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I Introduction 

This paper was motivated by the question of whether there exists a proper holo- 
morphic embedding ~/i : C ~ C 2 such that C 2 - ~ (C)  is Kobayashi hyperbolic. 

For the case of  a polynomial embedding P : C ---+ C 2, Abhyankar  and Mob 
[A-M] and Suzuki [S], proved that there exists a polynomial  automorphism F of 
C 2 such that ( F  oP) (C)  = C x {0}. In contrast, Forstneric, Globevnik and Rosay 
IF-G-R] have shown that there exists a proper holomorphic embedding ~b : C --* 
C 2 such that for no automorphism H of C 2 is it true that (H o ~)(C) = C x {0}. 
This leaves open the question of whether the complement of an embedded copy 
of C can be Kobayashi hyperbolic. We answer this question in the following 

theorem. 

Theorem 1.1 There exists a proper holomorphic embedding �9 : C --* C 2 such 
that C 2 - ~(C) is Kobayashi hyperbolic, 

This theorem is a corollary of Theorem 4.1. As additional corollaries, we 

obtain the following theorems. 

Theorem 1.2 There exists a proper holomorphic embedding of C into C, 2 such 
that any nonconstant hoIomorphic image of C intersects this embedding infinitely 

many times. 

Theorem 1.3 Let X be an 3, closed, 1-dimensional, complex subvariety of C 2. 

Then there exists a Fatou-Bieberbach domain g? containing X with -~ 7 ~ C 2 and 

f2 - X Kobayashi hyperbolic. 
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By taking X to be the union of  any finite set of affine complex lines, this 
last theorem answers a question of  Rosay and Rudin [R-R], who constructed a 
Fatou-Bieberbach domain containing the coordinate axes and asked if a Fatou- 
Bieberbach domain can contain more than 2 complex lines. 

2 Controlling images of the unit disk 

We first prove a lemma showing that certain collections of linear disks give 
control on certain (nonlinear) maps from the unit disk to C 2. 

Given two concentric balls in C 2, we find a collection of  linear disks near 
the boundary of the inner ball with the following property: any holomorphic 
map from the unit disk into the larger ball which maps 0 near the center of 
the two balls and which avoids the linear disks must map most of the disk into 
the smaller ball. We make this more precise in the following lemma. The proof 
uses a normal families argument and is similar in spirit to the construction of 
non-tame sets in [R-R]. 

For notation, let 7rj denote projection to the j th  coordinate,j  = 1,2, let A(0, r) 
be the (open) disk of  radius r centered at 0 in C, and let ~(13, r) denote the (open) 
ball of  radius r centered at the origin in C 2. 

L e m m a  2.1 Let k E Z +, 0 < nl < n2 < n3. Let X be a closed, 1-dimensional, 
complex subvariety of C z. Then there exist finitely man), affine complex linear 
maps Lj : C ~ C 2 with ~ := Lj(A(0, 1)) C ~(0, n2) - (B(0, nl) U X )  having 
pairwise disjoint closures such that if 

: A(0, 1) ---+ ~(0, n3) - UjAj, 

~(0) E ~(0, nl /2) ,  

with dist(~(0),X) > 1/k, then ~b(A(0, 1 - 1/2k)) ___ ~(0,n2). 

In fact we prove a stronger result allowing small perturbations in place of 
the linear disks obtained above. 

L e m m a  2.2 With the hypotheses of Lemma 2.1, there exist disks Aj = Lj(A(0, 1)) 
as in that lemma, plus ~ > O, such that if A~ is the image of a holomorphic map 
which is within ~ of Lj on A(0, 1)for all j ,  then for any 

~b" A(0, I) -* ~(0, n3) - UjA}, 

~(0) E ~(0, nl /2) ,  

with dist(4~(0),X) > 1/k, we have ~(A(0, 1 - 1/2k)) C_ ~(0,n2). 
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Proof of  Lemma 2.2: Let nl < r < n2, and let {aj} and {by} be countable 
dense subsets of  11~(0, r)  - N(0, nl) and I~(0, n2) - 1~(0, r), respectively, such that 
7rlaj r 7rta,, i f j  ~ m, I = 1,2, and likewise for bj. 

