Dilation Theory and Systems of Simultaneous Equations in the Predual of an Operator Algebra. II

Hari Bercovici¹, Bernard Chevreau², Ciprian Foias³, and Carl Pearcy⁴

- ¹ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- ² U.E.R. de Mathematique et d'Informatique, Universite de Bordeaux I, France
- ³ Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
- ⁴ Department of Mathematics, The University of Michigan, 347 West Engineering Building, Ann Arbor, Michigan 48109, USA
- 1. This note is a continuation of our earlier paper [3], in which we developed a dilation theory for a certain class of contraction operators acting on a separable, infinite dimensional, complex Hilbert space \mathscr{H} . The notation and terminology in what follows is taken from [3]. For the convenience of the reader we recall a few pertinent definitions. The algebra of bounded linear operators on \mathscr{H} is denoted by $\mathscr{L}(\mathscr{H})$. If $T \in \mathscr{L}(\mathscr{H})$, the ultraweakly closed algebra generated by T and $1_{\mathscr{H}}$ is denoted by \mathscr{A}_T ; we recall that \mathscr{A}_T can be identified with the dual space of the quotient space $Q_T = (\tau c)/^{\perp}\mathscr{A}_T$, where (τc) denotes the ideal of trace-class operators in $\mathscr{L}(\mathscr{H})$ and $^{\perp}\mathscr{A}_T$ is the preannihilator of \mathscr{A}_T in (τc) , under the pairing

$$\langle A, [L] \rangle = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, [L] \in Q_T.$$

The open unit ball in $\mathbb C$ is denoted by $\mathbb D$, and we write $\mathbb T = \partial \mathbb D$. The class $\mathbb A(\mathscr H) \subset \mathscr L(\mathscr H)$ consists of all those absolutely continuous contractions T (i.e., all those contractions T whose unitary part is absolutely continuous or acts on the space (0)) such that the Sz.-Nagy-Foias functional calculus $\Phi_T \colon H^\infty(\mathbb T) \to \mathscr A_T$ is an isometry. If $T \in \mathbb A(\mathscr H)$ then Φ_T is the adjoint of an isometry ϕ_T of Q_T onto the predual $L^1(\mathbb T)/H^1_0(\mathbb T)$ of $H^\infty(\mathbb T)$ (cf. [3, 5]), and via the pair $\{\phi_T, \Phi_T\}$, the pair of spaces $\{L^1(\mathbb T)/H^1_0(\mathbb T), H^\infty(\mathbb T)\}$ can be identified with the pair $\{Q_T, \mathscr A_T\}$.

If $x, y \in \mathcal{H}$, we write $x \otimes y$ for the rank-one operator defined, as usual, by $(x \otimes y)(u) = (u, y)x$, $u \in \mathcal{H}$. Of course, $x \otimes y \in (\tau c)$, and if some $T \in \mathcal{L}(\mathcal{H})$ is given, we write $[x \otimes y]_{Q_T}$ (or simply $[x \otimes y]$ when no confusion can result) for the image of $x \otimes y$ in Q_T . If n is any cardinal number satisfying $1 \leq n \leq \aleph_0$, we denote by $\mathbb{A}_n(\mathcal{H})$ the set of all those T in $\mathbb{A}(\mathcal{H})$ for which every system of simultaneous equations

