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0. Introduction

A plurisubharmonic (psh) function u is maximal on a domain D ⊂ CN if, for any
relatively compact subdomain D′, whenever v is psh on D

′
and v ≤ u on ∂D′,

we have v ≤ u in D′. If u is locally bounded, this is equivalent to u satisfying
the homogeneous complex Monge-Ampere equation (ddcu)N = 0 in D. If u is of
class C2, then

(ddcu)N = (2i∂∂u)N = 4NN ! det

[
∂2u

∂zj ∂zk

]
j,k=1,...,N

βN

where βN = (i/2)N
∏N
j=1 dzj ∧ dzj . A result of E. Bedford and M. Kalka [BK]

states that if u ∈ C3(D) and (ddcu)N−1 �= 0, thenD can be foliated locally by ana-
lytic disks such that the restriction of u to each disk is harmonic. Now letK ⊂ CN

be compact. The Siciak-Zaharjuta extremal function

VK(z) := sup

{
1

degp
log |p(z)| : degp > 0, ||p||K := sup

z∈K
|p(z)| ≤ 1

}
(0.1)

(here p is a holomorphic polynomial) is a well-studied object in pluripotential the-
ory. The uppersemicontinuous regularization V ∗

K is either identically +∞ (when
K is pluripolar) or it is a locally bounded plurisubharmonic function on CN which
is maximal on CN \ K . There are no general techniques to deduce smoothness
properties of this function beyond certain criteria for continuity; and explicit com-
putation of V ∗

K and (ddcV ∗
K)

N is virtually impossible. However, let K ⊂ RN be a
compact, convex body; i.e., K0 �= ∅, and consider K as a subset of CN . Then, as

� Current address: Department of Mathematics, Indiana University, Bloomington,
Indiana 47405 USA



92 D. Burns et al.

shown by Lundin [L1] and later Baran ([Ba1] and [Ba2]), if K is symmetric with
respect to the origin; i.e., K = −K , then the complement of K in CN is foliated,
in a continuous manner, by one-dimensional analytic disks L (leaves) such that VK
restricted to each leaf is harmonic. The main goal of this note is to show that a
version of Lundin’s result remains valid without the symmetry hypothesis. Indeed,
as in the symmetric case, the leaves L are complex ellipses.

Removing the assumption that K = −K is not a mere technical matter; cf.,
[BCL] where a natural condition that holds for suchK – the extremal-like function

V
(1)
K (z) := sup{V�(K)(�(z)) : � is complex affine (� : CN → C)} (0.2)

coincides with VK – is shown to fail for the standard (nonsymmetric) simplex
S2 := {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 + x2 ≤ 1} in R2. The assumption that
K = −K means that K is the unit ball for a norm on RN ; Baran ([Ba1], [Ba2])
exploited this fact and properties of generalized Joukowski maps t → 1/2(at +
b/t), a, b ∈ C, |t | ≥ 1, to get explicit formulas for the leaves L.

The main idea, conceived by the first author several years ago, is to approximate
K from above by a decreasing sequence of compact sets {Kj } in CN of the form
Kj = Dj , where each Dj is a strictly convex domain. For each Dj one can apply
the Lempert theory (cf., the appendix in [M]) to get analytic disks Lj such that
VKj restricted to each Lj is harmonic. Precisely, in the dual setD′

j , the Kobayashi
geodesics through a fixed point transform via a nonholomorphic Kelvin-like trans-
form to leaves Lj in the complement of Dj ; taking limits as j → ∞ we obtain
our result. We present a self-contained version of this story, modulo proofs of the
Lempert results utilized.

The motivation for this research is two-fold: despite the negative results on S2
demonstrated in [BCL], such a foliation does, indeed, exist for the simplex. This
was known by Baran ([Ba1] and [Ba2]). Moreover, Lundin [L2] himself anticipated
such a result; his motivation was to verify the following.

Conjecture 0.1 (Lundin). Let K ⊂ R2 be a convex body. Then K is not a disk or
the region bounded by an ellipse if and only if for any function f which is harmonic
on a simply connected neighborhood U �= R2 of K but which is not harmonic on
all of R2, the greatest geometric degree of convergence for approximation of f
by general polynomials is strictly smaller than the greatest geometric degree of
convergence for approximation of f by harmonic polynomials.

We will explain the terminology, and verify Lundin’s conjecture, in section 3. In
the next section we provide background material on extremal plurisubharmonic
functions and Lempert theory; and in section 2 we prove our main result, Theorem
2.4, on the existence of varieties on which VK is harmonic forK ⊂ RN a compact,
convex body. Finally, in section 4 we describe a second application of our main
theorem. We generalize the results of [BCL] in showing that for “most” convex
bodies K ⊂ R2, V (1)K �= VK . Moreover, we give a geometric description of the set

{z ∈ C2 : V (1)K (z) < VK(z)}
and show that these sets are large (in particular, unbounded).
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1. Background

The Siciak-Zaharjuta extremal function VK of a compact setK ⊂ CN was defined
in (0.1). As an example, for K = B(a,R) a closed ball of radius R centered
at a, VK(z) = log+ (|z− a|/R) (cf., p. 185 [K]). For a convex body K in RN ,
or a compact convex set K in CN with nonempty interior (in CN ), it is known
that VK is a uniformly continuous psh function on CN satisfying VK = 0 on K ,
K = {z ∈ CN : VK(z) = 0}, and C1 + log+ |z| ≤ VK(z) ≤ C2 + log+ |z| for
constants C1, C2 depending on K . For future reference, global psh functions u
satisfying such an inequality, with constants C1, C2 depending on u, form the class
L+(CN); global psh functions u satisfying only the upper bound condition form
the class L(CN); and compact sets K with VK continuous are called regular. For
a bounded set E ⊂ CN , one defines

VE(z) := sup{u(z) : u ∈ L(CN), u ≤ 0 on E}; (1.1)

this coincides with (0.1) whenE is compact (Theorem 5.1.7 [K]). Given a bounded
domain D ⊂ CN and a point z0 ∈ D,

GD(z; z0) := sup{u(z) : u psh inD, u ≤ 0, u(z)−log |z− z0| = 0(1) as z → z0}
is the pluricomplex Green function for D with pole at z0; if z0 = 0 we simply
write GD(z). For example, for an open ball of radius R centered at a, GD(z; a) =
log (|z− a|/R).

