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1. This note is a continuation of our earlier paper [3], in which we developed
a dilation theory for a certain class of contraction operators acting on a
separable, infinite dimensional, complex Hilbert space . The notation and
terminology in what follows is taken from [3]. For the convenience of the
reader we recall a few pertinent definitions. The algebra of bounded linear
operators on J is denoted by £(#). If Te #L(H#), the ultraweakly closed
algebra generated by T and 1, is denoted by /r; we recall that .o/ can be
identified with the dual space of the quotient space Qy=(tc)/ o/y, where (t¢)
denotes the ideal of trace-class operators in £ (#) and “of; is the pre-
annihilator of </ in (t¢), under the pairing

{A,[L]>=tr(4AL), Aestr, [L]€Q.

The open unit ball in € is denoted by ID, and we write T=43ID. The class
A(HF)yc< L () consists of all those absolutely continuous contractions T (i.e.,
all those contractions T whose unitary part is absolutely continuous or acts on
the space (0)) such that the Sz.-Nagy-Foias functional calculus @: H®(T)— <y
is an isometry. If Te A(s#) then @ is the adjoint of an isometry ¢ of Q7 onto
the predual L'(TM)/H§(T) of H®(M) (cf. [3, 5]), and via the pair {¢7, P}, the
pair of spaces {L!(T)/H}(T), H* (M)} can be identified with the pair {Qr, <77}

If x,yes#, we write x® y for the rank-one operator defined, as usual, by
(x®y)(w)=(u, y)x, uec#. Of course, x @ ye(t¢), and if some Te () is given,
we write [x® y]o, (or simply [x®y] when no confusion can result) for the
image of x®y in Q. If n is any cardinal number satisfying 1=n=<N,, we
denote by A,(s) the set of all those T in A(s#) for which every system of
simultaneous equations

[x;®y1=[Ly;]l, O0Zi, j<n
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(where the [L;;] are arbitrary elements from Qr) has a solution {x;}o<n,
{Vi}osj<n- When no confusion will result, we write simply A, for A,(#). In
[3] we began the structure theory of the classes A,, and, in particular, the
dilation theory of the class Ay,. A primary motivation for the introduction of
these classes in [3] was as follows. Let (BCP)=(BCP)(#) denote the set of all
those completely nonunitary contractions T in Z(#°) for which the intersec-
tion o.(T)NID of the essential spectrum of T with ID is sufficiently large that
almost every point of T is a non-tangential limit point of ¢.(T)nID (such sets
are said to be dominating for T). It was shown in [4] (and also in [7]) that
(BCP)c Ay, so all of the results obtained in [3] for operators in Ay, apply, in
particular, to (BCP)-operators. (In fact, in [4], an increasing family
{(BCP)sjo<p<1 of classes of contractions is introduced, with (BCP)=(BCP),,
and it was shown there that (] (BCP)ycAy,.)
0=6<1

In [2] it was shown that all (BCP)-operators are reflexive, and the main
purpose of this note is to show that all operators in the larger class Ay, are
reflexive (Theorem 1.7). This is worthwhile because we show in the third paper
[1] of this sequence that many familiar operators belong to Ay, and thus are
reflexive. In particular, we will show in [1] on the basis of Theorem 1.7 that
every weighted unilateral shift W that is a contraction whose spectrum satisfies
o(W)=T is reflexive, thus generalizing considerably the results on reflexivity of
[8].

We write Lat(T) for the lattice of invariant subspaces of an operator T, and
if 4, VeLlat(T) with #/>N, so M SN is a semi-invariant subspace of T, we
write T4 o4 for the compression of T to this semi-invariant subspace. We also
write P, for the (orthogonal) projection whose range is a subspace 4. Our
principal tool is the following result of Robel [7, Proposition 6.1].

Proposition 1.1. Suppose Te(BCP)(H#), yeH, and ¢>0. Then there exists a
subspace M < A such that M eLat(T), T|.M# e(BCP)(M), Tyo 4(BCPWH O M),
and |P,y| <e.