$$[x_i \otimes y_j] = [L_{ij}], \quad 0 \leq i, j < n$$

98 H. Bercovici et al.

(where the $[L_{ij}]$ are arbitrary elements from Q_T) has a solution $\{x_i\}_{0 \le i < n}$, $\{y_j\}_{0 \le j < n}$. When no confusion will result, we write simply \mathbb{A}_n for $\mathbb{A}_n(\mathscr{H})$. In [3] we began the structure theory of the classes \mathbb{A}_n , and, in particular, the dilation theory of the class \mathbb{A}_{\aleph_0} . A primary motivation for the introduction of these classes in [3] was as follows. Let $(BCP) = (BCP)(\mathscr{H})$ denote the set of all those completely nonunitary contractions T in $\mathscr{L}(\mathscr{H})$ for which the intersection $\sigma_e(T) \cap \mathbb{ID}$ of the essential spectrum of T with \mathbb{ID} is sufficiently large that almost every point of \mathbb{IT} is a non-tangential limit point of $\sigma_e(T) \cap \mathbb{ID}$ (such sets are said to be dominating for \mathbb{IT}). It was shown in [4] (and also in [7]) that $(BCP) \subset \mathbb{A}_{\aleph_0}$, so all of the results obtained in [3] for operators in \mathbb{A}_{\aleph_0} apply, in particular, to (BCP)-operators. (In fact, in [4], an increasing family $\{(BCP)_{\theta}\}_{0 \le \theta \le 1}$ of classes of contractions is introduced, with $(BCP) = (BCP)_0$, and it was shown there that $\bigcup_{0 \le \theta < 1} (BCP)_{\theta} \subset \mathbb{A}_{\aleph_0}$.)

In [2] it was shown that all (BCP)-operators are reflexive, and the main purpose of this note is to show that all operators in the larger class \mathbb{A}_{\aleph_0} are reflexive (Theorem 1.7). This is worthwhile because we show in the third paper [1] of this sequence that many familiar operators belong to \mathbb{A}_{\aleph_0} and thus are reflexive. In particular, we will show in [1] on the basis of Theorem 1.7 that every weighted unilateral shift W that is a contraction whose spectrum satisfies $\sigma(W) \supset \mathbb{T}$ is reflexive, thus generalizing considerably the results on reflexivity of [8].

We write $\operatorname{Lat}(T)$ for the lattice of invariant subspaces of an operator T, and if $\mathcal{M}, \mathcal{N} \in \operatorname{Lat}(T)$ with $\mathcal{M} \supset \mathcal{N}$, so $\mathcal{M} \ominus \mathcal{N}$ is a semi-invariant subspace of T, we write $T_{\mathcal{M} \ominus \mathcal{N}}$ for the compression of T to this semi-invariant subspace. We also write $P_{\mathcal{M}}$ for the (orthogonal) projection whose range is a subspace \mathcal{M} . Our principal tool is the following result of Robel [7, Proposition 6.1].

Proposition 1.1. Suppose $T \in (BCP)(\mathcal{H})$, $y \in \mathcal{H}$, and $\varepsilon > 0$. Then there exists a subspace $\mathcal{M} \subset \mathcal{H}$ such that $\mathcal{M} \in \text{Lat}(T)$, $T | \mathcal{M} \in (BCP)(\mathcal{M})$, $T_{\mathcal{H} \ominus \mathcal{M}} \in (BCP)(\mathcal{H} \ominus \mathcal{M})$, and $\|P_{\mathcal{M}}y\| < \varepsilon$.

We will also need the following easy lemma.

Lemma 1.2. Suppose T is a completely nonunitary contraction in $\mathcal{L}(\mathcal{H})$ and $\{\lambda_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{D} that is dominating for \mathbb{T} . Suppose also that $\mathcal{M} \in \operatorname{Lat}(T)$ and $T|\mathcal{M}$ is a normal diagonal operator with the property that each λ_n is an eigenvalue of $T|\mathcal{M}$ of infinite multiplicity. Then $T \in (BCP)$.

Proof. The hypothesis ensures that each λ_n belongs to $\sigma_{le}(T|\mathcal{M})$, and since $\sigma_{le}(T|\mathcal{M}) \subset \sigma_{le}(T)$, we conclude that $\sigma_{e}(T) \cap ID$ is dominating for II.

The following result is an easy consequence of Proposition 1.1 and Lemma 1.2.

Proposition 1.3. Suppose $T \in \mathbb{A}_{\aleph_0}(\mathcal{H})$, $\{u_1, ..., u_n\}$ is any finite subset of \mathcal{H} , and $\varepsilon > 0$. Then there exists $\mathcal{M} \in \text{Lat}(T)$ such that

- (i) both $T|\mathcal{M}$ and $T_{\mathcal{H} \ominus \mathcal{M}}$ are (BCP)-operators, and
- (ii) $||P_{\mathcal{M}}u_i|| < \varepsilon$ for i = 1, ..., n.