We make a few remarks on notation:

1. Given a point z = (z1, ..., zN) ∈ CN , we write, as usual, z = (z1, ..., zN).
However, for a set E ⊂ CN , we use E to denote the closure of E and we write
E∗ to denote the conjugate set; i.e.,

E∗ := {z ∈ CN : z ∈ E}.
2. We use | · | to denote the Euclidean (�2) norm of a vector in CN for any N =

1, 2, ....
3. We will use the notation < a, b > to denote the complex bilinear form
< a, b >= ∑N

j=1 ajbj in CN . Note the usual Hermitian inner product is

< a, b >= ∑N
j=1 ajbj .

A bounded domain D in CN with C2−boundary is said to be strictly lineally
convex if for each a ∈ ∂D, the complex tangent hyperplane

T C
a (∂D) :=

{
ζ ∈ CN :

N∑
j=1

(ζj − aj )
∂ρ

∂zj
(a) = 0

}
, (1.2)
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where ρ ∈ C2(D) is a defining function forD, satisfies T C
a (∂D)∩D = {a}. Thus

Hessρ(a,w) := 2

( ∑
j,k=1,...,N

∂2ρ

∂zj ∂zk
(a)wjwk

)
+2

∑
j,k=1,...,N

∂2ρ

∂zj ∂zk
(a)wjwk >0

for each a ∈ ∂D and eachw �= 0 satisfying
∑N
j=1wj

∂ρ
∂zj
(a) = 0.A stronger notion

is that of strict convexity: a bounded domain D in CN with C2−boundary is said
to be strictly convex if it has a defining function ρ which satisfies Hessρ(a,w) > 0
for each a ∈ ∂D and each w �= 0 in the real tangent space to ∂D at a; i.e., w
satisfies 
[

∑N
j=1wj

∂ρ
∂zj
(a)] = 0. For the applications of this paper, it suffices to

consider strictly convex sets (and decreasing limits of such sets); however, many of
the results remain valid in the strictly lineally convex setting, which is also a more
natural framework for the Lempert theory.

We summarize the features of Lempert’s works [Le1], [Le2] and [Le3] that we
will need. Start with a bounded, strictly lineally convex domainD in CN containing
the origin 0; for simplicity we assume that the boundary of D is real-analytic. We
define the dual

D′ := {z′ ∈ CN :< z, z′ >�= 1 for all z ∈ D}. (1.3)

This is a bounded domain in CN containing 0. For example, if D is the open ball
of radius R centered at 0,D′ is the open ball of radius 1/R centered at 0. Note that
for each z′ ∈ D′,

Hz′ := {z ∈ CN :< z, z′ >= 1} (1.4)

is a complex hyperplane with Hz′ ∩D = ∅. Next, define a Kelvin transform from
D′ \ {0} to CN \D:

γGD′ (z
′) := (∂GD′(z′)/∂z′1, . . . , ∂GD′(z′)/∂z′N)∑N

k=1 z
′
k∂GD′(z′)/∂z′k

(1.5)

whereGD′ is the pluricomplex Green function forD′ with pole at 0. From Lempert’s
work, γGD′ is a real-analytic diffeomorphism of D′ \ {0} to CN \D; and

VD(γGD′ (z
′)) = −GD′(z′). (1.6)

In general, Lempert’s Kelvin-like transform takes solutions u of a homogeneous
complex Monge-Ampere equation (ddcu)N = 0 into another solution ũ; i.e.,
(ddcũ)N = 0, but this transformation need not preserve plurisubharmonicity: in-
deed, in our situation, if u = GD′ (psh) then ũ = −VD (plurisuperharmonic).

The following results hold for D strictly (lineally) convex with real-analytic
boundary:

(I) D′ is strictly lineally convex with real-analytic boundary.
(II) For each c < 0, the sublevel sets

D′
c := {z′ ∈ D′ : GD′(z′) < c}

are strictly lineally convex with real-analytic boundary.
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(III) For each c < 0, the sublevel sets

Dc := {z ∈ CN : VD < −c}
are strictly (lineally) convex with real-analytic boundary; indeed, (Dc)′ =
D′
c.

For example, if D is the unit ball, so is D′ and GD′(z′) = log |z′| so that
z = γGD′ (z

′) = z′
|z′|2 . Thus for |z′| < 1,

VD(γGD′ (z
′)) = log+ |γGD′ (z

′)| = log+ 1/|z′| = log 1/|z′| = − log |z′|;
i.e., VD(z) = − log |z′| = log |z| for |z| > 1.

For a geometric description of (1.6), note that if z′ ∈ D′, GD′(z′) = c < 0,
and z = γGD′ (z

′), taking ρ = GD′ − c and a = z′ in (1.2) and using (1.5),

T C
z′ (∂D

′
c) = {ζ ∈ CN :< ζ, z >= 1}.

Similarly, from (III), the complex hyperplane Hz′ := {ζ ∈ CN :< ζ, z′ >= 1},
which lies in CN \D, coincides with T C

z (∂Dc). Thus

−GD′(z′) = VD(z) = inf
x∈Hz′

VD(x). (1.7)

Conversely, given a complex hyperplane H disjoint from D, H = T C
z (∂Dc) for

some c < 0 and z ∈ ∂Dc. Then z = γGD′ (z
′) where z′ ∈ D′ and H = Hz′ . Equa-

tion (1.7) will be a key to understanding the solution of the Lundin approximation
conjecture in section 3.