For each j ,  let Aj(z)  = (c~jz, O)+aj and Bj(w) = (0,/3jw)+bj, where aj  > 0 is 
chosen maximal such that Aj(A(O, 2)) C_ N(0, r ) - ( ~ ( 0 ,  nl)UX),  and analogously 
for/3j with disks in the outer shell. 

For notation, we let A~,,~ and B;, m denote functions holomorphic and within 
1/m of Aj and Bj on A(O, 1). For such functions, let 

U m A r Dm := j : l (  ),,~(A(0, 1)) U B},,n(A(0, 1))). 

To reach a contradiction, assume that for each m there exists Dm as above and 
4~m : A(0, 1) ~ ~(0, n 3 ) -  Din, 4)re(O) C I~(0, n l /2)  with dist(4)m(0),X) > 1/k,  
and qS(A(0, 1 - 1/2k)) ~ ~(0, n2). 

The set {~bm} is a normal family since the image of each 4)m lies inside 
a fixed ball, so we may assume that some subsequence converges to a map 
0 : Al(0,1) --~ ~(0, n3) with 4)(0) E ~(0, nl /2) ,  dist(O(0),X) _> 1/k,  and 
4)(/1(0, 1)) ~ I~(0,n2). Then there exist nonempty open sets f21, s C A(0, 1) 
such that 0(~21) C 11~(0, r) - IB(0, hi) and 4)(s C_ ~(0, n2) - IB(0, r). 

We claim that 7r24) is constant. If  not, then since 4(0) ~ X, there exists 
zl E f21 such that q~(zl) ~ X and (Tr24))'(zt) r 0, and there exists a subsequence 
aj~ --* 4)(zl). Moreover, there exists c > 0 such that c~jr >_ c for all l. 

By continuity and the open mapping theorem, there exists a neighborhood V 
of zl such that lTq4)(z) - 7 r l0 (Zl )  1 < c /2  for all z E V and such that 7h4)(V) 
is a neighborhood of 7r24)(zl). For l large, Thai, C 7hO(V), and hence by choice 
of V there exists z( E V such that 0(z() E Aj~(A(0, 1)). But then 4)(z) - A j , ( ( )  
has an isolated zero in A2(O, 1), which persists under small perturbations. Hence 
4)m must intersect Dm for large m, a contradiction, so 7r2~5 ~ const. A similar 
argument for 7r14) shows that 4) - const, which contradicts ~(0) E I~(0, nl /2)  
and 4)(A(0, 1)) ~ I~(0, nz). 

Thus, no such sequence {qSm } exists, so we obtain the lemma by taking {Lj } 
to be some finite subset of {Aj } U {Bj } and 6 sufficiently small. 13 

3 Approximation of linear disks by complex subvarieties 

In the following lemma, we use the notation reg(X) to denote the set of regular 
points of  a subvariety. 

L e m m a  3.1 Let K C C. 2 be polynomially convex and let X be a closed, 1- 
dimensional, complex subvarieO, of  C. 2. Let L C_ X be compact such that for  
each p E reg(X) - (K U L) there exists a curve ~ " [0, 1) -* reg(X) - (K U L) with 

0(0) = p and l imt~l  Ilrl(t)ll -- oc. 
Then K u L is polynomially convex. 

Proof: Although the ideas in the proof are standard, we include it for convenience. 
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Let p E C z - (K U L). If p ~ X, then there exists an entire 9 such that 
9 - 0 on X but 9(P) ~ 0. Also, there exists f entire such that Ill < 1 on K but 
~(p)[ > 1. Then for some m, we have [5"9(P)1 > 1 and [fmgl < 1 on K U L, 
and we can approximate f'n 9 by a polynomial with the same properties. 