Proof. Let $\{\lambda_n\}_{n=1}^{\infty} \subset \mathbb{ID}$ be dominating for \mathbb{T} , and let N be a normal diagonal operator of uniform infinite multiplicity whose eigenvalues constitute the sequence $\{\lambda_n\}_{n=1}^{\infty}$. By Proposition 4.2 of [3] there exist invariant subspaces $\mathcal{M}_0 \supset \mathcal{K}$ for T such that $T_{\mathcal{M}_0 \ominus \mathcal{K}}$ is unitarily equivalent to N. Thus N^* is the restriction to an invariant subspace of $(T|\mathcal{M}_0)^*$, and it follows from Lemma 1.2 that $(T|\mathcal{M}_0)^*$ (along with $T|\mathcal{M}_0$) belongs to $(BCP)(\mathcal{M}_0)$. Let y_1 be the orthogonal projection of u_1 onto \mathcal{M}_0 . By Proposition 1.1 there exists $\mathcal{M}_1 \in \text{Lat}(T|\mathcal{M}_0)$ such that $(T|\mathcal{M}_0)|\mathcal{M}_1 = T|\mathcal{M}_1$ is a (BCP)-operator and $\|P_{\mathcal{M}_1}y_1\| < \varepsilon$. Note that $\mathcal{M}_1 \in \text{Lat}(T)$ and that $\|P_{\mathcal{M}_1}u_1\| = \|P_{\mathcal{M}_1}y_1\|$. By an obvious finite induction argument we can find an invariant subspace $\mathcal{M}_n \subset \mathcal{M}_1$ for T such that $T|\mathcal{M}_n$ is a (BCP)-operator and such that $\|P_{\mathcal{M}_n}u_i\| < \varepsilon$, $i=1,\ldots,n$. Since $T|\mathcal{M}_n \in \mathbb{A}_{\aleph_0}(\mathcal{M}_n)$, we may apply Proposition 4.2 of [3] to $T|\mathcal{M}_n$ and the operator $N \oplus N$ to conclude the existence of a decomposition

$$\mathcal{M}_n = \mathcal{N}_1 \oplus \mathcal{N}_2 \oplus \mathcal{N}_3 \oplus \mathcal{N}_4$$
, where \mathcal{N}_1 and $\mathcal{N}_1 \oplus \mathcal{N}_2 \oplus \mathcal{N}_3$

belong to Lat $(T|\mathcal{M}_n)$, and where $(T|\mathcal{M}_n)_{\mathcal{N}_2 \oplus \mathcal{N}_3}$ is the operator $N \oplus N$ acting on $\mathcal{N}_2 \oplus \mathcal{N}_3$ in the obvious way. We set $\mathcal{M} = \mathcal{N}_1 \oplus \mathcal{N}_2$. Clearly $\mathcal{M} \in \text{Lat}(T)$, and that $T|\mathcal{M} \in (BCP)(\mathcal{M})$ follows as before. Furthermore the restriction of $T_{\mathcal{H} \ominus \mathcal{M}}$ to the invariant subspace \mathcal{N}_3 is the operator N, so, once again by Lemma 1.2, $T_{\mathcal{H} \ominus \mathcal{M}} \in (BCP)(\mathcal{H} \ominus \mathcal{M})$. Finally, since $\mathcal{M} \subset \mathcal{M}_n$, it is obvious that $\|P_{\mathcal{M}}u_i\| < \varepsilon$, i = 1, ..., n, so the proof is complete.

The next corollary now follows from Proposition 1.3 by the same argument that Robel used to prove [7, Propositions 6.2 and 6.3] from [7, Proposition 6.1].

Corollary 1.4. Suppose $T \in \mathbb{A}_{\aleph_0}(\mathcal{H})$. Then \mathcal{H} admits a decomposition $\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{M}_n$ such that the operator matrix (T_{ij}) for T relative to this decomposition is in upper triangular form and satisfies $T_{nn} \in (BCP)(\mathcal{M}_n)$, $0 \le n < \infty$. Furthermore \mathcal{H} admits another decomposition $\mathcal{H} = \bigoplus_{n=-\infty}^{\infty} \mathcal{N}_n$ such that the operator matrix (\tilde{T}_{ij}) for T relative to this decomposition is in upper triangular form and satisfies $\tilde{T}_{nn} \in (BCP)(\mathcal{N}_n), -\infty < n < \infty$.

