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The class S of functions g(z) = z + c  2 z 2 + c  3 z 3 + ... analytic and univalent in the 
unit disk Izr < 1 has been thoroughly studied, and its properties are well known. 
Our purpose is to investigate another class of functions which, by contrast, 
seems to have been rather neglected. This is the class S o of functions f ( z ) = 1  
+ a 1 z + a  2 z Z + . . ,  analytic, univalent, and nonvanishing in the unit disk, norma- 
lized by the condition f(0) = 1. It will become apparent that S O is closely related 
to the more familiar class S and is in some ways easier to handle. 

After making a few preliminary observations, we adapt the elementary 
method of Brickman [23 to obtain information about the extreme points and 
support points of S o. We then use Schiffer's method of boundary variation to 
consider a wide class of extremal problems and to study the support points of S o 
in greater depth. Whereas the geometry of the arcs omitted by extreme points 
and support points of S is related to the families of linear rays and circles 
centered at the origin, it turns out that the corresponding geometry for S o is 
related to the families of ellipses and hyperbolas with loci at 0 and 1. The paper 
concludes with a detailed study of the specific linear extremal problem 
rain Re{f(~)}, which provides an interesting family of support points in S 0. 

w Elementary Observations 

Although S o is a normal family, it is not compact. The constant function f ( z ) ~  1 
may occur as the uniform limit of functions in So. For  example, the functions 
h~(z) = 1 + ~ z are in S O for 0 < Ic~t < 1, and h~ (z)~ 1 uniformly as ~ ~0.  However, the 
enlarged family So=Sou{1  } is normal and compact, and so every real-valued 
continuous functional attains a maximum on S o. As usual, "continuous" refers 
to the topology of uniform convergence on compact subsets of the disk. 

An important function in S O is 

( l + z ]  2 
k~ = \ i - - - z ]  = 1 + 4 ~ n z", 

n = l  
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which maps the disk onto the complement of the nonpositive real axis. It plays a 
role in S o analogous to that of the Koebe function 

Z ~ n z  n 
k(z) = (1 - z) 2 .= 1 

in S. Among other things, it suggests the conjecture that the coefficients of each 
function 

f ( z ) = l  +a i z +a zz  2+. . .  

in S O satisfy La, l<4n  for all n. Another form of the conjecture, apparently 
stronger, is that ]a,L < lall n for all n. 

We shall now show that the first of these conjectures is equivalent to the 
Littlewood conjecture for the class S, and the second is equivalent to the 
Bieberbach conjecture. Littlewood's conjecture asserts that if 

g(z) : Z -~  C 2 Z 2 -~ C 3 Z 3 -~ . . .  

belongs to S and g(z)4=oJ, then [c,I <41o~1 n. Bieberbach's conjecture says that for 
each g~S, ]c,[<n for all n. By the Koebe one-quarter theorem, Bieberbach's 
conjecture implies Littlewood's. (See [6] for a fuller discussion.) 

Given f ~S o, construct 

g ( z ) :  f ( z ) - i  : z +  ~ -a" z". 
a 1 n = 2 a l  

Then geS, and Bieberbach's conjecture would imply la,I < lall n. Since f(z)  =~0, it 
follows that g(z)+ - 1 / a l ,  and so the Koebe one-quarter theorem gives fall <4. 
Thus the inequality 1a,1 < ]all n would imply [a,[ <4n.  The latter inequality would 
also follow directly from Littlewood's conjecture, since g(z) + - 1/a 1. 

Conversely, given geS with g(z)~=co, let 

f ( z ) :  g (z ) -~  l _ l ( z  +c2z2 +...). 
- -09  09 

Then f~So,  and the inequality la,]<4n would imply Littlewood's conjecture 
Lc,I <41col n; while the inequality ]a,I < la~[ n would imply Bieberbach's conjecture 
]c ,l < n. 

Since the Bieberbach conjecture has been proved for n<6,  the preceding 
argument shows for each f e S  o that [a,l<lalln for n<6.  For higher n, the 
FitzGerald-Horowitz estimate [9, 15] gives 

[a,] < 1.07 fall n. 

It also follows from well-known results for S that LaJ<la~ln if f has real 
coefficients, or if its range is starlike. 

The class S o is invariant under the rotation f---,fo, where fo(Z)=f(e i~ z). The 
problem of maximizing la,l in S O is therefore equivalent to the linear problem of 
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maximizing Re{a,}. A general discussion of linear problems will appear in 
Sect. 5. 

The sharp bounds for If(z)J and If'(z)f at a fixed point z can be found by 
passing from f~S  o to the function g~S defined as above by 

f ( z )  - 1 g(z) - 

f ' ( 0 )  " 

The well-known estimates [12, p. 4] for [g(z)[ and lg'(z)l give 

F r 

(1 + r) 2 If'(0)l < If(z) - 1[< (T2r_ r)a [f'(0)l 

and 

1 - r  < l + r  , 
[f'(0)l < If'(z)l = ,~-~ ,a - I f  (0), (1 F) 3 + t t - r y  

for each f~S  o, where r =  lzl. Since If'(0)l <4,  these inequalities lead to the sharp 
bounds 

(1-rt2 
1 + r ] < [f (z) l  < \ 1~ - - -  r ] 

and 

l + r  
0 < [if(z)] < 4 (1 - r) 3" 

The lower bound for If(z)] results from the obvious fact that 1/f~So whenever 
f~So. The functions 1 + ~ z  show that 0 is the sharp lower bound for If'(z)l. 

