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On the Hyperinvariant Subspaces for Isometrics 
RONALD G E O R G E  DOUGLAS 

Let 2/Y be a complex Hilbert space. A (bounded linear) operator V on Yg 
is an isometry if l[ Vx][ = []xl] for x in ~ .  In this note we determine the hyper- 
invariant subspaces for a general isometry. Recall that a subspace ~ of J/g 
is said to be hyperinvariant for an operator T on ~ if ~ is invariant for every 
operator that commutes with T. This notion was introduced in [5] and [2], 
where the hyperinvariant subspaces for various classes of operators were 
determined. In particular, it was shown in [2] that the hyperinvariant subspaces 
for a unitary operator (in fact, any normal operator) are the spectral subspaces 
and in [5] (without proof) and [2] that the hyperinvariant subspaces for the 
unilateral shift U+ on H9 are the subspaces q Hg, where q is a scalar inner 
function. 

Before stating the characterization for general isometries we need the 
following facts about isometries and unitary operators. For a Hilbert space 

we let H9 denote the space of functions f from the non negative integers 

Z + to @ so that ~ [[f(n)[[ 2 < oo. The space H a is a Hilbert space with respect 
n=O 

to pointwise addition and scalar multiplication and the inner product 

( f  g) -- ~ (f(n), g(n)). The unilateral shift U+ is defined on H 9 so that 
n=O 

0, n = 0  for in 
(U+/) (n)= f(n-1),  n > 0 '  f Hg. 

The operator U+ is an isometry and its adjoint, the backward shift, satisfies 
(U* f)(n)=f(n+ 1) for f in 1-t 9. The sequence { U*"} converges strongly to 0. 
The minimal unitary extension U of U+ is the bilateral shift defined on kg, 
where k~ is the space of function f from the integers Z to ~ so that 

]rf(n)r[2<~ and U is defined (Uf)(n)=f(n-1) for f in t-9. It is easily 
n=--oo 
verified that U is unitary and if we identify kt~ as a subspace of k 9 in the 
obvious way, then U+ = U[ H 9 . 

A result due to von Neumann [4] states that every isometry is of the form 
U+ O W on H9|162 ~, where U+ is the unilateral shift on kl~ and W is a unitary 
operator on of.  

A further decomposition of the unitary part into its absolutely continuous 
and singular parts will be of interest. If W is a unitary operator on oU with 
spectral measure E(cS), then W is said to be absolutely continuous [singular] 
if the measure #(6)= (E(6)x, x) is absolutely continuous [singular] for each 
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vector x in 24#. If W is a unitary operator on ~f, then X = X , G  ~ ,  where 
and ~ are reducing subspaces for W so that W / ~  is absolutely continuous 

while W / ~  is singular. The operator W / W  a is said to be the absolutely con- 
tinuous part of W. (See [3] for details and proofs.) 

Theorem. Let V be an isometry on ~ and let ~ = H ~ O ~ |  be the 
unique decomposition of ~ into reducing subspaces for V so that U+ = V/H# 
is the unilateral shift on H~, W 1 = V / ~  is an absolutely continuous unitary 
operator and 1412--V/~2 is a singular unitary operator. The hyperinvariant 
subspaces for V are of the form JC{ | ~ | f ~2 or (0) �9 EN<t G F X2 , where JC{ 
is hyperinvariant for U+, E is a spectralprojection for W1, and F is a spectral 
projection for W2. 

Proof. We begin by observing that the hyperinvariant subspaces for a 
direct sum T~| are always of the form J r 1 7 4  where each of 
J/{t, J~2, and JOg3 is hyperinvariant for the respective operator. This is because 
the projections I | 0 �9 0, 0 | I | 0, and 0 | 0 �9 I and the operators S~ G 0 �9 0, 
0 | S 2 | 0, and 0 G 0 G Ss commute with T 1 e T2 �9 T3 where S~ is any operator 
which commutes with T~. Thus we may assume that a hyperinvariant subspace 
for V is of the form J/{ �9 E ~  | F S z ,  where JOg is hyperinvariant for U+ and 
E and F are spectral projections for W t and W2, respectively. Our task is now 
to decide which of these subspaces is hyperinvariant for V. 