2. Foliations

Let� denote the open unit disk in C and let T := ∂�. GivenE ⊂ CN compact, we
let κE denote the set of all f : C \� → CN holomorphic with |f (t)|/|t | bounded;
f has a continuous extension to T ; and f (T ) ⊂ E. We recall the following result,
due to Lempert (see the appendix in [M]; a nice exposition has also been given by
S. Borell [Bo]).

Theorem 2.1. Let E = D ⊂ CN where D is a bounded, strictly lineally convex
domain with real-analytic boundary. There exists a foliation of CN \E by analytic
disks L = f (C \�) where f ∈ κE and VE(f (t)) = log |t |, |t | ≥ 1.

We sketch the proof of the existence of the analytic disks L. Without loss of
generality, we may assume D contains the origin. Then

D′ := {z′ ∈ CN :< z, z′ >=
N∑
j=1

zj z
′
j �= 1 for all z ∈ D} (2.1)

is a strictly lineally convex domain with real-analytic boundary containing the
origin. For a nonzero vector v in CN and a point z′ ∈ D′, a holomorphic map
g = (g1, ..., gN) : � → D′ is a Kobayashi geodesic with respect to z′ ∈ D′ and v



96 D. Burns et al.

if g(0) = z′, g′(0) = λv for some λ > 0, and λ is maximal among mappings with
this property. In the strictly lineally convex setting, Lempert [L3] showed that Ko-
bayashi geodesics through z′ = 0 exist, extend to T , and foliateD′ \ {0}. Moreover,
on each such leaf, G(g(s)) := GD′(g(s)) = log |s|, |s| ≤ 1. Then for |t | ≥ 1,

f (t) := γGD′ (g(1/t)) = γG(g(1/t)) (2.2)

defines a leaf L of the foliation of CN \ E. To see this, we have

VE(z) = −G(γ−1
G (z)) (2.3)

from (1.6). The function f defined in (2.2) is clearly continuous on C \ � with
f (T ) ⊂ E. Moreover, using (2.3) and (2.2),

VE(f (t)) = −G(γ−1
G (f (t))) = −G(γ−1

G (γG(g(1/t)))

= −G((g(1/t)) = − log |1/t | = log |t | (2.4)

for t ∈ C \�. This shows that |f (t)|/|t | is bounded; for E ⊂ B(0, R) for some R
yields

log |t | = VE(f (t)) ≥ VB(0,R)(f (t)) ≥ log |f (t)| − logR.

It remains to prove the holomorphicity of f . We first show that ∂G/∂z′j ◦ g is
holomorphic, j = 1, ..., N . To this end, fix z′ = g(α), α ∈ �. Since (G ◦ g)(s)
is harmonic for s ∈ �, we have ∂2(G ◦ g)(α)/∂s∂s = 0. After a complex-linear
change of coordinates, we can assume (∂gj (α)/∂s)j=1,...,N = (1, 0, ..., 0). Then

∂2(G ◦ g)(α)/∂s∂s = ∂2G(z′)/∂z′1∂z
′
1 = 0.

But then from plurisubharmonicity of G; i.e., positive semi-definiteness of the
complex Hessian [∂2G(z′)/∂z′j ∂z

′
k]j,k=1,...,N , we have

0 = ∂2G(z′)/∂z′j ∂z
′
1 = ∂/∂s(∂G/∂z′j ◦ g)(α) for j = 1, ..., N.

From the definitions of γG and f , it follows immediately that f is holomorphic.
We remark that if K∗ = K , i.e., z ∈ K if and only if z ∈ K , then VK(z) =

VK(z). In particular, this holds if K ⊂ RN . Similarly, for a bounded domain U
containing the origin 0, if U∗ = U , then GU(z) = GU(z) where GU is the plu-
ricomplex Green function with pole at 0. Another important observation is that
a general compact, convex body in RN can be approximated from above by sets
fulfilling the hypotheses of Theorem 2.1.

Proposition 2.2. Let K ⊂ RN be a compact, convex body. Then there exist {Kj }
compact, Kj = Dj ⊂ CN , where {Dj } are strictly convex domains having real-
analytic boundaries such that K∗

j = Kj , Kj+1 ⊂ Kj and K = ∩jKj .

Under the hypothesis of Proposition 2.2, the Siciak-Zaharjuta extremal func-
tions VKj ↗ VK uniformly on CN . To see this, note that VK and each VKj are
continuous in CN . Thus VKj ↗ VK uniformly on compact sets in CN by Dini’s
theorem. But, since VKj = 0 on Kj , ||VKj − VK ||Kj = ||VK ||Kj ; moreover,
VK − ||VK ||Kj ≤ VKj from (1.1) so that VKj ↗ VK uniformly on all of CN .
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Lemma 2.3. Let E = D where D is a bounded, strictly lineally convex domain
containing the origin and with real-analytic boundary, and letL(f ) := f (C\�) be
the leaf associated to a mappingf . IfE∗ = E, whereE∗ := {z ∈ CN : z̄ ∈ E}, then

the function f̃ (t) = f (t̄) defines a leaf L̃ = L̃(f̃ ). In particular, L̃(f̃ ) = (L(f ))∗.

Proof. Note that E∗ = E if and only if D′∗ = D′ as follows from formula (2.1).
HenceG(z′) = G(z′)whereG is the pluricomplex Green function forD′ with pole
at the origin. Let L(f ) be the leaf associated to f given in (2.2) via a Kobayashi
geodesic g for a point z′ ∈ D′ and a direction v. The function g̃(s) := g(s̄) is easily
seen to be a Kobayashi geodesic for z′ and v. The Kelvin transform applied to g̃
gives us the leaf L̃ = L̃(f̃ )where f̃ (t) = γG(g̃(1/t)) = γG( g(1/t̄) ). To complete

the proof, it suffices to show that f̃ (t) = f (t̄) which follows if

γG(z̄
′) = γG(z′)

for all z′ ∈ D′\{0}. But this is a direct calculation using G(z′) = G(z′). ��
Theorem 2.4. Let K ⊂ RN be a convex body. Through any point q ∈ CN \ K
there is a one-dimensional variety Lq = F(C \�) where F = (F1, ..., FN) with
Fn(t) = an0 + an1t + an1/t for some an0 ∈ R and an1 ∈ C; F(T ) ⊂ K; and
VK(F (t)) = log |t | for t ∈ C\�. Moreover,L∗

q = F̃ (C\�) is a variety conjugate

to Lq , where F̃n(t) = an0 + an1t + an1/t; F̃ (T ) = F(T ); and VK(F̃ (t)) = log |t |
for t ∈ C \�.