In fact, it is easily seen that every g~S is the image of some f~S  o under the 
transformation above. This remark allows other known results for the class S to 
be translated to S o. For  example, the rotation theorem [10, p. 115] for S gives 
the sharp estimates for arg{f'(z)/f'(O)}; and for each fixed z the region of values 
of 

1o f f ( z ) -  1) gt ;' S So, 

is a circular disk (see [19, p. 196] or [8]). 
For  the integral means 

1 2n 
Ip(r,f)=2-~ ! lf(rei~ , - o o < p < o o ,  

the method of Baernstein [1] shows that Ip(r,f)<=Ip(r, Ico) for all f~S  o and for all 
r < l .  
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w Extreme Points and Support Points 

A function f ~ S  o is called an extreme point of S O if it has no representation of the 
form 

f = t f l + ( 1 - - t ) f 2 ,  0 < t < l ,  (1) 

as a proper convex combination of two distinct functions f l  and f2 in S 0. A 
support point of S o is a function f ~ S  o which maximizes Re{L} for some 
complex-valued functional L which is continuous and linear over the space of all 
analytic functions in the disk, and which is not constant on S o . 

Brickman [2] and Brickman and Wilken [3] showed in an elementary 
fashion that the extreme points and support points of S map the disk onto the 
complement of an arc which goes to infinity with increasing modulus; that is, 
monotonically with respect to the family of circles centered at the origin. (See 
also [7].) We shall now adapt their method to prove a theorem which gives 
corresponding results for S o . 

Theorem 1. I f  a function f ~S o omits two values on the same (possibly degenerate) 
ellipse with foci at 0 and 1, then it is a proper convex combination of two distinct 
functions in S o which omit nonempty open sets. 

Proof Suppose f~So,  f(z)  ~ ~, and f (z)  ~ fi, where a + ft. Let D be the range of f 
Since D is simply connected, some branch of the function 

4'(w) = {(w- ~) ( w -  fl)) 1/2 

is analytic and single-valued in D. We claim that the two functions w + 4'(w) are 
univalent in D and have disjoint ranges. Indeed, if 

4'(W1)~---4'(W2)= ~---(W l-w2) 

for some pair of points w 1 and w 2 in D, we could square both sides to obtain 

+ 2 4' (w , )  4'(w 2) = (w l  - ~ ) ( w l  - fl) + (w2 - ~ ) (w2  - / ~ )  - (wl  - w 2) 2. 

Squaring again, we could then deduce (after a lengthy calculation) that 

(~_ fl)2 (w l  - w2) 2 = 0, 

which implies that w l = w  2. This shows that w+_O(w) are univalent in D and 
have disjoint ranges; in particular, both functions omit open sets. 

We now normalize these functions by defining 

w + 4 ' (w) -  4'(0). w -  4'(w) + 4'(0) 
4'1(w)= 1+4 ' (1)-4 ' (0)  ' 4'2(w)= 1-4 ' (1 )+4 ' (0 )"  

Then 4'1(0)=4'2(0)=0 and 4'1(1)=4'2(1)=1. The composite functions f l  =4'1 of  
and f 2 = 4 ' 2 o f  therefore belong to S o and omit nonempty open sets. A simple 
calculation shows 

f = t f l  +(1--t)f2,  
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where 

t =�89 + 4,(1)- 4,(0)]. 

A final calculation (cf. [21, p. 69]) shows that 0 < t < 1 if c~ and fl lie on the same 
ellipse with foci at 0 and 1. This is easy to show if ~ and fl lie on the open real 
segment joining 0 and 1 (a degenerate ellipse). Thus the omitted set of an 
extreme point is an arc with endpoints 0 and ~ .  

Corollary. I f  f s S  o is an extreme point or a support point of So, then it maps the 
disk onto the complement of a continuous arc extending from 0 to o~ monotonically 
with respect to the family of ellipses with common foci at 0 and 1; that is, 
intersecting each such ellipse exactly once. In particular, 0 is an endpoint of the 
arc. 

Proof I f f e S  0 omits two distinct points on the same ellipse with loci at 0 and 1, 
the theorem tells us it must have the form (1), where f l  and fz belong to S O and 
omit open sets. This shows that f is not an extreme point of S o. 

In order to show that f is not a support point, we appeal to the fact that 
every support point has dense range. This can be proved by adapting an 
elementary argument due to Marty (see [21], p. 90), but it will follow also from 
the results of Sect.4, which will be derived by a variational method. In 
particular, neither f l  nor f2 is a support point, since both functions omit open 
sets. Therefore, if f were to maximize the real part of some continuous linear 
functional L, it would follow that 

Re {L(f)} = t Re {L(f0} + (1 - t) Re {L(f2) } < Re {L(f)}. 

This contradiction shows that f is not a support point. 
We remark that the proof extends easily to (real-valued) convex functionals. 

w Extremal Problems and Elementary Transformations 

Let ~b be a continuous complex-valued functional on the compact set S 0 
=S0~{1 }. In this section and the next we shall consider the problem of finding 
the maximum of Re {~b} over S o. 

Since qi is continuous and S O is compact, there exists a function f eS o  where 
Re{qS} attains its maximum. I f f  is the constant function 1, nothing more can be 
said. We shall assume from now on that f belongs to S o. 