The following theorem shows that, for operators in \mathbb{A}_{\aleph_0} , finite systems of simultaneous equations can be solved with reasonable estimates on the distance from the initial data to the solution.

Theorem 1.5. Suppose $T \in \mathbb{A}_{\aleph_0}(\mathscr{H})$, $\{[L_{ij}]\}_{1 \leq i,j \leq n}$ is a finite set of elements of Q_T , $\{z_1, ..., z_m\}$ is an arbitrary finite set of vectors from \mathscr{H} , and $\varepsilon > 0$. Suppose also that $\{x_1^0, ..., x_n^0\}$ and $\{y_1^0, ..., y_n^0\}$ are sequences from \mathscr{H} and $\delta > 0$ is such that $\|[L_{ij}] - [x_i^0 \otimes y_j^0]\| < \delta$ for $1 \leq i, j \leq n$. Then there exist sequences $\{x_1, ..., x_n\}$ and $\{y_1, ..., y_n\}$ of vectors from \mathscr{H} such that

$$[L_{ij}] = [x_i \otimes y_j], \quad 1 \leq i, \ j \leq n, \tag{1}$$

$$||x_i^0 - x_i|| < n \delta^{1/2}, \qquad ||y_i^0 - y_i|| < n \delta^{1/2},$$
 (2)

H. Bercovici et al.

and

$$\|[(x_i^0 - x_i) \otimes z_k]\| < \varepsilon, \qquad \|[z_k \otimes (x_i^0 - x_i)]\| < \varepsilon,$$

$$\|[(y_i^0 - y_i) \otimes z_k]\| < \varepsilon, \qquad \|[z_k \otimes (y_i^0 - y_i)]\| < \varepsilon,$$

$$1 \le i \le n, \ 1 \le k \le m.$$
(3)

Proof. Let $d_{ij} = ||[L_{ij}] - [x_i^0 \otimes y_j^0]||$, $1 \le i$, $j \le n$, and let τ be a positive number such that

$$\tau < n(\delta^{1/2} - \max_{i,j} (d_{ij})^{1/2}). \tag{4}$$

Let M>0 be an upper bound for $||x_i^0||$, $||y_j^0||$, and $||z_k||$ for $1 \le i$, $j \le n$ and $1 \le k \le m$. We choose a positive number η such that

$$\eta < \min \left\{ \tau/2, \ \varepsilon/3 M, \ \varepsilon/3 n \delta^{1/2} \right\} \tag{5}$$

and such that

$$0 \le t, t'$$
 and $|t'-t| < 3M\eta$ imply $|\sqrt{t'} - \sqrt{t}| < \tau/2n$. (6)

(The reason for this choice of η will appear later. We choose it now to make it clear that η does not depend upon the choice of the upcoming vectors x_i and y_j .) It follows from Proposition 1.3 that there exists $\mathcal{M} \in \text{Lat}(T)$ such that $T | \mathcal{M}$ and $S = T_{\mathcal{H} \ominus \mathcal{M}}$ are both (BCP)-operators and such that the norm of the (orthogonal) projection onto \mathcal{M} of each of the 2n+m vectors $\{x_1^0, ..., x_n^0\}$, $\{y_1^0, ..., y_n^0\}$, and $\{z_1, ..., z_m\}$ is less than η . We write $x_i' = P_{\mathcal{H} \ominus \mathcal{M}} x_i^0$, $1 \le i \le n$, and define similarly y_j' , $1 \le j \le n$, and z_k' , $1 \le k \le m$. (The idea of the proof of this theorem should now be clear. We will transfer the equation solving problem to the semi-invariant subspace $\mathcal{H} \ominus \mathcal{M}$, using the fact that $S = T_{\mathcal{H} \ominus \mathcal{M}}$ is a (BCP)-operator to solve equations there with "good" bounds, and the smallness of the η we have chosen will then give us the estimates we desire.)