Note that since VK(z) = VK(z), we expect to have pairs of conjugate varieties.
As an example, let K = {(z1, z2) ∈ C2 : �z1 = �z2 = 0, (
z1)

2 + (
z2)
2 ≤ 1}

be the real unit disk in R2 ⊂ C2. In this case, the family of leaves

L(c) := fc(C \�) where fc(t) = (1

2
(c1t + c1/t),

1

2
(c2t + c2/t)

)

for c = (c1, c2) belonging to the parameter space

{c = (c1, c2) ∈ C2 : |c1|2 + |c2|2 + |c2
1 + c2

2| = 2}
(modulo the circle action; i.e., L(c) = L(c′) if and only if c = eiθ c′), provides a
continuously varying foliation of C2 \K (cf., [Ba1]).

Proof of Theorem 2.4. We may assume 0 ∈ K . Let {Kj } be a sequence of strictly
convex sets as in Proposition 2.2. These sets are contained in a fixed ball B(0, R).
We claim that the union

F := {f ∈ ∪j κKj : VKj (f (t)) = log |t |, |t | ≥ 1, for some j}

of all holomorphic mappings f : C \� → CN which yield a leaf (as in Theorem
2.1) for some Kj forms a normal family. To see this, first observe that for any
f ∈ F ,

|f (t)|/|t | ≤ R for all |t | ≥ 1. (2.5)
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For Kj ⊂ B(0, R) implies that VB(0,R)(z) = log+ (|z|/R) ≤ VKj (z); now apply
this inequality to z = f (t) and use VKj (f (t)) = log |t |. Thus we may write a
component function fn of f = (f1, ..., fN) in a Laurent series expansion about ∞
of the form

fn(t) = an0 + an1t +
∞∑
k=1

a−nkt−k,

and we have from (2.5) that

|an1| = | lim
t→∞ fn(t)/t | ≤ lim sup

t→∞
|fn(t)|/|t | ≤ lim sup

t→∞
|f (t)|/|t | ≤ R.

Now consider the function gn(s) := an0 + ∑∞
k=1 a−nksk . This is holomorphic on

� and continuous on� and agrees with fn(1/s)− an1/s on� \ {0}. Moreover, on
T , from the previous estimate and the fact that f (T ) ⊂ Kj ⊂ B(0, R),

|gn(s)| = |fn(1/s)− an1/s| ≤ 2R.

Thus we have shown that the family of holomorphic functions G on the unit disk
� defined by

G := {g = (g1, ..., gN) : gn(s)

= an0 +
∞∑
k=1

a−nksk, where f = (f1, ..., fN) ∈ F with

fn(t) = an0 + an1t +
∞∑
k=1

a−nkt−k}

is uniformly bounded and hence normal. From this it follows easily that F is normal.
A sequence {f (j)} ⊂ F might converge to a degenerate (constant) mapping g;

e.g., if Kj = B(0, 1/j) and f (j)(t) = (t/j, 0, ..., 0), then f (j) → g where g(t) =
(0, 0, ..., 0). We need to avoid degenerate limits in our situation. Fix q ∈ CN \K;
then q �∈ Kj for j ≥ j0 = j0(q). We show there exist M = M(q) < +∞ and
ε = ε(q) > 0 such that for all j ≥ j0 there exists fj ∈ κKj , i.e., fj : C \� → CN

with VKj (fj (t)) = log |t |, |t | ≥ 1 and

fj (tj ) = q for some tj satisfying 1 + ε < |tj | ≤ M.

To see this, we simply note that VK ∈ L(CN) implies

VKj (q) = VKj (fj (tj )) = log |tj | ≤ VK(q) ≤ C + log |q| =: logM;
and, for j ≥ j0,

VKj (q) = VKj (fj (tj )) = log |tj | ≥ VKj0
(q) =: log (1 + ε) > 0

since q �∈ Kj0 .
For each j ≥ j0, we now pick a map fj ∈ κKj with fj (tj ) = q for some tj

with 1 + ε ≤ |tj | ≤ M . Next, we take a subsequence, which we again call {fj },
with the property that tj → t0 for some t0. Note that since fj (t) ⊂ Kj for |t | = 1
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and each fj is unbounded, any normal limit of these maps with fj (tj ) = q for
some 1 + ε ≤ |tj | ≤ M must be nonconstant. Since each component function fjn
of fj = (fj1, ..., fjN) has a Laurent series expansion of the form

fjn(t) = ajn0 + ajn1t +
∞∑
k=1

a−jnkt−k

where |ajn1| ≤ R, by taking a further subsequence, we can assume that the sequence
of coefficients {ajn1}j=1,2,... converges to an1 for n = 1, 2, ..., N . This subse-
quence of maps lies in F ; thus we may choose a subsequence converging normally
to F : C \� → CN with F(t0) = q for some t0 with 1 + ε ≤ |t0| ≤ M and so that
each component function Fn of F = (F1, ..., FN) has a Laurent series expansion
of the form

Fn(t) = an0 + an1t +
∞∑
k=1

a−nkt−k. (2.6)

We will soon see thatF is unbounded; i.e., at least one of the coefficientsa11, ..., aN1
is nonzero.

Now VKj (fj (t)) = log |t | for t ∈ C \ � and fj converges locally uniformly
to F on C \ �. Since VKj increase monotonically and uniformly to VK on all of
CN , we have VK(F (t)) = log |t | for t ∈ C \�. In particular, for ε > 0 sufficiently
small,

VK(F (t)) ≤ ε if 1 < |t | ≤ 1 + ε.