I f p  E X, then the preceding argument shows that if Kp := K U L U  {p}, then 
/~'p C_ K U X, where/{p is the polynomial hull of  Kp. The hypotheses on L imply 
that X n Kp is Runge in X, so we can approximate functions holomorphic on 
X N Kp by functions holomorphic on X. 

L e t f ( p )  = 2 a n d f  -= 1/2 on ( X N K p ) -  {p}, and a p p r o x i m a t e f  by a 
function 9 holomorphic on X such that f - 9[ < 1/4 on the domain o f f .  By 
[G-R, Theorem 18, ch. VIII], we may extend 9 to be holomorphic on C 2, and 
then we may restrict 9 to a neighborhood V of X such that 191 < 1 on V N K. 
Composing with a convex function or, we obtain a psh function ~r o [91 which is 
0 on a neighborhood of (X N Kp) - {p} and larger than 1 at p. We can extend 
this function by 0 so that it is psh in a neighborhood of K U X, 0 on K u L, and 
larger than 1 at p, then restrict it to a Runge neighborhood of ~'p, which exists 
since/~'v is polynomially convex. 

Using standard O techniques, e.g. [H, 4.3.3, 4.3.4], it follows that there exists 
a polynomial P on C 2 such that [P(P)I > 1 and IP I < 1 on K UL, so K U L  is 
polynomiaily convex. D 

In the following lemma, we start with a closed, 1-dimensional, complex 
subvariety X of C 2, an automorphism if', and some linear disks contained outside 
g'(X) and outside the ball of radius n. We construct an automorphism of C 2 such 
that the image of q~(X) under this automorphism contains pieces approximating 
each of the linear disks, and such that this automorphism is near the identity 
on ~(0, n) and on some large piece of r  We do this in such a way that 
given some polynomially convex set contained in a ball disjoint from ~(X)  and 
~(0, n + 1), the image of this set is disjoint from ]~(0, n + 2). 

For notation, let e > 0, R, n > 0, and let ff~ be an automorphism of C 2. Let 
X be a closed, 1-dimensional, complex subvariety of  C a, and let L/ : C --+ C 2, 
j = 1 , . . .  ,N  be finitely many affine complex linear maps with Aj := Lj(A(0, 1)) 
having pairwise disjoint closures such that ~ N q~(X) = 13 and Aj N I~(0, n) = 13 
for all j .  Let I~o = ~(P0, r0) be a ball with ]~o N (~(0, n + 1) U ~'(X) U Uj~jj) = ~, 
and let K0 C ~0 be polynomially convex and compact. 

L e m m a  3.2 There exists H : C 2 --~ C 2 an automorphism such that IIH - I I[ < 
on I~(0, n) U ~(IB(0, R) N X)  and such that for each j,  there is a relatively 

open subset c~j of H gs(X) such that the orthogonal projection of crj onto Aj is a 
diffeomorphisra and such that crj is near Aj in the sense of Lemma 2.2. Moreover, 

- -  ! 

there exists a ball ~o with ~o N (~(0, n + 2) U Hk~(X)) = 13 and H(Ko) C_ ]~o" 

Proof" Choose P l , . . .  ,P~ r gr(reg(X)- ~ ( 0 , R ) ) -  ~(0, n) and choose pairwise 
disjoint C 2 curves 7j : [0, 1] ~ C a , j = 0 , . . . , N  which are disjoint from 
~(X NI~(0,R)) U ~(0, n) such that ~//(0) =p j  and such that i f j  _> 1, then "yj(1) = 
Lj (0), while 1170(1)11 > n +2. Let Wj be a neighborhood of 7j such that the W/have 
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pairwise disjoint closures which are also disjoint from g'(X N B(0, R) )U~(0 ,  n), 
and such that Aj C_ W: i f j  _> 1 and II~(p0, ro) _C Wo. For j > 1, let rj > 0 such 
that kv(X)n~(pj, rj) C Wj and such that there is an embedding 9j " A(0, 2) -+ C 2 
with 9j(A(O, 1)) = ~(X) N ~(pj, r/). 