We shall also assume that the functional q5 has a Frdchet differential at f 
This is a continuous linear functional ( ( - ; f )  on the space of all analytic 
functions in the disk such that 

~ ( f * ) = ~ ( f ) + e f ( h ; f ) + o ( e ) ,  ~ ~ 0 ,  

whenever f *  = f +  e h + o(e) belongs to S 0. Since Re {q~(f*)} < Re {q~(f)}, we may 
obtain information about f by constructing comparison functions f *  within the 
family S O . 
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Some information comes from the various elementary transformations which 
preserve the family S o. Here is a partial list. 

(i) Conjugation. If f~S o and f*(z)=f(~), then f *  ~S o. 

(ii) Contraction. I f f~So ,  then f *  = f o  (peS o for any univalent mapping q) of the 
unit disk into itself with 4o(0)= 0. The following are examples. 

(iia) Rotation. I f f e S  o and f*(z)=f(d~ then f * e S  o for - r c < 0 < r c .  Note that 

f*(z)=f(z)+iOzf'(z)+o(O) as 0 ~ 0 .  

(iib) Dilation. If f eS  o and f*(z) =f(r z), then f *  ~S o for 0 < r < 1. Note that 

f*(z) = f ( z ) -  (1 - r) zf'(z) + o(1 - r) as r -~ 1. 

(iic) Incision. If f eS  o and ~(z)=z(l+e-i~ z, then f*=fo~-lor~c~S o for 
- ~ z < 0 < ~  and 0 < r < l .  Note that 

iO 
e - t - z  

f * ( z )=f ( z ) - ( t - r ) z f ' (Z )e i~_z+O(1-r  ) as r - ~ l .  

(iii) Generalized contraction. I f f ~ S  o and f*(z)=fo q)(z)/focp(O), then f*~S  o for 
any univalent mapping ~o of the unit disk into itself. The most important 
example is as follows. 

(iiia) Marry transformation. If f eS  o and f * ( z ) = f ( ~ t / f ( ~ ) ,  where i~l<l, 
then f *  ES o. Note that \ l  -i- g z i t  

f*(z) =f(z)  + ~[f ' (z)  --f'(O)f(z)] - ~ zZf'(z) + o(~) as ~ • O. 

(iv) Range transformation. If f eS  o, then f*=(bofsS  o for every function 
analytic, univalent, and nonvanishing on the range of f, with ~b(1)= 1. The 
following are examples. 

Ova) Power transformation. If feSo, then f*  =fPsS o for - 1  < p <  1, p4=O. This 
includes inversion: i f f eSo ,  then 1IreS o. Note that 

f* (z )=f (z ) - (1-p) f ( z ) log f ( z )+o(1-p)  as p - + l .  

(ivb) Omitted-value transformations. I f f e S  0 and f(z)+co for some co +0, then the 
functions 

f * = f - c o  and f * -  
f-co 

1 -co  (1 - c o ) f  

and their reciprocals belong to S o . 
From the asymptotic expansions of the transformations (iiabc), (iiia), and 

Ova), one easily obtains some necessary conditions for an extremal function. 
These are collected in the following theorem. The remaining elementary trans- 
formations are valuable for linear problems and will be used later. 
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Theorem 2. Let ~ be a continuous complex-valued functional defined on So, and 
suppose that Re{qb} attains its maximum at f ~ S  o. I f  4 has a Fr&het differential 
d(" ; f )  at f then 

(a) Im{d(z f ' ; f ) }=O;  

(b) Re{d(z f ' ; f ) }  >0;  

(d) d ( f ' ; f )  - f ' ( 0 )  d( f ; f )  = d(zZf ' ; f ) ;  

(e) Re{#(f logf ; f )}  > 0. 

Clearly, (a) and (b) imply ( ( z f ' ; f )>O.  In addition, (c) and the Herglotz 
formula imply that Re{d(zf '  6 ; f )}  > 0 for every analytic function ~ with positve 
real part in the unit disk and with q(0)= 1. 

w Boundary Variation 

We now adapt Schiffer's method of boundary variation [20,16,21,8] to the 
solution of extremal problems in S o. 

As in Section 3, suppose that Re {~b} attains its maximum at f ~ S  o and that q~ 
has a Fr6chet differential d(. ; f )  at f. Let D be the range off ,  and let F = C - D  
be the set omitted by f. Fix a point wo~F, w04=0, and let D r be the domain 
complementary to the component of 

r ~ { w M : :  [W-Wol __<r} 

which contains w o. The method of boundary variation involves a one-parameter 
family of functions 

f~(w) = w + ;~r(w - Wo)- 1 + O(r2), r ~ O, 

analytic and univalent in D r, with )>=O(r). Since Wo=~0, it is clear that 0~D r for 
all r sufficiently small, and we can modify Fr by forming 

@(w) = Fr(w) - F~(O) w(1 - w) 
F~(1) - F~(0) - w + )-r Wo (1 - Wo) (w - Wo) 4- O(r2), 

which preserves both 0 and 1 : Q ( 0 ) = 0  and G,(1)=1. Thus f *=G~o feS  o for all 
r sufficiently small. 

Since Re{qb} attains a maximum at f, the relation Re{q~(f*)}<Re{qb(f)} 
implies 

2,. d ( f (1  - - f )  

We may now appeal to Schiffer's fundamental lemma, which asserts that if 
s(w)~O is a single-valued analytic function defined in a neighborhood of a 
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nondegenerate continuum F and if 

Re {2 r S(Wo) + o(r)} < 0 

for each wo~F, then F is the union of analytic arcs w=w(t) satisfying the 
differential equation 

s(w(t)) \dr ] >0. 