We will also need the following easy lemma.

Lemma 1.2. Suppose T is a completely nonunitary contraction in F(H) and
{432 is a sequence in ID that is dominating for M. Suppose also that
M eLat(T) and T|.H# is a normal diagonal operator with the property that each
Ay is an eigenvalue of T|.# of infinite multiplicity. Then Te(BCP).

Proof. The hypothesis ensures that each /, belongs to ¢,.(T|.#), and since
61(T| M) <= 0,.(T), we conclude that ¢,(T)nID is dominating for .

The following result is an easy consequence of Proposition 1.1 and Lemma
1.2,

Proposition 1.3. Suppose Te Ay (), {uy, ..., u,} is any finite subset of #, and
£>0. Then there exists # e Lat(T) such that

(1) both T| M and Tye 4 are (BCP)-operators, and

1) [Paw| <e for i=1,...,n.
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Proof. Let {1,}5>; <ID be dominating for T, and let N be a normal diagonal
operator of uniform infinite multiplicity whose eigenvalues constitute the se-
quence {4,}> ;. By Proposition 4.2 of [3] there exist invariant subspaces .#,
> for T such that T, o is unitarily equivalent to N. Thus N* is the
restriction to an invariant subspace of (T|.#,)*, and it follows from Lemma 1.2
that (T'|.#,)* (along with T|.#,) belongs to (BCP)(.#,). Let y; be the orthogo-
nal projection of u; onto .#,. By Proposition 1.1 there exists .#; € Lat(T|.#,)
such that (T|.4,) |4, =T|M, is a (BCP)operator and |P,, y,|| <e. Note that
M, eLat(T) and that {|{Py,, u;||=|Pgs,y1]- By an obvious finite induction argu-
ment we can find an invariant subspace .#,c.#; for T such that T|.#, is a
(BCP)-operator and such that |P, u;| <e, i=1,...,n. Since T|A#,€Ag,(H,),
we may apply Proposition 4.2 of [3] to T|.#, and the operator N®N to
conclude the existence of a decomposition

My= N DN, B N3D A, where A and N DN, P AN

belong to Lat(T|.4,), and where (T|.#,),0 .4, is the operator N@ N acting on
N2 @ A5 in the obvious way. We set A4 =A@ A,. Clearly 4 eLat(T), and
that T|.# €(BCP)(.#) follows as before. Furthermore the restriction of Ty 4
to the invariant subspace .43 is the operator N, so, once again by Lemma 1.2,
Twouc(BCP)(H# O ). Finally, since # < 4,, it is obvious that |P,u; <e, i
=1, ..., n, so the proof is complete.

The next corollary now follows from Proposition 1.3 by the same argument
that Robel used to prove [7, Propositions 6.2 and 6.3] from [7, Proposition
6.1].

oo

Corollary 1.4. Suppose Te Ay, (#). Then # admits a decomposition # = D M,

n=0
such that the operator matrix (1;;) for T relative to this decomposition is in upper
triangular form and satisfies T,,e(BCP)(M,), 0<n<oco. Furthermore # admits
(o)

another decomposition # = P AN, such that the operator matrix (Tij) for T
= —00

relative to this decomposition is in upper triangular form and satisfies
Tn€(BCP)(N;), —oo<n< 0.

The following theorem shows that, for operators in Ay, finite systems of
simultaneous equations can be solved with reasonable estimates on the dis-
tance from the initial data to the solution.

Theorem 1.5. Suppose Te Ay (H#), {[Lij]}1<ij<n IS a finite set of elements of
Qr, {24, ..., Zm} is an arbitrary finite set of vectors from H#, and £¢>0. Suppose
also that {x9,...,x%} and {y?, ..., y2} are sequences from # and >0 is such
that |[L;]—[x?®@y71 <6 for 1Zi,j<n. Then there exist sequences
{x1, v, X} and {yi, -.., yu} of vectors from # such that

[Ll,]]:[xl®yj]’ 1§lﬁ ]§n> (1)

xP—x;| <né?,  y?—yill <ndét?, 2)
yi—y
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and

I[x?—x)@z ]l <e,  [[z@(x —x)]] <e,
I —y)@zdl<e,  I[ze®@07—y)ll <e, 3)
1<i<n, 1<k<m.