Since VK is uniformly continuous in CN and K = {z ∈ CN : VK(z) = 0} ⊂ RN ,
it follows that for each component function Fn we have lim|t |→1+ �Fn(t) = 0. By

the reflection principle, we get a holomorphic extension ofFn to C\{0} viaFn(1/t̄)
for 0 < |t | < 1.

Applying Lemma 2.3 toKj and fj , the subsequence {f̃j }, where f̃j (t) = fj (t),
converges normally on C \� to a holomorphic F̃ = (F̃1, ..., F̃N ) with component
functions F̃n(t) = Fn(t) having Laurent series expansions about ∞ of the form

F̃n(t) = an0 + an1t +
∞∑
k=1

a−nkt−k. (2.7)

Thus we have shown that

H(t) :=
{
F(t), t /∈ �;
F̃ (1/t), t ∈ � \ {0} =

{
F(t), t /∈ �;
F(1/t̄), t ∈ � \ {0} (2.8)

defines a holomorphic mapping of C \ {0} into CN . Now from (2.6) the Laurent
series expansion of the n−th component of F is of the form

Fn(t) = an0 + an1t +
∞∑
k=1

a−nkt−k
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and from (2.7) the Laurent series expansion of the n−th component of F̃ is of the
form

F̃n(t) = an0 + an1t +
∞∑
k=1

a−nkt−k.

From (2.8), we have F(eiθ ) = F̃ (e−iθ ) for t = eiθ ∈ T . This gives

an0 + an1e
iθ +

∞∑
k=1

a−nke−ikθ = an0 + an1e
−iθ +

∞∑
k=1

a−nkeikθ .

Hence a−nk = 0 for k = 2, 3, ...; an0 = an0; and a−n1 = an1; thus

Fn(t) = an0 + (an1t + an1/t)

where an0 must be real (thus F(T ) ⊂ K ⊂ RN ). Moreover, we see that at least
one of the coefficients a11, ..., aN1 is nonzero or else F is constant, contradicting
our earlier result. This completes the proof. ��

Note that the holomorphic map H(t) in (2.8) is of the form

H(t) = a + bt + b/t, t ∈ C \ {0}, a ∈ RN, and H(C \ {0}) = Lq ∪ L∗
q . (2.9)

We have not verified that one can obtain a foliation of CN \ K in Theorem 2.4.
For the applications in the next sections, we only require the existence, through
each point q ∈ CN \ K , of a one-dimensional variety Lq = F(C \ �) on which
VK is harmonic, as well as the existence of a conjugate leaf L∗

q = F̃ (C \�) with

F(T ) = F̃ (T ).

3. Approximation

In this section, which follows closely the presentation in Lundin’s thesis [L2], we
verify Conjecture 0.1 in Theorem 3.1. To explain the conjecture, let Pn denote the
(real) vector space of real-valued polynomials in RN, N ≥ 2, of degree at most n
and let Hn ⊂ Pn denote the (real) vector subspace of real-valued harmonic poly-
nomials in RN of degree at most n. For f a real-valued continuous function on K ,
let

Rn(f ) := inf{||f − pn||K : pn ∈ Pn}
and

ρn(f ) := inf{||f − hn||K : hn ∈ Hn}.
Since Hn ⊂ Pn, clearly ρn(f ) ≥ Rn(f ). Then

R(f ) := lim sup
n→∞

Rn(f )
1/n

is called the greatest geometric degree of convergence for approximation of f by
general polynomials while

ρ(f ) := lim sup
n→∞

ρn(f )
1/n

is called the greatest geometric degree of convergence for approximation of f by
harmonic polynomials; clearly ρ(f ) ≥ R(f ) for any f .
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Theorem 3.1. Let K ⊂ R2 be a convex body. Then K is not a disk or the region
bounded by an ellipse if and only if for any function f which is harmonic on a
simply connected neighborhood U �= R2 of K but which is not harmonic on all of
R2, we have ρ(f ) > R(f ).

Note that if f is harmonic on RN , then for any K ⊂ RN , ρ(f ) = R(f ) = 0.
If K ⊂ RN is the region bounded by an ellipsoid E; i.e., if ∂K = E := {x ∈
RN : Q(x) = 0} for a quadratic polynomial Q whose degree two homogeneous
terms define a positive definite quadratic form, then, as pointed out to us by D.
Khavinson, if pn ∈ Pn is a polynomial of degree at most n in N variables we can
find a harmonic polynomial hn ∈ Hn of degree at most n that coincides with pn on
E. Then for any f harmonic on K ,

||f − pn||K ≥ ||f − pn||E = ||f − hn||E = ||f − hn||K,

the last equality following from the maximum principle for harmonic functions.
Thus Rn(f ) = ρn(f ) and hence R(f ) = ρ(f ) for all such f ; in particular, for
N = 2, we have proved the “if” direction of Theorem 3.1. The proof of the italicised
statement, as kindly communicated to us by Khavinson, runs as follows: for each n
define a linear operator Tn taking the space Pn of polynomials of degree at most n
into itself via Tn(p) := �(Qp) (here� is the Laplacian). Note that Tn : Pn → Pn
is one-to-one: if Tn(p) = 0, then �(Qp) = 0 so that Qp is harmonic; however,
Qp = 0 on E = ∂K so by the maximum principle Qp = 0 on K and p = 0. In
particular, Tn−2 is surjective so that given pn ∈ Pn, we can find qn−2 ∈ Pn−2 with
Tn(qn−2) = �(Qqn−2) = �pn. Then�(Qqn−2 − pn) = 0 so that pn −Qqn−2 is
a harmonic polynomial of degree n which agrees with pn on E = ∂K .