Since a continuous linear functional can be represented as an integral with 
respect to a measure supported on a compact subseI of. theamit.disk (cf [211, 
Ch. 4), the function s defined by 

s(w) = ~ g '  ( - - f _ ~  f ( 1 - f ) , . ] ]  . \  

is analytic in a neighborhood of the omitted set F, except possibly for a simple 
pole at the origin. If s is not the zero-function, it follows that F is the union of 
analytic arcs satisfying 

1 #(f(1-f);f)dw2>O" 
w(1- w) ~ 7~w (2) 

It is clear that 0eF, by the definition of S o. The quadratic differential has a 
simple pole at the origin if E(1 - f ; f )~0 ,  which implies [17] that the origin is an 
endpoint of F. It is clear also that oeeF. Besides 0 and o% the only possible 

points where F can branch or fail to be analytic are the zeros of E(J~J);fl.'~"~- 
\ j w 

This function is analytic at oe and therefore can have at most a finite number of 
zeros on F, since we assume it does not vanish identically. It cannot vanish 
identically unless f is a scalar multiple of point-evaluation at the origin (see 
Section 5). Thus F consists of finitely many analytic arcs if the Fr6chet differen- 
tial of ~b at f does not have the form E(g;f)=c~g(0). 

The differential equation defined by (2) is a functional differential equation 
for F insofar as it involves also the unknown extremal function f. In particular 
cases one attempts, nevertheless, to determine F from it. Here the a priori 
knowledge of two boundary points, 0 and o% and the abundance of elementary 
transformations (Sect. 3) are great advantages. Unfortunately, as we shall see, the 
differential equation (2) leads quickly to elliptic and hyperelliptic integrals. 

w 5. Linear Problems and Support Points 

We shall now specialize the general extremal problem of Sect.4 to a linear 
problem, by choosing qb to be a continuous linear functional L. In this case the 
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differential equation (2) takes the form 

w(1 - w) L dw 2 > 0. (3) 

Unless L has the form L(g)= ~ g(0) for some constant e (in which case L is 
constant on So), the analytic function 

1 L{f(1-f)  ~ 
s(W)=w(1-w) \ f - w  / (4) 

does not vanish identically on F. To prove this, consider the linear functional M 
defined by 

M(g) = L(g) - L(1) g (0). 

If s(w)=-O on F, then L ( 1 - f ) = 0 ,  since 0aF. Thus 

1 
=s(w) L(1 - f ) = 0  

w0 -w) 

for all weF. This implies that M is the zero-functional (see [21], Lemma 4.5). 
Hence L(g)=~g(0) for all g, where ~=L(1). 

Some further information about support points is contained in the following 
theorem. 

Theorem 3, Let f be a support point of S o , maximizing the real part of a 
continuous linear functional L which is not constant on S o. Then 

(a) L(zf ' )  > O; 
(b) Re {L(zf '  ip)} > 0 for every analytic function ~ with positive real part in the 

unit disk and with ~(0)= 1; 

(c) L(f ' )  - f ' (O) L ( f )  = L(z2f  ') ; 

(d) Re {L( f logf )}  >= O. 

Furthermore, for each point w (w4=O, o~) on the arc F omitted by f 

(e) R e { I - ~ L ( 1 - f ) } > 0 ;  

(g) Re {L ((l - f )  [1 (1 ---Ww)f])}<0; 

R e ~ L ( f ( 1 - f ) ~ ' ~  (h) ( \ f - w  ] j < 0 .  
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Proof The relations (a), (b), (c), and (d) are consequences of Theorem 2. To prove 
the remaining assertions, fix an interior point w s F  and let f *  be any of the four 
omitted-value transformations given in Section 3 (ivb). Since f*  omits two 
points on some (possibly degenerate) ellipse with loci at 0 and 1, it follows from 
the corollary to Theorem 1 that f*  is not a support point. Thus 
Re{L(f*)} < Re {L(f)}, which gives the four properties (e), (1), (g), and (h). 

We showed previously (corollary to Theorem 1) that each support point of S o 
maps the disk onto the complement of an arc F which is monotonic with respect 
to the family of ellipses with foci at 0 and 1. We can now give a much better 
description of the omitted arc F. 

Theorem 4. Each support point f of S O maps the disk onto the complement of a 
single analytic arc F which extends from 0 to oo monotonically with respect to the 
family of ellipses with foci at 0 and 1. The arc F is analytic even at the endpoints 0 
and oe ; in particular, it has asymptotic directions there. At each interior point w on 
F (w40,  oe), there is an angle of less than ~/4 between F and the hyperbola with 
foci at 0 and 1 which passes through w. At  the origin there is an angle of at most 
re~2 between F and the negative real axis. Finally, if f maximizes the real part of a 
linear functional L, nonconstant on So, then F satisfies the differential equation (3). 

Proof We have already shown that F consists of analytic arcs satisfying the 
differential equation (3). The remaining assertions follow from the inequality 

l 0, w r, w ,O,  o0, (5) 

which was proved in Theorem 3(h). This inequality implies that the function s 
defined by (4) never vanishes on F. In other words, every interior point of F is a 
regular point of the quadratic differential (3), and so the trajectory F is an 
analytic arc (without corners). A second implication of (5), together with (3), is 
that 

R f dw2 
e l  w(-~_ 1)~ > 0, weF, w+O, oe. (6) 

This is equivalent to the ~/4-property (cf. [21], p. 99). In fact, it is easily seen in 
general that for distinct complex numbers c~ and/? the trajectories of 

dw 2 > ~  

are the hyperbolas with loci at 7 and/~. 
The points 0 and ~ are at worst simple poles of the quadratic differential (3). 

