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Combinatorial Structures in Loops 
IV. Steiner  Tr iple  Systems in Neof ie lds  

Eugene C. Johnsen* and Thomas Storer** 

1. Introduction 

A Steiner triple system (STS) of order n, J,, = [S, 5a], is an arrangement 
of the elements of an n-set S into a set 5 ~ of triples such that every pair of 
elements in S occur together in exactly one triple of ~ A necessary and 
sufficient condition that an STS of order n exist is that n--- 1, 3 (mod 6). 
An STS J,, which has a group of automorphisms G which is regular 
(sharply transitive) on the elements S is called regular and is denoted by 
(Y,,, G). It is simply called cyclic or abelian when the group G is respec- 
tively cyclic or abelian. For  an excellent historical discussion and intro- 
duction to the literature on Steiner triple systems, the reader is referred 
to the first section of Doyen [10]. A right neofield of order v, N o (+ ,  -), is 
an algebraic system of v elements including 0 and 1, 0=~1, with two 
binary operations + (addition) and �9 (multiplication) such that 1No(+ ) 
is a loop with identity element 0, N*( . )  (where N* = U o -{0})  is a group 
with identity element 1, every element of N o is right distributive (i.e., 
every x ~ N  o satisfies (y+z)- x = y .  x + z .  x for all y, z~N~), and x - 0 = 0  
for all x~N~. A right neofield in which every element is also left distri- 
butive is simply called a neofield. A right neofield N~ is said to have the 
inverse property (IP) and is called an IP right neofield if for each y ~ N  o 
there is an element z~N~ such that ( x + y ) + z = x  and z + ( y + x ) = x  for 
all x~N~. In an IP right neofield every y ~ N  o has a unique two-sided 
negative -ye lN~ and, in fact, z above is this element - y .  We call a right 
neofield N o commutative if N~(+)  is commutative. It is easy to show 
that an IP neofield is commutative [12]. A right neofield N ,  and its 
additive loop N o (+ )  are said to have characteristic m, written char N o = m, 
if m t  . . . .  

(...((x + ... + x ) + x = 0  
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for all x~Nv and m is the least positive integer for which this is true. 
Finally, a neofield Nv is called cyclic or abelian if N* (') is, respectively, 
cyclic or abelian, and a cyclic or abelian IP neofield is called, respectively, 
a CIP or AIP neofield. 

In the next section we show that a regular STS <~,,, G> of order 
n - 1 ,  3 (mod 6) is equivalent to a commutative IP right neofield N~ of 
order v = n + 1 - 2, 4 (rood 6), char N~ = 2, with N* (-) isomorphic to G. 
We determine the condition on <Y,,, G), called Z-regularity, for which 
N v is in fact a neofield, and show that two Z-regular STSs are per- 
mutation isomorphic (i.e., are essentially the same combination of triple 
system and group) precisely when their corresponding neofields are 
isomorphic. Furthermore, an STS J,, which is regular with respect to 
two different groups G 1 and G 2 has <J,,, G1) permutation isomorphic 
to <Y-~,,, G2> if and only if G 1 and G2 are conjugate in the total auto- 
morphism group of .f,,, Aut(J,,). This shows that the two neofields 
corresponding to two Z-regular STSs (~,,, G1) and < ~ ,  G2) o n  the same 
STS are isomorphic if and only if G 1 and G 2 are conjugate in Aut (J,,). 

In the third section we give a procedure for constructing AIP neo- 
fields which is an extension of the procedure previously used to construct 
CIP neofields from finite fields [12]. In his recent Ph.D.  dissertation [9] 
Doner  completed the determination of the orders for which CIP neo- 
fields exist and gave constructions of CIP neofields for all admissible 
orders. The above procedure can be applied to these CIP neofields and 
produces a sufficient number of different CIP neofields of each admissible 
order so that we can prove that the number of nonisomorphic CIP neo- 
fields of order v goes to infinity with v. The lower bound obtained in this 
proof, when used in conjunction with other known results, is sufficient 
to show that for all admissible orders v > 11 except v = 14 there exists at 
least two nonisomorphic CIP neofields of order v. 

In the last section we bring together some of these results to show 
that the number of nonisomorphic cyclic Steiner triple systems of order 
n = 1, 3 (mod 6) goes to infinity with n. The lower bound obtained in this 
proof shows that there exists at least two nonisomorphic cyclic Steiner 
triple systems for all orders n--1, 3 (mod 6), n>481. 

2. Regular Steiner Triple Systems 
The following theorem gives an equivalent representation of regular 

STSs as commutative IP right neofields of even orders. 