For the rest of the section,K will be a convex body in R2. It will be convenient
to embed R2 into C2 in two different ways. The standard way is to consider

R2 = {(z1, z2) ∈ C2 : �z1 = �z2 = 0};

as usual, we write z1 = x1 + iy1 and z2 = x2 + iy2. Thus R2 is identified with C
via s := x1 + ix2. On the other hand, we also define (w1, w2) coordinates via

w1 = z1 + iz2, w2 = z1 − iz2.

In these coordinates, we identify R2 with the image of the embedding of C into C2

given by s → (s, s); thus

R2 = {(w1, w2) ∈ C2 : w1 = w2}.

Given a convex body K ⊂ R2, we will

(i) utilize the classical Green function gK(x1 + ix2) for K when we consider
K ⊂ R2 = C; i.e., if s = x1 + ix2, then VK(s) = gK(x1 + ix2) in (0.1);

(ii) utilize the Siciak-Zaharjuta extremal function VK(z1, z2) for K when we
consider K ⊂ R2 ⊂ C2.
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In this second case, since (z1, z2) → S(z1, z2) = (w1, w2) = (z1 + iz2, z1 − iz2)

is an invertible complex-linear map, it is easy to see that

VK̃(w1, w2) = VK(z1, z2) where K̃ := S(K)

= {(w1, w2) : w1 ∈ K, w2 = w1} (3.1)

(or use Theorem 5.3.1 of [K]).
Now suppose a real-valued f is harmonic on a simply connected neighborhood

U = U(f ) �= R2 of K but f is not harmonic on all of R2. Let ρ := ρ(f ) and
R := R(f ); then R ≤ ρ. Let gK(x1 + ix2) be the classical Green function for K
as in (i). By a Bernstein-Walsh type theorem for harmonic functions (cf., [ND] or
[W]), it follows that f can be extended to a harmonic function on

D1/ρ := {(x1, x2) ∈ R2 : gK(x1 + ix2) < log 1/ρ};

the hypothesis on f in Theorem 3.1 means simply that 0 < ρ < 1. On the other
hand, sinceR < 1, by the Bernstein-Walsh theorem for holomorphic functions (cf.,
[S]), f can be extended to a holomorphic function of (w1, w2) on

E1/R := {(w1, w2) ∈ C2 : VK̃(w1, w2) < log 1/R}

(here we are considering real polynomials in (x1, x2) to be holomorphic polyno-
mials in (w1, w2) restricted to w1 = w2). Note we always consider holomorphic
extensions to a subset of (some) C2 and harmonic extensions to a subset of R2. In
order to compare these two types of extension of f , we need a lemma.

Lemma 3.2. Let D be a domain in C2 that has a non-empty intersection U with
R2 = {(w1, w2) ∈ C2 : w1 = w2}. If F is holomorphic in D and the restriction f
of F to U is harmonic, then locally in the (w1, w2) coordinates, F is of the form

F(w1, w2) = f1(w1)+ f2(w2) (3.2)

where f1, f2 are holomorphic functions. Moreover, if f is real-valued on U , then

F(w1, w2) = f1(w1)+ f̃1(w2) (3.3)

near U where f̃1(t) = f1(t).

Proof. Note that (3.2) is equivalent (locally) to ∂2F(w1,w2)
∂w1∂w2

= 0. On U ⊂ R2 we
have w1 = w2; moreover, f is harmonic so

0 = ∂2f (w1, w1)

∂w1∂w1
= ∂2F(w1, w2)

∂w1∂w2

for (w1, w2) ∈ U . However, the function ∂2F(w1,w2)
∂w1∂w2

is a holomorphic function on
D; since it vanishes on U , it must vanish identically, proving (3.2). Equation (3.3)
is a direct calculation from (3.2) and the assumption that f is real-valued on U . ��
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Consider now, for r < 1, the sets

�1/r := {(w1, w2) ∈ C2 : gK(w1) < log 1/r, gK(w2) < log 1/r}
= D1/r ×D∗

1/r ,

which are also simply connected. Then by Lemma 3.2 (equation (3.3)) and the fact
that the coordinate projections πj onto the wj−plane satisfy π1(�1/ρ) = D1/ρ
and π2(�1/ρ)

∗ = D1/ρ , we see that f has a holomorphic extension of the form
F(w1, w2) = f1(w1) + f̃1(w2) to the set �1/ρ . The singularities of F are of the
formw1 = const. orw2 = const.; hence F has a singularity on ∂�1/ρ . This means
that f1 has a singularity on ∂D1/ρ . On the other hand, f can be extended to a
holomorphic function F(w1, w2) on

E1/R := {(w1, w2) ∈ C2 : VK̃(w1, w2) < log 1/R}
but to no larger level set E1/R′ for R′ < R. In particular,

if r < 1 is such that E1/r ⊂ �1/ρ, then r ≥ R. (3.4)

Example. Take K = � and let

f (x1, x2) = f (x1 + ix2) = f (s) = 
( 1

s − 2
) = x1 − 2

(x1 − 2)2 + x2
2

.

Then f is harmonic in D1/ρ = {s : |s| < 2} (ρ = 1/2) and has a singularity on
∂D1/ρ . The function

F(w1, w2) := 1

2
(

1

w1 − 2
+ 1

w2 − 2
) = f1(w1)+ f̃1(w2)

is a holomorphic extension of f where f1(w1) = 1
2 (

1
w1−2 ). Note F is holomorphic

on

{(w1, w2) ∈ C2 : |w1| < 2, |w2| < 2} = {(w1, w2) ∈ C2 : |w1| < 2, |w2| < 2}
= �1/ρ

and has singularities on ∂�1/ρ .
To construct a link between the sets E1/R and �1/ρ , we define the function

hK(s) := inf
w2
VK̃(s, w2). (3.5)

From the definition of hK , VK̃(w1, w2) ≥ hK(w1). For K ⊂ R2, VK(z1, z2) =
VK(z1, z2); in the (w1, w2) coordinates, this becomes

VK̃(w1, w2) = VK̃(w2, w1). (3.6)

From (3.5) and (3.6), hK(w2) ≤ VK̃(w2, w1) = VK̃(w1, w2) so that

VK̃(w1, w2) ≥ max[hK(w1), hK(w2)].