Proof. Let d;;=|[L;;]—[x?®y?]l|, 1<i, j<n, and let © be a positive number
such that

t<n(6"? —max(d;)""?). 4
LJ

Let M>0 be an upper bound for |[x?], [»7], and |z for 1<i, j<n and
I £k<m. We choose a positive number # such that

n<min {t/2, ¢/3M, &/3nd''?} ©)
and such that

0<t,t and |t'—t|<3My imply [J/¥ —)/t|<7/2n. (6)

(The reason for this choice of n will appear later. We choose it now to make it
clear that »# does not depend upon the choice of the upcoming vectors x; and
y;.) 1t follows from Proposition 1.3 that there exists .# €Lat(T) such that T|.#
and S=Tzg 4 are both (BCP)-operators and such that the norm of the
{orthogonal} projection onto .# of each of the 2rn+m vectors {x?,...,xY},
9, ..., y3}, and {z;, ..., z,} is less than 4. We write x;=Pypg 4x°, 1 <i<n, and
define similarly y;, 1<j<n, and z, 1=k<m. (The idea of the proof of this
theorem should now be clear. We will transfer the equation solving problem to
the semi-invariant subspace # @ .#, using the fact that S=Tye , is a (BCP)-
operator to solve equations there with “good” bounds, and the smallness of
the # we have chosen will then give us the estimates we desire.)

For 1<i, j<n, let [M;;]€ Qs be defined by [M;;]=¢s ' ¢7([L;;]), and note
that the [M;;] are uniquely determined by the relations

<Sp, [Mij]>:</lp7 ¢S([Mij])>:<Tp> [Lij]>a p=09 1> Zv ey (7)

In particular, since the [L;;] are arbitrary elements of Q, for u, ve # O M, we
have

[u®vlg, =95 Ppr([u®vlg,) (®)
by virtue of (7), since
SPIu®u]oy =" u,v)=(T?u,0)=<{T", [u®v]y,), O0=p<co.
Let a=Mpy +mgxd§j, where dj;=||[M;;]—[x/®yilllgs- It now follows from
Corollary 6.13 and Remark 6.14 of [3] (applied with 0=0 to the operator S)
that there exist sequences {x,,...,x,} and {y;, ..., y,} of vectors in # ©.# such
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that

[Mij]z[xi®yj]Qs> 1=, j=n, 9

Ixi—xil <no!’?, yi—yill <na'?, 1<izn, (10)

and

Il —x) @ zillos<e/3, [z ®(xi—xi)]llos <&/3, an
Mi=y)@zdles<ef3,  [[ze®@Wi—y)lles<e/3, 1=izn, 1Zk=sm.

By applying ¢r¢s5 ' to (9) and using (8), we see that (1) is satisfied. We will
now prove (2) for the x/s, recalling that ¢g and ¢ are isometries. We have
from (5) and (10) that

Ix? —xil S IxP —xill + |t~ x| <(r/2)+na'?,  1<isn. (12)

Furthermore, from the inequalities
dij=IM ;1 = [xi® ¥ill os = I[Lij1 = [xi ® i1l o1
S L =[x ® yi1llor + I11x7 @ ¥71— [xi @ yilll o
we obtain
dii Sdi+ |0 @01 - [Xi® 1l o

Sdi+ I @ (07 — V)1l gr + I —x) ®@ YTl o <dy+2M.