Theorem 2.1. A regular Steiner triple system < J,~, G) of order n =- 1, 3 
(rood 6) is equivalent to a commutative IP right neofield N~ (+ ,  .) of order 
v = n + 1 -- 2, 4 (mod 6) with char (Nv) = 2 and N* (') ~- G. 
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Proof Let (~, , ,  G )  be a regular  STS of order  n -  1, 3 (mod 6) where 
J,, = IS, 5p] and G is regular  on S. Let  s be a fixed element  of  S. Then 
S= {(s) glg~G}, and (s)g=(s)h for g, h~G implies that  g=h. Now,  the 
b inary  opera t ion  o in S where x o x = x and x o y = z if x 4= y and {x, y, z} ~ 
for all x, y, zeS, makes  S(o) into an idempoten t  totally symmetr ic  quasi- 
g roup  of order  n [8], with G acting on S(o) as a regular  a u t o m o r p h i s m  
group.  The  quas igroup  S(o), in turn, induces a b inary  opera t ion  o in G as 
follows. Fo r  g, h, k~ G we define g o h -  k in G(o) if and only if (s) g o (s) h - -  
(s)k in S(o). The  m a p p i n g  ~0: (s)g--,g, geG, is a bijection of S onto G 
such that  ~0: (s) g o (s) h = (s) (g o h) ~ g o h, for all g, h e G. Hence  q~ is a quasi- 
g roup  i somorph i sm and G(o) is an idempoten t  total ly symmetr ic  quasi- 
g roup  i somorphic  to S(o). We now adjoin to G a new element 0 to obta in  
the set N v = G w {0} and define a b inary  opera t ion  + on Nv as follows: 

(i) g+h-go  h for all g, heG, g~h, 
(ii) g + g - 0  for all gsG, 

(iii) g+O=O+g-g for all g e N , .  

Then  N ,  ( + )  is a total ly symmetr ic  loop  of order  v = n + 1 with identi ty 
element  0 [-8]. Here  g+h=h+g and ( g + h ) + h = g  for all g, heN~ ,  
whence N v ( + )  is a commutatix;e IP  loop  with x + x = 0  for all x e N ~ ,  
Now,  the compos i t ion  opera t ion  in G induces a mult ipl icat ion �9 in Nv 
given by  

(iv) g .  h - g h  for all g, heG, 
(v) g .  0 = 0 .  g - 0  for all g~N~.  

Now,  for g , h ~ N ~ ,  ( g + 0 ) . h = g - h = g - h + 0 - h ,  ( g + h ) . 0 = 0 =  
g.O+h.O, and (g+g).h=O.h=O=g.h+g.h,  and for g,h, keG, g.l=h, 
we have  

(s)((g + h). k) = ((s)(g o h)) k = ((s) go (s) h) k = (s) g k o (s) h k 

= (s)(gk o hk) = (s)(g. k + h- k), 

or  (g + h). k - -  g .  k + h .  k; hence every element  of  N v ( + ,  .) is right distrib- 
utive. Thus  N v ( + ,  .) is a commuta t ive  IP  right neofield of  order  

, v = n + 1 - 2, 4 (mod 6), char  N~ = 2, and  N~ ( ) = G. 
N o w  let N v ( + ,  .) be a commuta t ive  IP  right neofield of order  

v = n + 1--2 ,  4 (mod 6), which implies tha t  char  N~ = 2. Let  S = N*.  We 
form the set 5 e of  all distinct triples {ax, a2, a3} for which a 1 + a 2 = a 3 and  
a I =[= a 2 + a 3 4 = a I in N*.  N o w  ISI = n = v -  1 --- 1, 3 (mod 6), and 
{al, a2, a3} ~5 ~ if and  only if a(1), + a(2), = a(3), for all pe rmuta t ions  a of  
{ 1, 2, 3}, hence every pair  of  elements  in S occur  together  in precisely one 
triple of  ~ Thus  ~,, = IS, 0 ~ is a Steiner triple system of order  n. Now,  for 
each g e N * ,  the m a p p i n g  Rg: x ~ x .g  for all x e N *  is a bijection on S 
such that  (x + y)- g = x -  g + y .  g, hence Rg maps  triples to triples in 5 ~ and 
1"  
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is thus an a u t o m o r p h i s m  of J,~. The  set G =  {RglgeN*} forms a g roup  
under  compos i t ion  of mappings  which is regular  on S. Since G is the right 
regular  representa t ion of N *  (-), (J , , ,  G)  is a regular  Steiner triple system 
with "" * G = N v  ('). 

In the p roof  of  T h e o r e m  2.1 the addi t ion in the constructed right 
neofields depends on the choice of fixed element seS. It  is na tura l  to ask 
whether  there is any relat ionship a m o n g  the right neofields constructed 
with respect  to different fixed elements. Some informat ion  on this is given 
in the following result. We let Z(G)  denote  the centralizer of  G in the 
total  a u t o m o r p h i s m  group  of 3~,,, Au t  (J,,). 

L e m m a  2.2. Let ( Y,,, G~ be a regular STS of order n and let Nv, 1 ( + ,  .) 
and Nv,2(q) , ") be two right neofields of order v = n + l  obtained from 
( ~ ,  G) according to Theorem 2.1 using fixed elements s 1 and s 2 in S, 
respectively. Then the following statements are equivalent: 

(i) Nv, 1 ( + ,  .) and N~,2(O,  .) are the same right neofield (i.e., + and | 
are identical additions). 