More precisely, at each of these points the quadratic differential has a simple 
pole, a regular point, or a zero of finite order. In any of these cases the general 
theory of the local trajectory structure (see 1-17]) guarantees that F is analytic at 
0 and ~ and has a limiting direction at each of these endpoints. 
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It follows that at the origin, F makes an angle of at most 7c/2 with the 
negative real axis. Otherwise, because its tangent direction is continuous, F 
would make near the origin an angle larger than ~z/4 with some nondegenerate 
hyperbola with foci at 0 and 1. 

It should be remarked that the quadratic differential actually has a simple 
pole at the origin, since L ( 1 - f ) + 0  by Theorem 3(e). It has a simple pole at 
infinity if L ( f ( 1 - f ) )  + 0, but this question is left open. 

As in Hengartner-Schober [14], the ~z/4-property in Theorem4 gives infor- 
mation about the coefficients of support points. 

Theorem 5. I f  f is a support point of  S o and e ~p is the point that f maps to o0, then 

P(z) = z(ei~ - z)z [f '(z)]2 
eiPf(z) If(z) -- 1] 

is analytic in Izl =< 1 and has positive real part in ]zl < 1. 

Corollary. I f  f ( z )  = 1 + a 1 z + a 2 z 2 +. . .  is a support point of  S o and f ( e  i~) = o% 
then 

(a) Re{ei~ai} >0;  
(b) ]e i~ (3a2-a2) -2a l l  < 2  Re{e i~ al}; 
(c) Re{a2/a 2} >�89 

(d) jail 2 <31a21. 

Proof  of  Theorem. Let e i~ be the point which f maps to the tip of the slit at 0. The 
only possible singularities of P in Iz[< 1 are at 0, e ~, and e ip. The origin is 
obviously a removable singularity. Since f has a double zero at e ~ and a pole of 
second order at e ia, these points are also removable singularities. Parametrizing 
the slit F by w( t )= f ( e  it) and appealing to (6), we find 

R e { P ( e i t ) } = _ 4 s i n 2  ( ~ t )  n ( (dw/dt)  2)  A 

for eZt+e i~, e ~'. Thus Re{P(z)}>0 for ]z]<l ,  by the minimum principle for 
harmonic functions. 

Proof  of  Corollary. The inequalities (a) and (b) are simply the estimates 
Re{P(0)} > 0  and IP'(0)l <2  ReP(0). The strict inequality reflects the fact that P is 
bounded. By rewriting the inequality (b) as 

3 a 2 _  2e - i '  ( 2 e - i , )  
a2 1) al < Re~--a~-~,  

one easily obtains (c) and (d). 

w Minimum Real Part 

As a specific application of the variational method, we shall now consider the 
problem of minimizing Re{f(~)}  for f e S  o, where ~ is a fixed point in the unit 
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disk. Because S o is preserved under rotation, we may assume without loss of 
generality that 0 < ( < 1 .  The corresponding maximum real part problem is 
equivalent to the maximum modulus problem (see Sect. 1). 

F o r  small (, the minimum real part problem is also equivalent to the 
minimum modulus problem, as the following elementary theorem shows. 

Theorem 6. For 0 <= Izl <= 3 - 1/8 = O. 171... and for each f ~So, 

( l - r ] 2  r= l z l .  R e { f ( z ) } > k 0 ( - r  )= \l  +r ] ' 

Strict inequality holds unless f is a suitable rotation of k o. 

Proof We observed in Sect. 1 that 

r 
I f ( z ) -  11---< (1 -~ - ] f ' ( 0 ) ] ,  fESo, 

with equality only for a suitable rotation of k o. Replacing f by 1If and recalling 
that If'(0)l <4, we obtain 

4 r  
I f ( z ) -  11 ~(1 - r )  2 ]f(z)[. 

If r < 3 - 1 / 8 ,  then p = 4 r / ( 1 - 0 2 <  1, and the above inequality asserts that the 
point w = f ( z )  lies in the disk bounded by the circle of Apollonius Iw-1f  = p  Iwl, 
with inverse points 0 and 1. It is geometrically clear that the point w in this disk 

(1 - - r ]  2 
with minimum real part is real and satisfies 1 - w = p  w; thus w =  \1 + r / "  If r = 3  

-]//8, then p = l  and the disk degenerates to the half-plane Re{w}> ). This 
leads to the same conclusion, and completes the proof. 