To compare gK and hK , we first prove the following.
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Lemma 3.3. Let K ⊂ R2 be a convex body. Then hK(s) := infw2 VK̃(s, w2) is
superharmonic in R2 \K ≡ C \K .

Proof. To prove the superharmonicity of hK , we revert to the notation in section 1
and summarize the discussion there. Given a strictly convex domainD ⊂ CN con-
taining the origin and with real-analytic boundary, D′ is a strictly convex domain
with real-analytic boundary containing the origin 0, and G = GD′ , the pluricom-
plex Green function for D′ with logarithmic pole at 0, is real-analytic in D

′ \ {0}.
Given z′ ∈ D′, the complex hyperplane Hz′ := {ζ ∈ CN :< ζ, z′ >= 1} lies in
CN \D and

−G(z′) = inf
x∈Hz′

VD(x). (1.7)

Now as z′ varies over any analytic disk δ′ inD′, since −G is plurisuperharmonic, it
follows that −G|δ′ is superharmonic. From (1.7), the functionw → infx∈Hw VD(x)
is superharmonic for w ∈ δ′. This remains true for D replaced by a convex body
K ⊂ RN as can be seen utilizing a limiting argument and the approximation result
in Proposition 2.2.

We work in R2 where we consider R2 as the image of the embedding of C
into C2 given by s → (s, s). Then a convex body K ⊂ R2, which we may
assume contains the origin, can be considered as sitting inside the totally real
2−plane {(w1, w2) : w1 = w2} as the set K̃ := S(K) (see (3.1)). Now the
hyperplane Hs := {(s, w2) : w2 ∈ C} is disjoint from K̃ provided (s, s) �∈ K̃ .
Approximating K from above by {Kj = Dj } as in Proposition 2.2, and writing
K̃j = S(Kj ), D̃j = S(Dj ) – note S(Dj ) is strictly convex and contains the origin
– if (s, s) ∈ C2 \ K̃ , then (s, s) ∈ C2 \ K̃j for sufficiently large j . For such j , the
family of hyperplanes {Hs} as (s, s) ranges over points in C2 \ K̃j can be written
as hyperplanes {Hw′ } with w′ = (w′

1, w
′
2) ∈ (D̃j )′ (see (1.4)):

Hw′ : = {(w1, w2) ∈ C2 :< w,w′ >= w1w
′
1 + w2w

′
2 = 1}

= {(s, w2) : sw′
1 + w2w

′
2 = 1}.

In particular, since (s, 0) ∈ Hs we have sw′
1 = 1 so that w′

1 = 1/s. But then
w′

2 = 0; i.e., (w′
1, w

′
2) = (1/s, 0). This says that the points on the complex line

w′
2 = 0 in (D̃j )′ correspond to the “parallel hyperplanes”Hs = H(1/s,0) in C2\K̃j .

Thus

hKj (s) := inf
(s,w2)∈Hs

VK̃j (s, w2) = inf
x∈H(1/s,0)

VK̃j (x) = −G
(D̃j )

′(1/s, 0)

for sufficiently large j . The functions hKj (s) = −G
(D̃j )

′(1/s, 0) form an increas-
ing sequence of superharmonic functions on a sequence of domains increasing to
C\K . We haveVK̃j ↗ VK̃ uniformly on all of C2; in particular, on each hyperplane

Hs in C2 \ K̃ . Thus hKj ↗ hK on C \K , and on this set hK is superharmonic. ��
Since hK(s) = 0 for s ∈ K and hK(s) − log |s| = 0(1) as |s| → ∞, we have
gK ≤ hK and hence

VK̃(w1, w2) ≥ max[hK(w1), hK(w2)] ≥ max[gK(w1), gK(w2)]. (3.7)
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In terms of sublevel sets, (3.7) says, for any r < 1,

E1/r ⊂ {(w1, w2) ∈ C2 : hK(w1) < log 1/r, hK(w2) < log 1/r}
⊂ �1/r = D1/r ×D∗

1/r . (3.8)

Thus we want to decrease r until E1/r hits a singularity of F ; from (3.8), the
corresponding level set of hK will also hit this singularity.

Proposition 3.4. LetK ⊂ R2 be a convex body and let f be harmonic in a simply
connected neighborhood ofK but not on all of R2. We have gK < hK at all points
in R2 \K if and only if R < ρ.

Proof. Since gK is harmonic on R2 \K and hK is superharmonic on R2 \K with
gK ≤ hK , we have strict inequality on R2 \ K if strict inequality holds at one
such point. Suppose first that gK < hK on R2 \ K . Then at each point (w1, w2)

on ∂�1/ρ we have hK(w1) > log 1/ρ or hK(w2) > log 1/ρ so that, from (3.7),
VK̃(w1, w2) > log 1/r > log 1/ρ for some r < ρ. Thus E1/r ⊂ �1/ρ so that,
from (3.4), ρ > r ≥ R.

Now suppose gK = hK on R2 \K . Take s with gK(s) = log 1/ρ at which f1
has a singularity. Then

hK(s) = log 1/ρ = inf
w2
VK̃(s, w2)

so that

E1/ρ = {(w1, w2) ∈ C2 : VK̃(w1, w2) ≤ log 1/ρ}
must hit the complex line {(w1, w2) ∈ C2 : w1 = s}. Thus f cannot be extended
holomorphically beyond E1/ρ ; i.e., 1/ρ ≥ 1/R or ρ ≤ R. Since we always have
R ≤ ρ, equality holds. ��
In the standard z = (z1, z2) coordinates, a variety L = Lq as in Theorem 2.4
through a point q ∈ C2 \K is of the form

z = (z1, z2) = f (t) = (f1(t), f2(t)) = (c1 + tb1 + b̄1/t, c2 + tb2 + b̄2/t), |t | ≥ 1

where b = (b1, b2) ∈ C2, c = (c1, c2) ∈ R2, andVK(f (t)) = log |t |; the set f (T )
is an ellipse E ⊂ R2 (possibly degenerate). In the (w1, w2) = (z1 + iz2, z1 − iz2)

coordinates, the parameterization of S(L) has the form

(w1, w2) = h(t) = (h1(t), h2(t)) = (f1(t)+ if2(t), f1(t)− if2(t)).