(ii) There exists an c~eZ(G) such that (sl)~= s 2. 

(iii) The element k e G for which (s 1) k = s 2 is left distributive in Nv, 1 ( +, "). 

Proof First  assume (i) that  N , , 2 ( + ,  .) and N~,2(G,  .) are the same 
right neofield. Then a + b = a q) b or  (s2) (a + b) = (s2) (a �9 b) = (s2) a o (s2) b 
for all a, beG, a+b. We define the mapp ing  a on S by ((sl)g)~=(s2)g for 
all geG. Since the elements in {(sOglgeG } and in {(s2)glgeG } are 
distinct and IG[=ISI ,  c~ is well defined and bijective and ( s 0 c t = s  2. Let  
x, yeS,  x=t=y, where x=(sOa and y=(Sl)b, a, beG, a=t=b. Then  

(xo y) e = ((sl) a o (st) b) c~ = ((st)(a + b)) c~ = (s2)(a + b) = (s2) a o (s2) b 

= ((st) a) s o  ((s 0 b) cr = (x) cto (y) ct, 

whence ~ is an a u t o m o r p h i s m  of ~,,, and since ( s l )ga  = (s : )g = (Sl)ag or 
g a = a g for all g e G, we have a e Z (G), which proves  (ii). Next  assume (ii) 
that  there exists an a e Z (G) such that  (st)ct = s 2. Let  k e G be the element 
such that  (s 0 k = s 2 = (Sl) a. Then  for all g, he  G, g =I= h, 

(S 1 )(k" (g + h)) = (s I ) 0~ (g + h)---- (s 1)(g + h) ~ = ((s 1) g o (s I ) h) 0~ 

= (sl) g o~ o (st)h ct = (sl)a g o (sl) ct h 

----- (S1)k g o (S1) ]s h = (st)(k. g+ k.  h) 

o r k . ( g + h ) = k . g + k . h .  Further ,  k . ( g + 0 ) = k . ( 0 + g ) = k . g = k . g + k . 0  
= k .  0 + k  .g  and k.  (g+g)=k .  0 = 0 = k -  g + k  .g for all geG w {0}. Hence  
k is left distr ibutive in No. 1 ( + ,  "), and we have (iii). Finally, assume (iii) 
that  the element k e G for which (Sl) k = s 2 is left distr ibutive in Nv, ~ ( + ,  .). 
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Then for any g, heG, g@h, 

(s2) (g + h) = (sl) k (g + h) = (s 1) (k. g + k- h) -- (s 1 ) k g o (s 1 ) k h 

= (s2) g o (s2) h = (s2)(g (9 h) 

or g + h = g O h .  Further, g + O = O + g = g = g @ O = O |  and g + g = 0 =  
g@g for all g e G u  {0}. Hence the additions in No,1 (+ ,  ") and ]Nv,2(@ , .) 
are identical, which proves (i). This completes the proof of the lemma. 

Corollary 2.3. Let (J, , ,  G) be a regular STS of order n and let 
Nv( + ,  ") be a right neofield of order v = n + l  obtained from (J,,, G} 
according to Theorem2.1. Then No(+  , .) is a neofield if and only if Z(G) 
is transitive on S. Furthermore, if (J,,, G) yields a neofield with respect to 
some seS, according to Theorem 2.1, then it yields the same neofield with 
respect to every soS. 

Proof If N~(+ ,  ") is a neofield then every k e g  is left distributive in 
N~ (+ ,  �9 ). Since G is transitive on S there exists for every s 2 ~ S and e e Z (G) 
such that ( s l ) a=s  2, by Lemma2.2 (ii), hence Z(G) is transitive on S. 
Conversely, suppose that Z (G) is transitive on S. Then, by Lemma 2.2 (iii), 
the unique element ke G for which (sl) k = s z is left distributive in N~(+,  -), 
for every s2eS. Since this includes all elements of G and 0 is always left 
distributive in No(+ ,  "), this says that No(+ ,  ") is a neofield. Now 
suppose that ( ~ , ,  G) yields a neofield with respect to some seS. Then for 
each szeS  the element keG such that ( s )k=s  2 is left distributive in 
N~(+ ,  .), whence by Lemma 2.2 (i) the neofield N , ( |  ") obtained from 
(J, , ,  G} using the fixed element s z is the same neofield as the one obtained 
using the fixed element s. Hence (~,,, G) yields the same neofield with 
respect to every seS. 

Corollary 2.4. An abelian (cyclic) STS (J,,,  G) of order n -  1, 3 (mod 6) 
is equivalent to a unique commutative AIP (CIP) neofield N o ( + , - )  of  
order v = n + 1 ~- 2, 4 (mod 6) with char N o = 2 and N* (') ~- G. 

We shall call a regular STS (Y,,, G} Z-regular when Z(G) is transitive 
on S. 