For each fixed (, 0 <  ( <  1, there is a function f ~ S  o where R e { f ( 0  } attains a 
minimum. According to Theorem4, this function f maps the disk onto the 
complement of an analytic arc F extending from 0 to co and satisfying 

B(B - 1) 
w ( w -  1) ( w - B )  dw2>O' B =f(() .  (7) 

One sees by inspection that the negative real axis is a solution to (7) if and 
0nly if B is real and 0 < B < I .  Thus f is a rotation of k o only if 0 < B < I .  
Theorem 6 shows that this is true if ( <  3 -1 /8 .  On the other hand, for ( beyond 
the radius of convexity of So; that is, for 2 - ] f 3 < ~ < 1 ,  one verifies either by 
geometric considerations or by direct calculation that the minimum value of 
Re{ko(z)} on the circle Izl=( occurs at a pair of (complex conjugate) points 
where B =k0(z ) is nonreal. Since the negative real axis is not then a trajectory of 
(7), this shows that the extremal function f cannot be a rotation of k 0 if ~ >2  
- 1 / 3 = 0 . 2 6 7  .... 
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Another consequence of the differential equation (7) for the omitted arc F is 
that different values of ( must give rise to different extremal functions, unless F 
is the negative real axis in both cases, so that both extremal funtions are k o ( - z  ). 
Indeed, let 0 < ( ~ < ( 2 < 1  and suppose B ~ = f ( ( j )  and B2=f( (2)  are the cor- 
responding values of the same extremal function f Then the omitted arc F must 
satisfy 

B.(B,- 1)  , 2 

w(w ~ 1)~(~---B,,) aw > O, n=  1,2. 

Dividing one differential equation by the other, we find 

Bz (B~-  1) w - B  1 
- > 0 ,  w~F. 

B I ( B t -  1) w - B  2 

Thus arg{(w-B1)/(w-B2)} is constant on F. Sending w to 0 and to oo along F, 
we conclude that arg{B1/B2} =0. In other words, B2=;tB ~ for some 2 > 0  with 
2~1 .  Since (w-B~)/ (w-ZB~)  is positive, F is the ray w =  - tB~, t>O.  It is easily 
seen, however, that the ray w = - t B  can satisfy (7) only if 0 < B < I .  (This 
argument is due to Brown; compare [5].) 

It is difficult to determine B precisely as a function of ~, but a few 
observations can be made which limit its possible range. First of all, B cannot be 
real and negative. If B < 0, then the differential equation (7) would imply that F 
is the linear segment from 0 to B, which is impossible. Since So is preserved 
under conjugation, we may assume that Im{B}>0.  It is clear that Re{B}< 
k o ( - ( ) <  1, because k o ( - z  ) belongs to S o. Another simple observation is that 
Re {B} < Re {l/B}, since S O is preserved under inversion. This implies that IBI < 1 
if Re(B} >0,  while IBI > 1 if Re{B} <0. It follows that B must lie in the shaded 
region in Fig. 1. 

As ( increases from 0 to 1, the corresponding point B moves from 1 to 
with continuously decreasing real part. According to Theorem 6, the point B 
moves initially along the real axis from 1 toward 0. Since it is plausible that B 
must move in a continuous path, Figure 1 suggests that B = i for some (. Later 
we shall show that this conclusion is actually valid. Taking it for granted and 
setting B = i  in the differential equation (7), one makes the surprising discovery 
that the corresponding omitted arc F is simply the radial line w = - ( 1  + i)t, t > 0. 

t 

, ~  ,%x,'• 

0 1 

Fig. 1. Region containing B =f (0 ,  Im{B} >0  
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The extremal function f is therefore some rotation of h 2, where 

h(z )=l+cz  /v. l + i  
1 - z  ' c = V ~ = ~ "  

The appropriate rotation and the associated value of ( are determined by the 

requirement that f(()  = i. The equation h(z) = ]/7 has the unique solution 

z =�88 lf2) + l/2i] =e (, 
where 

and 

These results are summarized in the following theorem, which is contingent 
only upon the proof (given later as a consequence of Theorem 9) that B = i  
actually occurs as the value of an extremal function for some (, and that B can 
have no other value on the positive imaginary axis. 

Theorem 7. For each f~So, the inequality Re{f(z)}>0 holds in the disk 
]z[ <�89 2 ~ - ] / 2  =0.382 .... This bound is sharp. I f z=(=�89  then R e { f ( 0  } 
= 0 if and only i f f  is either the function 

F(z ) : ( l+cez]2 ,  1+ i  l f 2 .  

with F(O = i, or its conjugation F(2). 

w Geometry of the Omitted Arc 

For the problem of minimum real part, we shall now explore the geometric 
properties of the arc F omitted by the extremal function f. A straightforward 
analysis of the quadratic differential (7) shows that F is tangent to the ray 

w=(g-1 ) t ,  t>0  (8) 

at the origin, and that F is asymptotic to the half-line 

w=~W+I)+B(B-1)t, t>__o (9) 

near infinity. 
The differential equation (7) has a simple geometric interpretation. The 

trajectories of 

d w  2 
- - > 0  
w(w- 1) 
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are the hyperbolas with foci at 0 and 1. Thus F and all other trajectories of (7) 
are determined by the requirement that they meet each of these hyperbolas at an 
angle 

f w - B ~  
5 arg~BTB - ~ )  ; '  

where w is the point of intersection. In particular, at each point of the half-line 

w = B + B ( B - 1 ) t ,  t>O, (10) 

which is parallel to the asymptotic half-line (9), all trajectories of (7) are 
orthogonal to the ellipses with loci at 0 and 1. More generally, on each half-line 

w = B + C t ,  t>O 

the trajectories of (7) intersect these ellipses at a constant angle. 
Specializing the inequality (5) to the minimum real-part problem, one finds 

that F lies in the half-plane 

R e i B ~ B 1 ) }  > 0 (11) 

bounded by the line through B perpendicular to the asymptotic half-line (9). 
Suppose first that Re{B}=<0, and assume without loss of generality that 

Im {B} > 0. Then 

3rr 
~ < a r g { B -  1} < T ,  = < a r g { B ( B -  1)} <2=, (12) 

and 
c - B  zc 

0 < a r g t B ( ~ :  1)) <~-. (13) 

It follows that the asymptotic half-line (9) ties (except for a finite segment) in the 
sector 

arg {B(B - 1)} < arg {w - B }  < arg { - B} (14) 

bounded by the half-tines (10) and w = B - B t ,  t>O. The typical situation is 
illustrated in Fig. 2. 