For $1 \le i, j \le n$, let $[M_{ij}] \in Q_S$ be defined by $[M_{ij}] = \phi_S^{-1} \phi_T([L_{ij}])$, and note that the $[M_{ij}]$ are uniquely determined by the relations

$$\langle S^p, [M_{ij}] \rangle = \langle \lambda^p, \phi_S([M_{ij}]) \rangle = \langle T^p, [L_{ij}] \rangle, \quad p = 0, 1, 2, \dots$$
 (7)

In particular, since the $[L_{ij}]$ are arbitrary elements of Q, for $u, v \in \mathcal{H} \ominus \mathcal{M}$, we have

$$[u \otimes v]_{Q_S} = \phi_S^{-1} \phi_T([u \otimes v]_{Q_T})$$
(8)

by virtue of (7), since

$$\langle S^p, [u \otimes v]_{Q_S} \rangle = (S^p u, v) = (T^p u, v) = \langle T^p, [u \otimes v]_{Q_T} \rangle, \quad 0 \leq p < \infty.$$

Let $\alpha = M\eta + \max_{i,j} d'_{ij}$, where $d'_{ij} = \|[M_{ij}] - [x'_i \otimes y'_j]\|_{Q_S}$. It now follows from Corollary 6.13 and Remark 6.14 of [3] (applied with $\theta = 0$ to the operator S) that there exist sequences $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ of vectors in $\mathcal{H} \ominus \mathcal{M}$ such

that

$$[M_{ij}] = [x_i \otimes y_i]_{O_S}, \quad 1 \le i, \ j \le n, \tag{9}$$

$$||x_i' - x_i|| < n\alpha^{1/2}, \quad ||y_i' - y_i|| < n\alpha^{1/2}, \quad 1 \le i \le n,$$
 (10)

and

$$\| [(x'_i - x_i) \otimes z'_k] \|_{Q_S} < \varepsilon/3, \qquad \| [z'_k \otimes (x'_i - x_i)] \|_{Q_S} < \varepsilon/3,$$

$$\| [(y'_i - y_i) \otimes z'_k] \|_{Q_S} < \varepsilon/3, \qquad \| [z'_k \otimes (y'_i - y_i)] \|_{Q_S} < \varepsilon/3, \quad 1 \le i \le n, \quad 1 \le k \le m.$$

$$(11)$$

By applying $\phi_T \phi_S^{-1}$ to (9) and using (8), we see that (1) is satisfied. We will now prove (2) for the x_i 's, recalling that ϕ_S and ϕ_T are isometries. We have from (5) and (10) that

$$||x_i^0 - x_i|| \le ||x_i^0 - x_i'|| + ||x_i' - x_i|| < (\tau/2) + n\alpha^{1/2}, \quad 1 \le i \le n.$$
 (12)

Furthermore, from the inequalities

$$\begin{aligned} d'_{ij} &= \| [M_{ij}] - [x'_i \otimes y'_j] \|_{Q_S} = \| [L_{ij}] - [x'_i \otimes y'_j] \|_{Q_T} \\ &\leq \| [L_{ij}] - [x^0_i \otimes y^0_j] \|_{Q_T} + \| [x^0_i \otimes y^0_j] - [x'_i \otimes y'_j] \|_{Q_T}, \end{aligned}$$

we obtain

$$\begin{aligned} d'_{ij} &\leq d_{ij} + \| [x_i^0 \otimes y_j^0] - [x_i' \otimes y_j'] \|_{Q_T} \\ &\leq d_{ij} + \| [x_i^0 \otimes (y_j^0 - y_j')] \|_{Q_T} + \| [(x_i^0 - x_i') \otimes y_j'] \|_{Q_T} < d_{ij} + 2M\eta. \end{aligned}$$