Now let (~-~,,I,G1) and ( J , , 2 , G 2 )  be two regular Steiner triple 
systems where 4 , 1  = [-$1, ~1]  and ~'~,, 2 = [$2, 5P2] �9 We say that (~-~,, 1, G1) 
and ( ~ , 2 ,  G2} are permutation isomorphic, written (Y-~,,1,G1)~ 
(~nn, 2, G2), if there is an isomorphism z of Y,,1 onto J,,,2 (mapping 
elements to elements and preserving triples) and a group isomorphism 7 
of G 1 onto G 2 such that (x) g = y in ( J , ,  1, G1 } if and only if((x) ~)((g)7) = (Y) 
in (9-~,2, Gz)  for x, y e s  1 and geG 1. Clearly, permutation isomorphism 
is an equivalence relation on regular Steiner triple systems. 

Lemma 2.5. Let (Y,,, G) be a regular STS of order n and let N~(+,  .) 
be a corresponding right neofield of order v = n + 1 as given by Theorem 2.1. 
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Let N + be the STS determined by the nonzero elements in N~ (+) and let Nc 
be the right regular representation of G ~ N* ('). Then ( J,,, G) ~- ( N +, NG ). 

Proof Let ~ be the isomorphism from J,, onto N + given by ~: t ~ g 
where (s)g = t in Y-~,,, s the fixed element of S. Let 7 be the isomorphism 
of G onto NG given by 7: g--+Rg where Rg: u ~ u . g  for all ueG=N +. 
Then (x) g = y in J,, if and only if (s) ~ g = (s) tl where x = (s) 4, Y = (s) t/, and 
4, ~/~ G, if and only if 4" g = q in G = N + if and only if ((x) ~)((g) ?) = (4) Rg = 
~. g = t /=  (y) 1: for x, y~Y,, and g~ G. Thus (Y,,, G) ~ (N~ +, ~ ) .  

Theorem 2.6. Let (J,,,1, G1) and (J,,,2, G2) be two Z-regular Steiner 
triple systems of order n and let N~,I (+ ,  ") and N~,2(| (D) be the corre- 
sponding neofields of order v = n + l  as given by Theorem2.1. Then 
(Jn,1, al ) '~  (Jn,2, G2) if and only if]My,l(-[- , " ) ~ N , , 2 ( @ ,  @). 

ProofLet(J,,,1, G1) ~- (~-n,,2, G2) and le tN~, l (+ ,  . )and N~,2(O, @)be 
the respective corresponding neofields. Then by Lemma 2.5 (N,,+I, Na , )  --- 
(N~+2, Na~), whence there exists an isomorphism z: N~+I ~ N~,+2 and an 
isomorphism 7: N a ~ N a ~  such that (x)Rg=y in N~,+I if and only if 
((x) r)((Rg)7)= (y)z in Nv,+2, Now, ? induces an isomorphism 

(p: N~,I( )-- .N,,2(@ ) where(g)qo=h 

exactly when (Rg)~=Rh(=R(g)o). Thus (x)Rg=y in N~,+~ if and only if 
((x) z) R(g)o = (y) z or ((x) z)@ (g) p = (y) z. In particular, (1) ~ @ (g) (0 = (g) z. 
We now extend q) to the mapping 

)'(x) ~o, x4=O 
~" x--'  (0, x = 0  

from N~, 1 ~ N~, 2- Since 

(o. x) ,~ = (x.  o) ,~ = (o) ,~ = o = (o) ,~ (3 (x) �9 = (x) ~,(3 (o) ~ ,  

is an isomorphism from ]Nv, l(" ) onto N~,2(Q ). Now, we have 

(x + 0) �9 = (0 + x) �9 = (x) �9 = (x) �9 G (0) �9 = (0) �9 | (x) 
and 

(x + x) 4~ = (0) �9 = 0 = (x) �9 | (x) ~ .  

Also, for 04=x4=y4=O, 

(1) ~ o ( ( x  + y)~o)= (x + y)~ =(x)~  |  

= [(1) z O (x) qo] �9 [(1) ~ O (Y) (P] = (1) z O [(x) ~o �9 (Y) ~o] ; 

whence, since (1)~4=0, (x+y)~o=(x)(p| or (x+y)~b=(x)4)O(y)rb. 
Thus @ is also an isomorphism of Nv, l ( + )  onto Nv,2(O ). Thus 4~ is a 
neofield isomorphism, which yields N~, 1 ( + ,  ") ~ N~, 2 (O, O). 
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Now suppose that No, 1 (+ ,  ") ~ No, 2 (O, (3) under the isomorphism ~. 
We define the mappings ~: Nv+l ~ No+2 and 7: Nal -~ N~2 by (x) z = (x) ~b 

. for all x=t=0 in No, 1 and (Rg)7=R(g),~ for all geNo, 1. Clearly z and 7 are 
bijective. Then for 0 :t: x ~ y :t = 0, 