We claim now that a rg{w-B}  decreases as w leaves the origin and moves 
along F to infinity. It is clearly decreasing near the origin. If it were to increase 
somewhere, then F would cross some half-line w=B+ Ct twice, once in each 
direction. But at each point on this line~ F makes the same angle with the 
intersecting ellipse with loci at 0 and 1. Thus in one of these crossings, F would 
violate its monotonicity with respect to this family of ellipses (Corollary to 
Theorem 1). 
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Fig. 2. The omitted arc F, with Re{B} =<0 

It follows that F is confined to the sector (14). Indeed, since F is confined to 
the half-plane (11), it cannot intersect the bounding half-line (10) without 
violating the monotonicity of arg{w-B} in returning to the asymptotic half-line 
(9). 

It is also clear that F must stay in the lower half-plane Im{w} =0, for it 
cannot cross the segment of the real axis lying in the sector (14)without violating 
the monotonicity of F with respect to the confocal ellipses. 

Next suppose that Re{B} >0 and Ira{B} >~0. Then IBI <= 1 and B # 1. In view 
of Theorem6, Re{B)< �89  unless B is real. Thus the inequality (13) 
again holds, and the inequalities (12) hold unless B is real. The preceding 
argument therefore applies without change unless B is real, in which case F is 
the negative real axis. The situation is illustrated in Fig. 3. 

We have proved the following theorem. 

Theorem 8. Let f e S  o have minimum real part at ~ (0< ( <  1), and suppose B =f(~) 
has positive imaginary part. Then the curve F omitted by f lies in the lower half- 
plane and in the sector (14). Furthermore, arg{w-B} decreases as w moves along 
F from zero to infinity. At the origin 1" is tangent to the half-line (8), while it is 
asymptotic to the half-line (9) at infinity. 

Corollary. The angle between the omitted arc F and confocal hyperbolas (with foci 
at 0 and 1) decreases to zero as the point of intersection moves along F from the 
origin to infinity. 
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Fig. 3. The omitted arc F, with Re{B} >0 

Proof  of  Corollary. In view of the differential equation (7), the monotonicity of 
this angle of intersection is equivalent to the monotouicity of a rg{w-B}.  

Brown [4] has used similar methods to describe the arc omitted by the 
extremal function for a related problem in the class S. 

w Calculation of B 

We now turn to the actual calculation of B =--f(~). The first step is to use the 
differential equation (7) for the omitted arc F to derive a differential equation for 
the extremal function f This together with Theorem 8 will allow us to determine 
a curve containing B. 

Let F be parametrized by w =f(eit), and apply (7) to conclude that 

B(1 - B )  z2[f'(z)] 2 
R(z) - f ( z )  [ f (z)  - 1] I f (z)  - B] ~ 0, Izl = 1. (15) 

This function R has a simple zero at 0 and a simple pole at ~. By the Schwarz 
reflection principle, it can be continued analytically to Iz t > 1 according to the 

formula R(z)=R(1/2) .  The extended function has a simple zero at 0o and a 
simple pole at 1/~. At the points e r and d e which correspond to the finite and 
infinite tips of the slit, f has a double zero and a double pole, respectively, so 
that R is analytic and nonvanishing at these points. Thus R is a rational function 
of the form 

a z  
R(z) - (t6) 

( z -  C) (1 - C z)' 

where A is a constant. Since R(z)> 0 on ]z] = 1, it follows that a > 0. 
Equating the expressions (15) and (16) for R, and setting w =f(z),  we find 

B ( B -  1) A 
w ( w -  1) ( w - B )  dw2 = z ( ~ -  z) (1 " ~  z) dz2' (17) 
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o r  

w d w  z 

The relation (17) shows, in particular, that f maps the linear segment with 
endpoints 0 and ~ onto an arc C which is a trajectory of the quadratic 
differential (7). This arc C joins 1 to B, and 

dw >0. (18) 
B ] / ~ - 1 )  ! ] ~ w -  1)(w-B) 

The integrand in (18) has singularities at 0, 1, B, and c~. According to Theorem 8, 
however, the omitted arc F (which joins 0 to oo) lies either along the negative real 
axis or in the lower half-plane, under the normalizing assumption that 
Im{B} >0. Thus on the Riemann sphere punctured at 0, 1,B, and c~, the arc C is 
homotopic to the linear segment with endpoints 1 and B. It follows that 

B 

J(B)=~!~(w_B)- 1) dw 

is real and positive, where the integral is taken over the linear segment. 
Parametrizing this segment by 

w=l  +(B-1) t ,  ONtGI~ 

we obtain 

~ ( 1 - t ( 1 - B ) J  t (]/t]/t]/t]/t]/t]/~- t) (20) 

It is clear that J(B) > 0 for 0 < B < 1. We shall now show that J(B) is real on 
the positive imaginary axis only for B = i. This will show that B = i is actually the 
value of an extremal function for some ~, thus completing the proof of Theorem 
7. 

