one. In this 
special case, our pairing em is the same as that defined in [1, Sect. 12.3] and in 
[7, Sect. 3.8], and Theorem 1 occurs as Remark 3.7 in [1, Sect. 12.3] and, with 
a sign error, as Exercise 16 in [7, Chap. 3]. 

Now suppose that k is a finite field that contains the mth roots of unity, let 
K be the function field of the curve C, and suppose 9 is an element of K such 
that L = K(9 l/m) has degree m over K and has constant field k. The Galois 
group of L over K is naturally isomorphic to the group of ruth roots of unity in 
k, and for every prime p of K local class field theory gives us a homomorphism, 
the Artin map, from the multiplicative group of the local field K~ to GaI(L/K). 
This homomorphism, evaluated on an element a E Kp, is Hilbert's norm residue 
symbol (9,a)~. A result of Schmidt ([5], see also [6, Number VI.30]) gives an 
explicit formula for (9, a)v: we have 

(g,a)p = H ((_l)(Ordt, a)(orde g)gOrdp a ) (q--l)/m 
aorctp g (P) , (2) 

P 

where q = #k and where the product is over the primes P of K | k- lying over p. 
The typographical similarity between Eq. (1) and Eq. (2) is striking. Moti- 

vated by a desire to explain this similarity, we provide a new proof of Theorem 1. 
We begin in Sections 2 and 3 by proving the theorem in the special case where 
the base field k is finite. Our argument, which uses Kummer theory and class 
field theory to relate the Weil pairing to the I-Iilbert symbol, shows how Eq. (1) 
can be obtained from Eq. (2). In Section 4 we briefly indicate how the general 
theorem follows from the special case where k is finite. 

2. The Weil pairing, Kummer theory, and class field theory 

We begin by interpreting the Weil pairing in terms of Kummer theory. For the 
moment we make no assumptions on k. 

LetC~- be the curve C Xspeck Speck', so that the function field of C}- is 
K | k, which we will denote by K~.  Let M ~  be the maximal unramified 
abelian extension of Koo whose Galois group is killed by m, and let X be the 
corresponding curve over k. Then we know that X fits into a Cartesian square 

x ' Jr 

1 1 ~ 
c r Jr 

where the arrow on the right hand side is the multiplication-by-m map on the 
Jacobian of C}-. This diagram provides an isomorphism between Jm(k-) and the 
Galois group of Moo over KoQ: translation by an m-torsion point on J~- gets pulled 
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back to an automorphism of X, which gives an automorphism of M~/Ko~. On the 
other hand, there is also an isomorphism ~ between Jm (k-) and (K~ n M~ m)/K~ m 
defined as follows: Suppose E is a k-divisor of degree 0 whose image in J(k-) is 
an m-torsion point, so that mE is a principal divisor, say the divisor of 9- Then 
9 has an ruth root in M ~ ,  and we define qa([E]) = 9 /K~  m. Kummer theory gives 
us a perfect pairing 

GaI(M~o/K~) x (K L N MLm)/K~o m --+ I~m~ ) 

defined by (a, 9) ~ a(91/')/9 U", and our isomorphisms Jm(-k) -+ Gal(Moo/Koo) 
and ~o turn the Kummer pairing into a pairing Jm x Jm ~ #m" This new pairing 
is none other than the Weil pairing; this can be seen by combining the explicit 
formula for the natural pairing of the m-torsion of an abelian variety with that 
of its dual (see [3, Sect. 16]) with the fact that the map ~b: C ---) J induces an 
isomorphism ~b*: J" --) J that is equal to - A  - l ,  where A is the polarization of J 
that was used in the definition of the Weil pairing (see [4, Remark 6.10]). 

Now let us assume that k is a finite field. By replacing k by a finite extension 
field, we may assume that the Cartesian diagram above can be defined over k, 
and that the m-torsion points of J are all defined over k. Replace the diagram 
above with the corresponding diagram of k-schemes, and let M be the function 
field of the curve X over k, so that K and M are both function fields over the 
finite field k. We are now in the right situation to use class field theory. 

Let F be the Frobenius endomorphism of J /k  and let Y be the pullback (via 
the map ~0: C -+ J )  of the covering (F - 1):J --+ J .  The endomorphism F - 1 
is divisible by m in End J because the m-torsion points of J are defined over k, 
and we have a big diagram in which all rectangles are Cartesian: 

Y ~ J 

.[(e-l)/m 

X ~ J 

C ~ J .  

Let N be the function field of the curve Y. Then N is a maximal unramified 
abelian extension of K with constant field k, and the diagram gives an isomor- 
phism between J(k) = ker(F - 1) and GaI(N/K). This isomorphism can be 
described by class field theory as follows. 

? , 
Let I denote the geometric id~le group of C, so that I = l-Ip(Koo)~, where 

the restricted direct product is taken over all primes P of Koo (see [6, Number 
VI.29]). Let 1 ~ denote the group of id~les of degree 0. The Galois group G of 
Koo/K, which is canonically isomorphic to Gal(k-/k), acts continuously on I ~ 
Let I~ denote the set of elements of I ~ that are fixed by G, and let U and 
U(k) denote the subgroups of I ~ and l~ consisting of unit id~les. Note that the 
group I ~  is isomorphic to the group J(k-) of geometric points of  J ,  and 
that the group l~ * U(k) is isomorphic to J(k). Class field theory for curves 
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(see [6, Sect. VI.6]) tells us that the Artin map from l~ to Gal(N/K) induces 
the isomorphism from J(k)  to GaI(N/K) given in the preceding paragraph. 