(x  + y)  ~ = (x  + y)  �9 = (x)  ,p | (y) ,p = (x)  T @.(y) ~, 

and for * g, h~No, a, 

(Rg Rh) '); = (Rgh)  ~; = R(gh)r = R(g) ~ | (h)tl~ = R(g)~  R(h )r  = (Rg)  ~; (Rh) ~; 

whence z is an isomorphism from the STS Nv+l o n t o  the STS Nv+2 and 7 is 
an isomorphism of the right regular representation Nal of N*,I (') onto 
the right regular representation N ~  of * Nv,2(@ ). Further, (X)Rg=y in 
No+l if and only if x .  g = y in G 1 = No+l if and only if (x) �9 (3 (g) �9 = (y) �9 ff 
and only if 

( (x )  z ) ( g g )  ~ = ((x) z) Rtg)e = (y) z in G 2 = No+2 . 

Hence (Nv+1,~,~,)~(Sv+2,,~62) and, by Lemma2.5, (~-~,,1, G1)~ 
(~-',,, z, G27" 

We now consider an STS J ,  which has two regular automorphism 
groups which are isomorphic. 

Theorem 2.7. Let ~ be a regular Steiner triple system with respect to 
two isomorphic regular automorphism groups Ga and G2. Then ( J , ,  G1) 
(9-~, G2) / f  and only if a I and G 2 are conjugate in Aut (J,). 

Proof Let (Js  G1)~(~-~,, G2) where z is the automorphism of ~nn 
and 7 is the isomorphism from G 1 onto G 2 for which (x )g=y  in (~-~,, G1) 
if and only if ((x) z) ((g) 7) = (Y)'C in (~-~,, G2). This means that 

((x)  ~)(~-1 g z)  = (y) ~ = ((~) ~)((g) ~) 

for all xeS  and all geG~, or (g)7=z- lgz~G2 for all g~G~, and since 
] G I [ =  [G 2 [, G 1 and G 2 a re  conjugate in Aut (~-~.). Conversely, suppose that 
G 1 and G 2 are  conjugate in Aut (~-~.) where z-1 G1 z =  G2 ' z eAut  (J~). Then 
(x )g=y  in ( ~ ,  G1) ffand only if 

(y) ~ = ((x) g) ~ = ((x) ~)(~-1 g ~) = ((x) ~)((g) ~) 

in ( ~ ,  G2)  for all g~G~, where 7: g ~ z - ~ g  ~, g~G~, is an isomorphism 
from G 1 onto G 2 . Hence (~ , ,  G1) -~ (~J~,, G2)  , which proves the theorem. 

Corollary 2.8. Let ~ be a Z-regular STS with respect to two isomorphic 
regular automorphism groups G 1 and G2 and let ]No, 1 ( +, ") and ]No, 2 (~ ,  (3) 
be the corresponding neofields obtained according to Theorem 2.l from 
( ~ ,  G1) and ( ~ ,  G2) , respectively. Then ]N~,I(+, ")=~]No,2((~, Q)) i f  
and only if G 1 and G 2 are conjugate in Aut (~-'~). 
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Proof By Theorem2.6, No, I ( + ,  - )~No,2(O,  @) if and only if 
( J , ,  al)_-__~J ., G2), and by Theorem2.7 (~d-~,, G1) -~-~ ,  , G2) if and 
only if G1 and G 2 are conjugate in Aut (~) .  Hence we have the corollary. 

We shall be using Corollary 2.8 to obtain lower bounds for the 
number of nonisomorphic cyclic Steiner triple systems of order n. 

3. Construction of AIP Neofields from AlP Neofields 

In [12] we gave a construction of CIP neofields from finite fields. 
This construction is, in fact, much more general and can be used to 
obtain further AIP neofields from given finite AIP neofields. Since this 
construction generalizes with no essential change we give here just a 
description of the construction and the statements of the corresponding 
results obtained. 

Let Nv(+ ,  .) be a neofield of order v. We write the set of elements of 
the neofield as No=  {0, 1, al, a 2 . . . . .  ao_2} where the multiplication of 
these elements is given explicitly, either in terms of generators or of a 
multiplication table. Then the addition in N o (+ ,  .) is completely deter- 
mined by the function T(x) -1  +x, x e N  o, since 0 + x = x  for all x ~ N  o 
and y + z = y ( l + y - l z ) = y . T ( y - l z )  for all y , z ~ N  o, y:~0. Such an 
expression of N o (+ ,  ") in terms of the set N o with explicitly given multi- 
plication and the function T on N o is called a presentation of the neofield 
and T is called its presentation function. A neofield is completely deter- 
mined algebraically by its presentation, which may be given in terms of 
the first two rows of its addition table. As was seen in [12], a neofield 
may have more than one presentation. The different presentations in 
fact correspond to the different definitions of addition on the set N o . 