Therefore

o= Mn+maxd;;<(maxd;;)+3 My,
iJ iJ

and from (6) we obtain

a'’? <max(di{*)+t/2n. (13)

LJ

Hence from (12), (13), and (4) we conclude that

%) —x:|| <t/2+n(maxdi’?)+1/2<nd'?, 1£ign, (14)
w0

as desired. Of course this argument works equally well to prove that
[y? =y, <né*? 1 <i<n. To conclude the proof of the theorem we content our-
selves with proving the first inequality in (3). For 1<i<n and 1<k=m we
have

ILGa=x?) @ zidll o S 1[0 = X)) ® 2]l g + 106 —X) @ (2~ 2l
+ ] [Gxi—x?) ® zedlor»

and using (11), (14), (5) and the fact that ¢5 and ¢ are isometries, we obtain
I —x) @ zilllor = (% — x) @ ze]ll o5 <2/3,

IO = XD ® (ze — 2] o S I3 = X0 - 126 — 2kl Snat 2y <nd'2y <ef3,
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and
102 —x) @ 2l or S 1P — X3 - 1 ziell S0 M <g/3.

Thus [[[(x{ —x)® 2]l o, <e as desired, and the proof is complete.
Or

The special case of Theorem 1.5 when n=1 shows that [2, Proposition 1] is
valid for all operators in Ay,, and since the proof of [2, Corollary 1] only
depends on [2, Proposition 1] we have the following.

Corollary 1.6. Suppose TeAy (), and denote by Wy the smallest subalgebra of
L(H) that contains T and 14 and is closed in the weak operator topology. Then
W=y and the weak operator and ultraweak operator topologies coincide on
Ar.

It follows from this corollary and a result from [1] that every weighted
unilateral shift operator W that is a contraction such that ¢(W)>T satisfies
Wy =<y This partly answers Question 5 of [8].

Theorem 1.5 also shows that [2, Proposition 2] is valid for all operators in
Ay, and since the proof of the reflexivity of (BCP)-operators used only [2,
Proposition 2], we also have the following corollary, which generalizes Theo-
rems 3, 4, and 5 of [2].

Theorem 1.7. Every operator in Ay (H#) is reflexive. In particular, all of the
operators in the classes (BCP),, 0= 0<1, defined in [4] are reflexive.

As mentioned earlier, the utility of Theorem 1.7 will be greatly enhanced by
the appearance of [1], because of the large number of operators that turn out
to belong to Ay, For the moment we deduce the following corollary of
Corollary 1.6 and Theorem 1.7.

Corollary 1.8. Suppose TeCqyo and also Te ﬂAn(Jf). Then T is reflexive, the
n=1

algebras Wy and <ty coincide, and the weak operator and ultraweak topologies
agree on sfr.

Proof. Exner showed in [6] that ( ﬂ An) N Coo S Ay,-
n=1

This corollary raises the interesting question whether operators in a fixed
class A, (n<N,) and not in Cy, have these same properties.

We also note that the upper bounds on ||x{ —x;| and |y? —y;|| given by (2)
in Theorem 1.5 for all operators in Ay, are better than those given in [4,
Corollary 6.11] for (BCP)s-operators, so Theorem 1.5 generalizes [4,
Corollary 6.11].

We close this note with a further consequence of Theorem 1.5. If nelN, we
denote by #, the direct sum of n copies of the Hilbert space #

Corollary 1.9. Suppose TeAy,, neN, and {[L;1}};-1 is a doubly indexed se-
quence of elements in Qr. Then the set of vectors (xi,...,x,) in H#, for which
there exists a vector (yq, ..., V,) in #, satisfying (1) is dense in . '

Proof. Let %o=(x?,...,x%) be an arbitrary vector in &, let ¢ be a positive
number, and use as initial data in Theorem 1.5 the vectors (tx?,...,7x%) and
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(0,...,0) in 4. Then, according to that theorem, there exists a solution %,
=(x%, ..., X3) Yo=(1, ..., y3) of (1) such that

Ixf—x? <nd'?,  |yi—0| <ndé'?, 1=Zi<n, (15)
where J is any fixed positive number that exceeds max ||[L;;]|. Thus, since for

every t©>0, the pair (1/7)X,7Jy, is also a solujtion of (1), and since
(1/7) %, —X, | =0 by (15), the result follows. In fact, to obtain |(1/7) %, —%, | <&, it
suffices to take t=n26"2/e'2, in which case the vector tJ, satisfies
BARR
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