Let K = ~(X N I~(0, R)) U I~(0, n) U 1~--o U (uN=lgj(A(0, 1))). In order to apply 
the approximation result in [F-R, Theorem 2.1 ], we will construct a family ~/it of 
maps which are biholomorphic in a neighborhood of K and C 2 in t with q'o = I.  
We will construct '/'t so that ,/51 is the identity on l$(0,n)U ~(X N II~(0, R)) and 
maps each g/(A(0, I)) to a disk near A/, and such that ,/St(K) is polynomially 
convex for all t, then approximate ~bl by a global automorphism. 

We show how to construct g't around a neighborhood of Pl. For simplic- 
ity, assume Pl = 0 and 91(0) = Pl. Now, given any complex linear map L 
such that L(A(0, 1)) C_ W1 is tangent to 91(A(0, 1)) at Pl, we can first use 
the family 91(xl(t)g~l(p)) with Xl(0) = 1, X1(1) small and positive, to shrink 
9t(A(0, t)) to a nearly linear disk tangent to L(A(0, 1)), then use the family 
A~(t)91(Xt(1)g~l(p)) to expand the small disk to approximate L(A(0, 1)). 

Note that by choosing XI(1) very small, we can make the diameter of 
91(XI(1)A(0, 1)) as small as we like. In particular, we can translate this disk 
along 71 and use a one-parameter family of rotations to make the image tangent 
to Aj, then expand as before to make the new image approximate Aj. Note that 
all of this can be done within W/, and that at each stage, the image of A(0, 1) 
is contained in an affine linear image of X. Moreover, we can make the family 
C 2 in t. Reparametrizing, and using a similar construction for each p/, we can 

N define ~ on U'j=191(zS(zj, rj)). We can use a similar procedure to shrink ~o and 
--7 move it along "7o inside W0 so that the image is ~0 as in the statement. 

Finally, each 9j, J --- I can be extended to be a biholomorphic embedding of 

A2(0, 1) into Wj, so we can use the same argument to define ~bt on a neighborhood 
of LJN=lgj (z2t(0, 1)), and similarly extend it to a neighborhood of  I~o. Define ~/i _ I 

on a neighborhood of t/,(X N I~(0, R)) U II~(0, n) for all t. 
Since the union of two disjoint closed balls is polynomially convex, and since 

the remaining hypotheses of the previous lemma are satisfied for all t, we see 
that # t (K)  is polynomiaily convex for each t. Hence by [F-R, Theorem 2.1], 
there is a neighborhood V of  K such that #1 can be approximated uniformly on 
V by automorphisms H of C 2. 

Choosing ~/it such that #Igj(A(0,  1)) is close to Aj for al l j  and #l(Ko) C 1~, 
then choosing an automorphism H close to #1, we obtain the lemma. [] 

4 Main theorem 

Theorem 4.1 Let X be a closed, 1-dimensional, complex subvariety of C 2 and ~o 
a ball with I~--oNX = ~. Then there exists a domain I2 C_ C 2 --~0 containing X and 
a biholomorphic map ~from ~ onto C. z such that C 2 - ~(X) is Kobayashi hy- 
perbolic. Moreover, all nonconstant images of C in C. 2 intersect ~b(X) in infinitely 
many points. 
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Remark: Since �9 in the statement of the theorem is biholomorphic, it is neces- 
sarily a proper holomorphic embedding of X into C z. 