Let No(+ ,  .) be an AIP neofield of order v > 10 (all AIP neofields of 
orders v < 9 are fields), with presentation given by 

No=  {0, 1, al, a2 . . . . .  ao_2} 

and the presentation function T(x)= 1 + x for all x ~ N  o. We define the 
functions T' and T o on Nv by 

and 
T ' ( x ) - ( - 1 ) + x ,  

fT(x), 
to(X)- 

and define a new addition | on N o by 

xeNo, (3.1) 

x = 0 ,  -- 1 (3.2) 
otherwise, 

Y; 
x@Y=-{xTo(x-ly); x, yeNo, 

y ~ N  o, x = 0  
(3.3) 

x:t:0. 
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It is s t raightforward to verify that  Nv(@, .) is an AIP  neofield of order  v 
which is i somorphic  to Nv ( + ,  �9 ) under  the mapping 0 ~ 0, x ~ x -  1 for all 
x 4=0 in N~. We let the corresponding presentat ion of N o ( G ,  .) be given 
by N~ = {0, 1, a 1, az, . . . ,  G -  2} and the presentat ion function T o (x) = 1 | x, 
x E N , .  We now state the results which give the construct ion of further 
AIP  neofields. The proofs of all except one of these results are identical 
to those in w 3 of [12] and will not  be repeated. These proofs carry over 
because the full associativity of addit ion which occurs in the fields is 
really not  needed. 

L e m m a  3.1. For all x E N  o, ( r '  To) 3 (x)= X. 

The following lemma is the only result here whose proof  varies from 
that  in [12]. 

Lemma3 .2 .  We have T 'To(x )=x  (i.e., T(x)=To(x)) in the set N v 
precisely when 

1) x = 0 ,  - 1 .  (This includes 1 = - 1  when v is even.) 

2) (1 + x) + x 2 = 1 + (x + x 2) = 0, which implies x 3 = 1 ; x 4: O, - 1. 

Proof 1) is obvious. When  x @ 0, - 1 we have T'  T o (x) = x if and only if 
1 + (x + x 2) = (1 + x) + x 2 = 0. This equat ion implies x 3 = - (x + x 2 ) = 1. 

Corollary 3.3. Let S= {xENvl(T'  To)(X)4: x}. Then S is partitioned into 
triples {y, T' T o (y), (T'  To) 2 (y)}, whence I SI = 0 (mod 3). 

We now assume that  Nv ([~, -) is an abelian neofield of order  v with 
presentat ion given by N~={0 ,  1, a 1, a 2 . . . .  , G -2}  and the presentat ion 
function T, (x) - 1 [~x satisfying 

(i) T, Jg T and T, ~ T o on No, 

(ii) for each xENo,  either T , ( x ) =  T(x) or T , ( x ) =  To(x ). 

L e m m a  3.4. The function T, is bijective on N o, and for all x, yEN~, 
satisfies 

1) T , ( x ) *  x, 

2) xT,(y)4:  T , (xy)  for x + l. 

Furthermore, N~([~) is commutative if and only if 
3) x T, (x -  1) = T, (x) for all x @ 0 in N , .  

For  yeS,  S={xEN~IT'To(x)=t=x}, we define the orbit o f y  to be the 
set 0 (y)={y ,  r'To(y),(r'To)2(y)}. A simple computa t ion  shows that  
0 (y) = { y, - ( r  (y) ) -  1, _ (TO (y))_l  }. 

L e m m a  3.5. I f  T, agrees with T ( o r  To) at yeS,  then T, agrees with T 
(or To) on 0(y). 

Lemma3 .6 .  Suppose N~([~) is commutative. I f  T, agrees with T 
(or To) at yeS,  then T, agrees with T (or To) on O(y)uO(y-1). Thus, the 
orbits in S are paired except when 1ES. In the latter case 0(1) is paired 
with itself. 
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Lemma 3.7. I f  N~([]) is commutative, then Nv(~q) is an IP neofield. 

The above gives us enough information to construct AIP neofields 
No([~, .) for v>10 according to (i) and (ii) whenever No(+,  .) and 
N o (| .) have distinct presentations. 

Theorem 3.8. Let No (+, ") and No(G, .), N v = {0, 1, al, a 2 . . . .  ' a o - 2 }  

be two copies of a finite AIP neofield of order v>10 with presentation 
functions T and T o, respectively, where T o is related to T by 

T O (x) = ~ T(x), x = 0, - 1 (3.4) 
[x(T(x))  -1, x*O, - 1. 

Let T, be any mapping on N v satisfying 

a) T, ~- T and T, ~- T o on N o, 

b) for each xaNv,  either T, (x)= T(x) or T, (x)= T o (x), 

c) if T, agrees with r (or To) at xeS,  then T, agrees with r (or To) on 
O(x)uO(x-'). 

Then T, is the presentation function for an AIP neofield N~(~,  ") 
whose multiplication is identical to that of N~(+,  -) and N~(G, "). 