Now let notation be as in Theorem 1, and again replace k by a finite extension 
so that the divisors D and E are defined over k and the functions f and 9 are in 
K. By multiplying # by a constant if necessary, we may assume that g has an 
ruth root in M, so that the field L = K(g 1/m) is contained in M. Kummer theory 
gives us a homomorphism GaI(L/K) --o IJm(k), and from our last diagram we 
obtain a commutative diagram 

l~ , J(k)  ~ , GaI(N/K) 

Jm(k) ~ , GaI(M/K) 

1 
GaI(L/K) , pro(k) 

where the vertical arrows between the Galois groups are the natural restriction 
maps. Our comments on the Weil pairing at the start of this section show that 
the homomorphism era( �9 , [E]):Jm(k) ~ pro(k) is equal to the composition 
Jm(k) "~ Gal(M/K) --* GaI(L/K) --~ I~m(k), and we know that the Artin map k~ 
from l~  to Gal(L/K) is obtained by following the arrows from the upper left 
of  the diagram to the lower right. We can calculate the Artin map by using Hilbert 
symbols, so the proof of Theorem 1 for finite fields is reduced to a calculation 
and a diagram chase. 

3. A calculation 

We introduce two auxiliary homomorphisms. Let ~: I ~ ~ k'* be defined by 

ordp a 
�9 (a) = ] " - [ ( - 1 )  ( ~ 1 7 6  .... (P) 

I . t  a Oldp Y 
P 

and let T: (I~ m --o k'* be defined by 

T(a)  = 1-I ( -  1 )torde a)(orde g)/m ar176176 a~/mg)/m (P)' 

P 

where the products are taken over the primes of Koo. The next lemma summarizes 
the relevant properties of these functions. 

Lemma  2. We have the following: 
(1) The functions �9 and T are G-equivariant. 
(2) The functions �9 and T kill elements of-k*. 
(3) The function �9 kills elements of K~.  
(4) For every a E I ~ we have ~(a) = T(ar~). 
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(5) For every a E l~ ) we have gZ(a) = ~ ( a )  (q-1)/ra. 

Proof Statements (1), (2), and (4) follow easily from the definitions of �9 and 
T.  Statement (3) is Weil reciprocity (see the proof of [6, Number 111.4, Prop. 6]). 
Finally, we note that the global Artin map k~ is the product over the primes of 
K of the local Artin maps, each of  which is given by the corresponding Hilbert 
symbol. Statement (5) then follows from Eq. (2). 

Now let a E I~ be an id~le whose associated divisor is the divisor D of 
Theorem 1, so that a m = f u  for some unit id~le u E U(k). Let b be an element 
of  l~ such that ((F - 1)/rn)[b] = [a], and let c be an element of  10 such 
that ]hi = m[c] in J(k) ,  so that [a] = (F - 1)[c]. If  we translate these last two 
equalities into equalities in I ~ we find that there must exist functions c~,/3 E K ~  
and unit id~les v , w  E U so that we have both b = cmc~v and a = c~-1/3w, where 

denotes the qth-power automorphism of  k, which is a topological generator 
of  G. Using the various statements in Lemma 2, we find that 

em([D], [E]) = g'(b) 
= ~ ( b ) ( q - l ) / m  

_ ~i(c)q--I ~ ( ? ) ) ( q - - l ) / m  

= ~(c ~-l ) T ( :  -1) 

= ,I~(aw -1) T(v ~'-l) 
= T(amw-mv ~-1) 

= Tf f )  T ( u w - " : - l ) .  

However, we have 

f u  = a m = c m ( a - 1 )  /3m • ra = b ~  l ot l  - a  l l l -a /~rn ' t .B  m = ~ l - ~  /3m'to rn 

so that 
U ,uy-- m u a - I = f -- l oL l -- cr /3m " 

The left hand side of the last equality is a unit id~le, while the right hand side is a 
principal id~le. Thus uw-mv 'r-I is an element of  k-*, so that T(uw-'nv '~-1) = 1 
by Lemma 2. This gives us e,,([D], [E]) = T(f ) ,  and by combining this with the 
equalities mD = d i v f  and mE = div 9 we get Theorem 1. [] 

4. Proof of Theorem 1 for arbitrary base fields 

We briefly indicate how Theorem 1 can be proven for arbitrary base fields. 
Suppose we are given a curve C, divisors D and E,  and functions f and y as in 
Theorem 1. Choose a model for C,  and let R be the subring of  k generated as a 
ring by the coefficients of  the defining equations of  the chosen model of  C,  the 
coSrdinates of  the points of  the divisors D and E,  the coefficients of  f and g, 
and the mth roots of  unity. If R is a finite field we are done, so assume R is 
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not finite. Then the fact that R is finitely generated as a ring implies that it 
contains infinitely many maximal ideals, coprime to m, where the curve C and 
its Jacobian have good'reduction.  Choose such an ideal m. By reducing modulo 

m we get corresponding objects Co, Do, E0, f0, and go over  the residue field 
ko = R /m.  We know that e,~([D], [E]) specializes to era(IDol, [Eo]) and the right 
hand side of  Eq. (1) specializes to the same expression with subscript zeros 
added. The field/co is finitely generated as a ring and is therefore finite, so the 
two specializations are equal to one another by the special case of  Theorem 1 
we have already proven, However, the left hand side of  Eq. (1) is an ruth root 
of  unity by construction and the right hand side is an mth root of  unity by Weil 
reciprocity. Since reduction modulo m is injective on the ruth roots of  unity, we 
find that Eq. (1) must hold. [] 
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