Proof." The first step is to construct ~b as the limit of automorphisms of C 2 which 
are constructed inductively. We will define a sequence ~m of automorphisms, 
n u m b e r s  Rm / z  oo, and finitely many affine complex linear disks A~ such that 

(lm) llaS,.(P)ll >_ m + 1 i f p  ~ X and tfpll >- era, 

(2,,) [l~m(p)fl >_ m + 1 i f p  E ~0, 
(3m) II~m+l--~mll----- 1/2  m on X n ~(0,R,.), 
(4m) limb,,+104iml -- Ill _< 1/2 m on ~(0, m) and 
(5m) if I <_ m and 6 : A(O, 1) ~ IB(O, l + 2) - u j (A; )  ~ as in Lemma 2.2 with 

r C I~(0, / /2)  and dist(4~(0),~l(X)) >_ 1/I, then 6(A(0,  1 - 1/2t)) C 
IB(O, I + 1). 

Changing coordinates by a translation, we may assume ~0 N IB(O, 1) = 0, 
so we can take ~0 = I ,  Ro = 1, and choose a ball moo such that ~ C ~o ~ and 

~o n (]~(o, l) u x)  = O. 
For the inductive construction, suppose we have m > 0, ~/'t and R~ for t _< m 

and linear discs A~ for I < m satisfying (I t )  and (21) for I < m and (3D, (41) and 

(5D for I < m. Suppose also that there exist halls 1~/o, I _< m, with r _C ~l o 

and ~t 0 n (~(0, I + 1) U #l(X))  = ~, 1 _< m. Note that #m(~OO) is polynomially 
convex since #m is a global automorphism. Suppose also that ~i~(X n ~(0, Rm)) 
has nonsingular, relatively open subsets approximating each A~ as in Lemma  2.2. 

We use Lemma 2.2 with m, m + 1 and m + 2 in place of nl, n2 and n3, 
respectively, with #re(X) in place of X, and with k = m. This gives finitely many 
affine complex linear L 7 : C --+ C 2 with A~ := L~(A(0,  1)) C I~(0 m + 1) - 

N(O, m) having pairwise disjoint closures such that if 6 : A(O, 1) --~ ]~(0, m +2) - 
u j (A~') '  as in Lemma 2.2, and 6(0) E N(0, m/2) with dist(6(0), ~m(X)) >_ 1/m, 
then 6(A(O, 1 - 1/2m)) C I~(O,m + 1). 

We then apply Lemma 3.2 with R = Rm, n = m,  k~ = ~m,  X unchanged, 
{LT' } in place of {Lj}, II~ in place of  No, and Ko = ~m(Bo). This gives an 

automorphism H " C 2 --~ C 2 such that IIH - I  II <- ~ on ~(0, m)U~Sm(Xn~(O, Rm)) 
and such that there are submanifolds r of H~bm(X) which are close enough to 

the A~ for Lemma 2.2 and such that there is a ball IB~ +1 with N~+l Cq(]~(O, m + 2)U 

n~m(X))  = (~ and HaSm(~---~) C_ ~ '+~.  

By taking e sufficiently small, (lm) together with the fact that A~ C_ N(O, m) 
for l < m implies that we can make Hr pass close to all of these disks, 
in the sense of  Lemma 2.2. Thus, taking ~/im+~ = H~b,, and Rm+~ >_ Rm + 1 
large, we obtain the inductive condition on submanifolds of ~ + ~  (X), as well as 

(lm+l),, (2m+l), (3m), (4m) and (5m). 
To show that {~m} converges to give a map �9 : Y2 ~ C 2, let J2,~ := 

~b~(lB(O,m)). I f p  ~ /2m, then [[~m+l(P) - ~,.r = [ l ( ~ m + l  0 ~ m l ) ( ~ l ~ m ( p ) )  - -  

l(~m(P))ll < ~ .  Hence II~m+~(P)ll < m + 1/2 m < m + I, so p ~ Om+~- It follows 
that the sequence {~,, } converges locally uniformly on J2 := U/2m to a map ~/i. 
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Suppose p G f2m+l - f2~. Then 
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lim 

-< ~ IL~k+l(p)- ~(P)tl 
k>m+l  

1 < - -  
2 m 

Hence ,~(p) C ~(0, m + l  +1 /2m)-B(0 ,  m - 1/2m). It follows that �9 is a proper 
map from f2 to C 2. In particular, ~b must have maximal rank 2. Since ~ is a 
limit of automorphisms, it follows that ~ has nonvanishing Jacobian everywhere 
in Y2. A standard argument implies that ~b is injective on Y2, and (4,~) implies 
that /I~(0, m - 1) C_ ~k(f2,~) for k >_ m, so that ~ is surjective. Hence ~b is a 
biholomorphism from Y2 onto C 2. 