Theorem 3.8 constructs new presentations of AlP neofields whenever 
there exists an AIP neofield No(+,  .) for which S has at least two orbits. 
This rules out v= 10. More specially, this rules out No(+,  .) whenever 
T ' T  o (x)= x for all xeNo. By Lemma 3.2 this only occurs when T(x)= x 2 
a n d x 3 = l f o r e v e r y x + 0 ,  l i n N v ,  which means that for v >10, N ~ ( )  
is an elementary abelian 3-group and INol =3~+ 1, c~>2. AIP neofields 
of this type have been obtained by Paige [14]. 

4. CIP Neofields 

The following result was proved in [12], where ~b is Euler's phi- 
function. 

Lemma 4.1. A cyclic neofield Nv(+,  .), Nv= {0, 1, a, a 2, ..., a v-z} of 
order v > 1 has at most (o(v - 1) different presentations based on the set N~. 

Doner [9] has recently completed the determination of the orders for 
which CIP neofields exist. They exist precisely for all orders v > 2 satisfy- 
ing v ~ 0, 6, 12, 15, 18, 21 (mod 24) and v 4:10. The restriction v $ 0, 6, 12, 18 
(mod 24) was obtained previously by Hughes [11] and the existence for 
v-=2,4 (mod6), v#10, was essentially shown earlier (if we invoke 
Corollary 2.4) by Peltesohn [15]. Thus, for every admissible order v we 
can apply the construction theorem of the preceding section to obtain 
further CIP neofields. We now obtain some information about the 
number of nonisomorphic CIP neofields constructed by Theorem 3.8. 
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For this the following refinement of Lemma 3.2 for CIP neofields is 
needed. The proof is straightforward and will be omitted. Note that if 

* ~ N v ( ) is cyclic and x 3 = 1 for some xeN*,  x +  1, then N* (') has a unique 
subgroup of order 3 {1, ~, ~2} where ~ is a primitive cube root of unity. 

Lemma 4.2. When N~(+,  ") and Nv(O, ") are CIP neofields we have 
T' T o (x) = x in the set N~ precisely when 

1) v = 1 (mod 6) and x=0 ,  - 1, ~, ~2 Here 0(1)= {i, - 2 ,  -2 -1} .  

2) v - 2  (mod 6) and x=0 ,  - 1 (=  1). Here 

char N ,  ( + ) = char N~ (O) = 2. 

3) v - 3  (mod 6) and x=0 ,  - 1 ,  1. Here char N~(+)=cha rNv(@)=3 .  

4) v - 4  (mod 6) and x=0 ,  - 1  (= 1), ~, ~2. Here 

char Nv (+)  = char N~ (| = 2. 

5) v---5 (mod 6) and x=0 ,  - 1 .  Here 0(1)= {1, - 2 ,  -2 -1} .  

Theorem 4.3. The number of  nonisomorphic CIP neofietds of order v 
constructed by Theorem 3.8 goes to infinity with v. 

Proof In the construction of Theorem 3.8, let u denote the number 
of elements x such that T ' T  o (x)4= x and xr  0(1) if 0(1) exists. Then u/6 is 
the number of orbit pairs 0 (x) w 0 (x-1) on which a choice of either T or T o 
can be made. If 0 (1) exists then the total number of neofield presentations 
constructed, including the original two, is 2 (u/6)+1 and if 0(1) does not 
exist this number is 2 u/6. Now, in the cyclic group N* (') there are at most 
two elements of order 3; hence, by Lemma 4.2, the value of u is at least 
v - 4 - 3 = v - 7  if 0(1) exists and v - 4  if 0(1) does not exist, whence the 
resulting number of CI P neofield presentations obtained by Theorem 3.8 
is at least 2 w-4)/6, including the original two. Now, by Lemma4.1, a 
given CIP neofield of order v can occur among these presentations at 
most ~b(v- 1) times, hence the construction yields at least 

2(v-4)/6 2(v-4)/6 

~b(v- 1) ~> v - 1  

nonisomorphic CIP neofields of order v. Since 

2(v- 4)/6 
lim - - -  oc, 

we have the theorem. 
Now, by Lemma 4.2 and the proof of Theorem 4.3, the number of non- 

2 ( v - -  r)/6 
isomorphic CIP neofields constructed by Theorem 3.8 is at least - -  

qS(v- 1) 
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when v - r  (rood 6), r = -  i, 1, 2, 3, 4. This value is greater than 1 for 
all admissible orders v > 19 except v = 20, 22, 26, and 28, and hence there 
exist at least two nonisomorphic CIP  neofields for these orders. Further, 
from the results in [12] there are at least two nonisom0rphic CIP neo- 
fields for all admissible orders 11 < v <  19 except v =  14 where only one 
exists, and from the work of Bays [1, 2, 5] we see by Corollary 2.4 that 
the number  of nonisomorphic CIP neofields of orders n=20,22 ,26 ,  
and 28 is at least two. Hence, for all admissible orders v > 11 except v = 14 
there exists at least two nonisomorphic CIP neofields of order v. 