To this end we need to determine the commutant for V The unitary ex- 
tension of V is U O W 1 0 W  2 on L~| OcU2, where U is the bilateral shift 
on k~. From Corollary 5.4 of [1] (cf. [6]) it follows that irA+ commutes with V, 
then A+ =A/~r ~ where A is an operator on k ~ |  @J~2 which commutes 
with UO W1 �9 W2. Since a bilateral shift is an absolutely continuous unitary 
operator (its spectral measure is equivalent to Lebesque measure), from 
Lemma 4.1 of [-1] it follows that the matrix for A relative to the decomposition 
L~O ~ 0  ~gf2 is of the form 

A 4 
0 As 

Thus it is clear that the spectral projection F is independent of ~/~ and E. 
Thus we can confine our attention to the subspace H ~ |  and the matrix 

A2 

If this matrix is to represent an operator which commutes with 

0 

then A1 must commute with U, A 4 must commute with W~, and A2 and A s 

must satisfy A2 ~ = UA2 and A 3 U = W 1 A  3 . Further, if this is to be the exten- 
sion of an operator which commutes with U+ @ W~, then it must leave H~G 
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invariant. This implies upon computing that A 2 ~ must be contained in H a. 
But by Lemma 4.1 of [1] the closure of A 2 ~ is a reducing subspace for U. 
Since the only reducing subspace for U contained in kt~ is (0) it follows that 
A2 = 0. Lastly, we have that H a is an invariant subspace for A 1. 

The preceding argument is reversible to obtain that the commutant of 
U+ | W1 consists of the restriction of operators with matrix 

(Aa 0 ) ,  where A1U=UA1, A t H ~ c H ~ , A 3 U = W 1 A  3 and A4WI=W1A4. 
A3 A4 

We return now to the problem of determining which subspaces of the 
form J/{ | EYl are invariant under these operators. If f |  g is in ~ f O  EoU.1, 
then < ,~ "" ,+ . . . ,  
so that ~ can be any hyperinvariant subspace for U+. If ~ = (0), then E ~  
can be any spectral subspace for W~. The proof will be complete if we show 
for Jg + (0) that the set of vectors of the form A3 f, where A3 satisfies A3 U = 
W1 A3 and f is in ~{, is dense in ,~.1. 

Choose x in ~ and let ff be the minimal reducing subspace for Vr con- 
taining x. Since W~ is absolutely continuous, there exists a Borel set 7 contained 
in the unit circle so that if we define v(6)=m(6 c~ 7) where m is normalized 
Lebesgue measure, then W~/ff is unitarily equivalent to the operator L, 
defined as multiplication by z on L z (v). Let C be an isometry from ff onto 
L2(v) so that L, C= CW~/ff . 

If d/l#(0), then J/g=l= U~r and if f is a unit vector in ~NQ UJg, then 
{U"f}[=_~ is an orthonormal subset of ~ .  The subspace Y of ~ spanned 
by the vectors {U"f}2=_~ reduces W~. For k a bounded function in L2(v), 
we define an operator Dk from I_ 4 to ~ as follows: for h orthogonal to g 

we set Dkh=0; for h= ~ c~.U"f, we set Dkh=C* k ~ c~.e i"t . To show 

that Dk is bounded observe that 

) .  )2 )2 
I[Dkhll2= C* n eint = ~c~.e i"t = ~  neint dm 

x n ~  -- oo n 

ilkl[2 ~ j .  ~ e,,e'nt2dm 1 i 'll ~ eint Zdm < �9 <llkll2 _ ~ ~, 
Z 7 [  y I n = - o o  n oo 

(2 ) '= =llkll 2 I~.12 =llkll~ ~ ~. ][k]] 2o~ Ilhll2. 
n oo 

An easy computation shows that DkU=W~D k so that the operator on 
Ha G ~ with matrix 

(oo :) 
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commutes with U+ Q VV1. Moreover 

~ (o 00) 0 
so that the set of vectors of the form Aa(f@0), where A 3 commutes with 
U+ O Wt and f is in ,~g, is dense in •. Since x was arbitrary, the set is dense 
in ~ and the proof is complete. 

The preceding argument could be used to prove the "same result" for 
those subnormal operators having the property that every commuting map 
"lifts" to the minimal normal extensions. For a general subnormal the above 
argument shows that every hyperinvariant subspace is of this form but the 
possibility of further operators in the commutant obviates the argument 
showing that each of these subspaces is hyperinvariant. 
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