Theorem 9. The integral J(B) given in (20) has the properties J(i)> O, 

Im{J(ib)} >O for 0 < b < l ,  

and 

Im {J(ib)} < 0 for 1 < b < oo. 

Proof A simple calculation gives 

1 

J(i) = ]/~ ~ G(t) : . d t  
t)' o v t t l -  

where 

a(t)= l +(_ -2tlql'2 
(1 +(1 
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Making the substitution t = 1 -  s in the interval �89 < t < 1, we obtain 

1,,2 dt 
J ( i ) = l / 2  ~ [G(O+G(t)] . ,/77-~7>0. 

o k t(1 - t) 

A similar calculation gives 

1/2 dt 
Im {J(i b)} = 1/b ~ Im {[H~ (t, b)] ~/2 _ [H2(t, b)] ~/2} 

o 1/ i-0 

for 0 < b < oQ, where 

b + i [ 1  - (1  +b2) t] 
Hl(t,b)- (1-2t)+(l  +b2)t 2 

and 

b+i[b2-(1 +be) t] 
H2(t'b)=b2(1-2t)+(1 +b2)t  2" 

For convenience, let 

H)/2=(xj+iy)~/2=~j+irlj, j = l , 2 .  

Then Im{J(ib)} is the integral of (/~1--/~2) with respect to the positive measure 
{b/t(1-O}l/2dt. We shall prove the inequalities asserted in the theorem by 
showing that t / l>q2 throughout the interval 0_<t_<�89 if 0 < b < l ,  while t/~<t/2 
for 0_<t_<�89 if 1 < b <  or. 

Suppose first that 0 < b < l .  Then x~,yl, and x 2 are all positive in 0_<t_<_<�89 
while Y2 changes sign at to=be/(1 +be). Thus t/1 >0  in 0 < t < � 8 9  while t /2>0 in 
0 < t < t  0 and t/2 <0  in to<t< �89 In particular, the inequality t h > ~  is trivial in 
to<t< �89 . In order to prove it in 0 < t < t  o, we observe that O<x~<x z and 
0 < y  2 <y~ there. Since 0 <b < 1, the inequality x 1 < x ;  is obvious. A straightfor- 
ward calculation shows that the inequality Ya <Yl is equivalent to 

(1 - b ~) (1 + b ~) t ( l  - 0 > O, 

which clearly holds in 0 < t < 1 if b 2 < 1. Next observe that 

_ 2 2 a n d  = 2 ~ j ~ T j ,  xj - ~j - r/j y~ 

so that 

y2 2 
x j -  .2 ~ ,  j = l , 2 .  

4rlj 

Since 0 < y 2 < y  1 and 0 < x l < x  2 in 0 < t < t o ,  one sees by a simple graphical 
argument that t 11 > r/2 there. 

The case 1 < b <  oo is treated by similar considerations. Now x~,x2, and Y2 
are all positive in 0_< t_<�89 while y~ changes sign at t o = 1/(1 + b2). The inequality 
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-7 [o .3~ i 

Fig. 4. Solution set of Im{J(B)} =0, Im{B} >0. 

t]l<t/2 is trivial in t 'o<t<l;  while for O<t<t~  it follows in analogous fashion 
from the inequalities O<x2<x  1 and O < y l < y  2. Since b > l ,  the inequality 
Xz<X ~ is obvious, while the previous calculation shows that the inequality 
Y, <Y2 is equivalent to 

(1 -b2)  (1 + b2) t(1 - t) <0. 

This completes the proof of Theorem 9. 
A numerical calculation indicates that Im{J(B)} vanishes on the curve 

shown in Fig. 4. In particular, these numerical results indicate that B must cover 
the real segment 0.36<B<1.  Since ko(-�88 this evidence suggests the 
conjecture that the Koebe function k o ( - Z  ) is extremal for 0<~<�88 but not for 

~>�88 In other words, it is probable that the constant 3 - l / 8=0 .171 . . .  of 

Theorem6 can be increased to �88 but not to the radius of convexity 2 - ] / 3  
= 0.267 .... which we have established as an upper bound. 

In closing, we remark that the differential equation (17) actually provides 
enough relations to determine (in principle) both B and the positive real number 
A as functions of ~. We have already used the imaginary part of the equation 

dz 

where the integration is performed over the linear segment 0_<z_<~. The 
substitution u =(z/~) '/2 transform this equation to 

J(B) = 2]/A K({), (21) 

where 
1 du 

K(k)=!g(1_u2)(t_k2u 5, 0<k<1, 
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is a complete  elliptic integral  of the first kind. In addit ion,  we have 

1 o dz  

I ( B ) = B ( ] / ~ ! ] / w ( w _ l ) ( w _ B ) - l )  dw  - ~  e'~ f I / z ( ( - z ) ( 1  - : z )  ' 

where the r ight -hand integral  is over a radial  segment  and the left-hand integral 
is over the cor responding  path. The r ight -hand integral can be expressed as the 
sum of two integrals, the first over the uni t  circle from e i~ to - 1 and the second 
over the radial  segment  from - 1  to 0. The first of these integrals is real and  the 
second imaginary.  Thus we have 

1 d x  , /W, 
Im {I(B)} f 

(22) 

The integral  I(B) in (22) can now be taken over the l inear segment, since it 
differs from this by an integer mult iple  of J(B),  which is real. 

The Eqs. (21) and  (22) provide three real relat ions for the complex n u m b e r  B 
and  the real n u m b e r  A. 
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