5. Cyclic Steiner Triple Systems 
Let J ,  = IS, 90] be an STS of order n = v - 1 where 2 ~ -  1 < n < 2 "+ 1 

and so c~ < log 2 v < c~ + 1. We want to determine how small the number  
of elements of S which generate ~ can be. Now, two elements generate 
a ~ and three elements not in a triple generate at least a ~ .  in general, 
a ~ =  [S,,, 5Pm] with an element x r  m generate at least a Jzm+l, since 
the third element z in the triples {a, x, z}, a~S,,, must be distinct and lie 
outside of Smw {x}, thus yielding an extension of ~m having at least 
2 m + l  elements. By induction, then, there exists for each integer /~ 
satisfying 3 < 2 # - 1 < n a set of at most/~ elements of S which generate at 
least a ~ _  1. 

Lemma 5.1. Let ~ = IS, 5~] be an STS of order n where 2 ~ -  1 <= 
n < 2  ~+1 - 1 ,  ~__%2 an integer. Then there exists a set of at most ~ elements 
of S which generate ~ .  

Proof There exists a set of at most ~ elements of S which generate a 
Jm = [Sin, 5~m] with 2~--1 <_m<n. If m <n there exists an x ~ S - S  m such 
that ~ and x generate at least a ~m+~ in ~ where 2 m +  1 > 2  ~+~ - 1 >n,  
a contradiction. Hence m = n and we have the lemma. 

Now let ~ be a cyclic STS. Suppose we obtain an upper bound for 
the total number of distinct cyclic regular automorphism groups of ~-~,. 
This will be an upper bound for the maximum number of cyclic regular 
automorphism groups of J ,  which are pairwise nonconjugate in Aut(J,,), 
whence an upper bound for the number  of nonisomorphic CIP neofields 
of order v = n + l  with a given additive loop N~(+),  by Corollary2.8. 
Now, a generator for a cyclic regular automorphism group of ~ is 
completely determined by its action on a set of at most c~ generating 
elements of ~-~,. Since no generating element of ~ can be mapped to 
itself by a generator, there are no more than 

( n -  1 ) (n -  1 ) (n-2)  ... ( n - a +  1 ) = ( v - 2 ) ( v - 2 ) ( v - 3 ) . . .  ( v - c  0 (5.1) 
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genera tors  altogether.  The  n u m b e r  of  different generators  for a cyclic 
g roup  of order  n is ~b (n), hence there are no m o r e  than  

( n -  1 ) ( n -  1 ) ( n - 2 )  ... ( n - a +  1) ( v - 2 ) ( v - 2 ) ( v - 3 )  ... ( v - e )  
- -  - = v  o ( 5 . 2 )  

~b (n) q5 (v - 1) 

different cyclic regular a u t o m o r p h i s m  groups  on J,,. Now,  the n u m b e r  of  
non i somorph ic  C I P  neofields of  order  v - 2 ,  4 (rood 6) constructed by 

2(o-4)/6 
T h e o r e m  3.8 is, by the p roof  of T h e o r e m  4.3, at least qS(v-1~" Since 

there are no more  than  v o non i somorph ic  C I P  neofields of  order  v with 
a given addit ive loop,  there are at  least 

2(o- 4)/6 2(0 - 4)/6 

qS(V-- 1)'Vo -- (V--2)(V--2)(V--3) ... (V--e) 
(5.3) 

20/6 20/6 
> 2 -  2/3. > 2 -  2/3. _ _  

UC~ ~)log2 0 

distinct C I P  neofields of  order  v = 2 , 4  (mod6)  with non i somorph ic  
addit ive loops N ~ ( +  ). Let  

2v/6 20/6 
2 w (5.4) 

v l o g 2 v -  2( logzv )2  - -  

where 

w = (log2 v) 2 6 (log2 V)2 1 . (5.5) 

N o w  (log 2 v) 2 ~ oo and  
(log2v) 2 

m as v---, ~ ,  whence 

2v/6 
l im /)log2v - -  l im2W= co. (5.6) 
o--* co o ~ o o  

Since C I P  neofields exist and  the cons t ruc t ion  of further C I P  neofields 
by T h e o r e m  3.8 can be carried out  for all orders  v=2, 4 (mod 6), v >  10, 
we have  the following result. 

Theorem 5.1. The number of nonisomorphic cyclic Steiner triple systems 
of  order n = v - 1 ~ 1, 3 (mod 6) goes to infinity with n. 

This result was previously known  for the subclass of  p r ime orders  
n -  1 (mod 6) [3, 133. 

We note  that  for all v-=2, 4 (mod 6), v>482 ,  the expression on the 
right side of  (5.3) is greater  than  1, which shows that  for all n -  1, 3 (mod 6), 
n_>_481, there exist at least two non i somorph ic  cyclic Steiner triple 
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systems of order n. This result was previously known for all n = 2 " -  1 > 15 
[12] and for a number of low values of n [1-7], as well as for all prime 
n = 6 k + l > 1 9  [3, 13]. 
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