Therefore

$$\alpha = M \eta + \max_{i,j} d'_{ij} < (\max_{i,j} d_{ij}) + 3 M \eta,$$

and from (6) we obtain

$$\alpha^{1/2} < \max_{i, i} (d_{ij}^{1/2}) + \tau/2n. \tag{13}$$

Hence from (12), (13), and (4) we conclude that

$$||x_i^0 - x_i|| < \tau/2 + n(\max_{i,j} d_{i,j}^{1/2}) + \tau/2 < n \delta^{1/2}, \quad 1 \le i \le n,$$
 (14)

as desired. Of course this argument works equally well to prove that $||y_i^0 - y_i|| < n\delta^{1/2}$, $1 \le i \le n$. To conclude the proof of the theorem we content ourselves with proving the first inequality in (3). For $1 \le i \le n$ and $1 \le k \le m$ we have

$$\begin{aligned} \| [(x_i - x_i^0) \otimes z_k] \|_{Q_T} & \leq \| [(x_i - x_i') \otimes z_k'] \|_{Q_T} + \| [(x_i - x_i') \otimes (z_k - z_k')] \|_{Q_T} \\ & + \| [(x_i' - x_i^0) \otimes z_k] \|_{Q_T}, \end{aligned}$$

and using (11), (14), (5) and the fact that ϕ_S and ϕ_T are isometries, we obtain

$$\begin{aligned} \| \left[(x_i - x_i') \otimes z_k' \right] \|_{Q_T} &= \| \left[(x_i - x_i') \otimes z_k' \right] \|_{Q_S} < \varepsilon/3, \\ \| \left[(x_i - x_i') \otimes (z_k - z_k') \right] \|_{Q_T} &\leq \| x_i - x_i' \| \cdot \| z_k - z_k' \| \leq n \alpha^{1/2} \eta < n \delta^{1/2} \eta < \varepsilon/3, \end{aligned}$$

H. Bercovici et al.

and

$$\|[(x_i^0 - x_i') \otimes z_k]\|_{Q_T} \le \|x_i^0 - x_i'\| \cdot \|z_k\| \le \eta \cdot M < \varepsilon/3.$$

Thus $\|[(x_i^0 - x_i) \otimes z_k]\|_{Q_T} < \varepsilon$ as desired, and the proof is complete.

The special case of Theorem 1.5 when n=1 shows that [2, Proposition 1] is valid for all operators in \mathbb{A}_{\aleph_0} , and since the proof of [2, Corollary 1] only depends on [2, Proposition 1] we have the following.

Corollary 1.6. Suppose $T \in \mathbb{A}_{\aleph_0}(\mathcal{H})$, and denote by \mathcal{W}_T the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $1_{\mathcal{H}}$ and is closed in the weak operator topology. Then $\mathcal{W}_T = \mathcal{A}_T$ and the weak operator and ultraweak operator topologies coincide on \mathcal{A}_T .

It follows from this corollary and a result from [1] that every weighted unilateral shift operator W that is a contraction such that $\sigma(W) \supset \mathbb{T}$ satisfies $\mathcal{W}_W = \mathcal{A}_W$. This partly answers Question 5 of [8].

Theorem 1.5 also shows that [2, Proposition 2] is valid for all operators in \mathbb{A}_{\aleph_0} , and since the proof of the reflexivity of (*BCP*)-operators used only [2, Proposition 2], we also have the following corollary, which generalizes Theorems 3, 4, and 5 of [2].

Theorem 1.7. Every operator in $\mathbb{A}_{\aleph_0}(\mathscr{H})$ is reflexive. In particular, all of the operators in the classes $(BCP)_{\theta}$, $0 \le \theta < 1$, defined in [4] are reflexive.

As mentioned earlier, the utility of Theorem 1.7 will be greatly enhanced by the appearance of [1], because of the large number of operators that turn out to belong to A_{\aleph_0} . For the moment we deduce the following corollary of Corollary 1.6 and Theorem 1.7.

Corollary 1.8. Suppose $T \in C_{00}$ and also $T \in \bigcap_{n=1}^{\infty} \mathbb{A}_n(\mathcal{H})$. Then T is reflexive, the algebras \mathcal{W}_T and \mathcal{A}_T coincide, and the weak operator and ultraweak topologies agree on \mathcal{A}_T .

Proof. Exner showed in [6] that
$$\left(\bigcap_{n=1}^{\infty} \mathbb{A}_n\right) \cap C_{00} \subset \mathbb{A}_{\aleph_0}$$
.

This corollary raises the interesting question whether operators in a fixed class A_n $(n < \aleph_0)$ and not in C_{00} have these same properties.