From (2,,) we see that ~o N Y2m = ~ for all m, hence Woo N f2 = ~. 
If p E X, then p E X N B(0,R,~) for some m. It follows from (3m) that 

II~(P)II <_ tl~m(P)ll + E~=~ 1/2J < I[~m(P)lt + 1 for all k > m. Hence if k is 
large enough, II~k(p)tl < k and so p E Y2k. Therefore X C Y). 

Before continuing, note that the approximation of  A~ by each ~b,,(X N 

~(0,R,~)) implies that ~b(X) has submanifolds which approximate each A~ in 
the sense of  Lemma 2.2. 

We show next that C 2 - ~(X) is Kobayashi hypej'bolic. If not, there is a 
point p in C 2 - ~b(X), a nonzero tangent vector ~ E TpC z, and a sequence of  
holomorphic maps q~k : A(0, k + 1) --* C 2 - ~(X) such that ~bk (0) = Pk, C)~ (0) = ~k, 

and (Pk, ~k) --~ (P, ~). 
Since p ~ ~(X), there is an integer mo > 1 such that p E ~(0, mo/2) and 

dist(p,~(X)) > 1/mo. From (lm) and (3m), there exist kl > 1, rnl > mo such 
that dist(pk,~m(X)) > 1~too for k > kt, m _> ml. 

Fixing k >_ ki, we see that ~k(A(0, k)) C_ ~(0, m + 2 )  for some m > mt large. 
Since ~k misses ~(X), we see that ~bk(z ) := q3k(kz) maps A(0, 1) into ~(0, m + 2 ) -  
Ug(AT)', Zb~(0)= p~ and dist(O~(0), ~'m(X)) >_ 1 /m.  Thus O~(A(0, 1 -- 1/2m)) C 
I~(0, m + 1) by (5m). By induction, we see that O~(A(0, H,~>_m,(l - 1/2m))) C 
]~(0, ml+l) .  Hence there exists r > 0 independent o fk  such that [l~b~(z)ll < m~+l 
for all ]zl < r. This implies that IlO~(z)ll < m~ + 1 for all Izl < kr  and hence 
that ~ ( 0 )  ~ 0, a contradiction. Thus, C 2 - ~(X) is Kobayashi hyperbolic. 

Finally, if 9 : C --~ C ~ is a nonconstant holomorphic map which intersects 
�9 (X) only finitely many times, then these points of intersection are contained 
in some large ball. By reparametrizing, we may assume that g(0) ~ ~(X), then 
use an argument like the one just given to show that the image of g must be 
contained in some large ball, a contradiction. 

The theorems in Sect. 1 now follow immediately by taking X to be the z-axis 
for the first two theorems and to be any finite collection of complex lines for 
the third theorem. In Theorem 1.3 one can replace X by any countable union of  
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closed subvarieties of C 2 avoiding a fixed ball. The proof of Theorem 4.1 still 
goes through. Moreover, if X is a dense, countable union of closed subvarieties 
of C 2 and S is any discrete set of points in the complement of X, then there 
exists a Fatou-Bieberbach domain f2, X C Y2 C C 2 \ S. 

Note that Theorem 4.1 can be applied to any Riemann surface which admits 
a proper holomorphic embedding into C 2, so in particular, there is an embedding 
of the disk whose complement is Kobayashi hyperbolic. 
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