We also note that the upper bounds on $||x_i^0 - x_i||$ and $||y_i^0 - y_i||$ given by (2) in Theorem 1.5 for all operators in \mathbb{A}_{\aleph_0} are better than those given in [4, Corollary 6.11] for $(BCP)_{\theta}$ -operators, so Theorem 1.5 generalizes [4, Corollary 6.11].

We close this note with a further consequence of Theorem 1.5. If $n \in \mathbb{N}$, we denote by \mathcal{X}_n the direct sum of n copies of the Hilbert space \mathcal{H} .

Corollary 1.9. Suppose $T \in \mathbb{A}_{\aleph_0}$, $n \in \mathbb{N}$, and $\{[L_{ij}]\}_{i,j=1}^n$ is a doubly indexed sequence of elements in Q_T . Then the set of vectors (x_1, \ldots, x_n) in $\tilde{\mathscr{H}}_n$ for which there exists a vector (y_1, \ldots, y_n) in $\tilde{\mathscr{H}}_n$ satisfying (1) is dense in $\tilde{\mathscr{H}}_n$.

Proof. Let $\tilde{x}_0 = (x_1^0, ..., x_n^0)$ be an arbitrary vector in $\tilde{\mathcal{M}}_n$, let τ be a positive number, and use as initial data in Theorem 1.5 the vectors $(\tau x_1^0, ..., \tau x_n^0)$ and

 $(0,\ldots,0)$ in $\tilde{\mathcal{H}}_n$. Then, according to that theorem, there exists a solution $\tilde{x}_{\tau} = (x_1^{\tau},\ldots,x_n^{\tau}), \ \tilde{y}_{\tau} = (y_1^{\tau},\ldots,y_n^{\tau}) \text{ of } (1) \text{ such that}$

$$\|x_i^{\tau} - \tau x_i^0\| < n\delta^{1/2}, \quad \|y_i^{\tau} - 0\| < n\delta^{1/2}, \quad 1 \le i \le n,$$
 (15)

where δ is any fixed positive number that exceeds $\max_{i,j} \| [L_{ij}] \|$. Thus, since for every $\tau > 0$, the pair $(1/\tau)\tilde{x}_{\tau}$, $\tau \tilde{y}_{\tau}$ is also a solution of (1), and since $\|(1/\tau)\tilde{x}_{\tau} - \tilde{x}_{0}\| \to 0$ by (15), the result follows. In fact, to obtain $\|(1/\tau)\tilde{x}_{\tau} - \tilde{x}_{0}\| < \varepsilon$, it suffices to take $\tau = n^{2} \delta^{1/2}/\varepsilon^{1/2}$, in which case the vector $\tau \tilde{y}_{\tau}$ satisfies $\|\tau \tilde{y}_{\tau}\| < n^{4} \delta/\varepsilon$.

References

- 1. Apostol, C., Bercovici, H., Foias, C., Pearcy, C.: Dilation theory, invariant subspaces, and dual algebras, Preprint.
- Bercovici, H., Foias, C., Langsam, J., Pearcy, C.: (BCP)-operators are reflexive. Michigan Math. J. 29, 371-379 (1982)
- 3. Bercovici, H., Foias, C., Pearcy, C.: Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I., Michigan Math. J. 30, 335-354 (1983)
- Bercovici, H., Foias, C., Pearcy, C.: Factoring trace-class operator-valued functions with applications to the class A_{No}, to appear in J. Operator Theory
- Brown, S., Chevreau, B., Pearcy, C.: Contractions with rich spectrum have invariant subspaces.
 J. Operator Theory 1, 123-136 (1979)
- 6. Exner, G.: Systems of equations in the predual of an operator algebra, the classes A_n , and related operators. Thesis, University of Michigan 1983
- 7. Robel, G.: On the structure of (BCP)-operators and related algebras. I. To appear in J. Operator Theory
- 8. Shields, A.: Weighted shift operators and analytic function theory, Topics in Operator Theory, pp. 49-128. Providence: Amer. Math. Soc. 1974
- Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space. Budapest: Akademiai Kiado 1970

Received December 21, 1983