Since VK̃(w1, w2) = VK(z1, z2) (see (3.1)), we have, in particular, VK̃(h(t)) =
log |t |. Direct calculation shows

h1(t) = α + βt + γ /t and h2(t) = α + γ t + β/t (3.9)

where α = c1 + ic2, β = b1 + ib2, and γ = b1 + ib2. As in (2.9), the formu-
las in (3.9) define a holomorphic map h = (h1, h2) from C \ {0} into C2 where
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h(C\{0}) = S(L)∪S(L∗). Note that the conjugate leafL∗ given by t �→ c+t b̄+b/t
transforms in (w1, w2)-coordinates to S(L∗) given by

h̃1(t) := α + γ t + β/t, h̃2(t) := α + βt + γ /t. (3.10)

We consider leavesS(L) = S(Lq)whereS(q) = (s, w) ∈ C2 satisfieshK(s) =
VK̃(s, w). Before giving the proof of the “only if” direction of Theorem 3.1, we
need a lemma which shows that if gK = hK , then such leaves, for |s| sufficiently
large, project conformally in the w1 variable.

Lemma 3.5. Suppose gK = hK . There exists R′ > 0 such that for all |s| >
R′, if (s, w) ∈ C2 satisfies hK(s) = VK̃(s, w), then the parametrization t �→
(h1(t), h2(t)) of S(L) has the property that h1 is conformal on C \�.

Proof. We will use the fact that
(*) a rational map ψ : C \� → C of the form ψ(t) = at + b/t with |b| ≤ |a| is a
conformal map on C \�.

First of all, we show that there exists M > 0 such that for all |s| > 1,

hK(s) = inf
|w2|<M|s|

VK̃(s, w2). (3.11)

For, since VK̃ ∈ L+(C2), there exists C1 such that

VK̃(s, w) ≥ log+ |(s, w)| + C1 = 1
2 log+(|s|2 + |w|2)+ C1;

since hK = gK ∈ L(C), there exists C2 such that

gK(s) < log+ |s| + C2.

We may assume C2 > C1. For |s| > 1, we solve for w in the inequality

1
2 log(|s|2 + |w|2)+ C1 ≥ log |s| + C2,

to obtain |w| ≥ |s|√e2(C2−C1) − 1. We can take M = √
e2(C2−C1) − 1.

Next, we show there exist numbers R,R′ > 0 such that for all (s, w) ∈ C2

satisfying |s| > R′ and |w| < M|s|, a leaf S(L) through (s, w) parametrized as in
(3.9) satisfies |γ |/|β| < R with (s, w) = h(t) for some |t | > R. To see this, note
first that the leaf parameter t grows uniformly with s:

log |t |=VK̃(s, w)≥ log |(s, w)|+C1 ≥ log |s|+C1 so that |t |≥|s|eC1 . (3.12)

Now h(∂�) ⊂ K̃ implies that in the (z1, z2)-coordinates, (c1, c2) ∈ K . Thus for
any leaf, |α| = |c1 + ic2| ≤ C3 = C3(K) is uniformly bounded since K is com-
pact. Consider (s, w) such that |w| < M|s|. For any α with |α| ≤ C3 we have the
estimates

|w − ᾱ| ≤ |w| + |α| < M|s| + |α| ≤ M|s − α| + (M + 1)|α| ≤ M|s − α|
+(M + 1)C3. (3.13)

Thus if s satisfies |s| ≥ (2M+1)C3
M

, (3.13) implies that |w − ᾱ| < 2M|s − α|.
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Given (s, w)with |s| ≥ (2M+1)C3
M

and |w| < M|s|, consider a leaf S(L) through
(s, w) parametrized as in (3.9). For s = h1(t), w = h2(t), using (3.9) and the fact
that |α| ≤ C3,

|γ̄ t + β̄/t | = |w − ᾱ| < 2M|s − α| = 2M|βt + γ /t |
which gives

|γ |
|β| <

2M|t |2 + 1

|t |2 − 2M
=: φ(t).

As t → ∞, clearly φ(t) → 2M . Thus there exists R1 > 0 such that if |t | > R1,
then φ(t) < 3M . Finally, take R′ > max{R1e

−C1 ,
(2M+1)C3

M
, 3Me−C1}. Then

for all (s, w) with |s| > R′ and |w| < M|s|, (3.12) implies that s = h1(t) for
some |t | ≥ R′eC1 =: R, and by the choice of R′ we have R > R1, so that
|γ |/|β| < 3M < R.

Now with M > 0 so that (3.11) holds, and R,R′ as in the previous paragraph,
we fix s with |s| > R′. Pick (s, w) ∈ C2 such that hK(s) = VK̃(s, w) and consider
the leaf S(L) through (s, w) parametrized as in (3.9). To show that h1 is conformal,
from (*) it suffices to show that |β| ≥ |γ |. Suppose |β| < |γ |. We have s = h1(t)

for some t with |γ |/|β| < R < |t |, from which it follows that |β||t |/|γ | > 1. Now

s = α + βt + γ

t
= α + γ

(βt
γ

) + β

(βt/γ )
=: α + γ t ′ + β

t ′
,

i.e., the plane {w1 = s} intersects the conjugate leaf S(L∗) at a point (s, w′) corre-
sponding to the parameter t ′ = βt/γ ∈ C \� (see (3.10)). Then

hK(s) ≤ VK̃(s, w
′) = log |t ′| = log

|β|
|γ | |t | < log |t | = VK̃(s, w),

which contradicts the fact that hK(s) = VK̃(s, w). ��
Proof of “only if” in Theorem 3.1. We show that if hK = gK on C\K , then ∂K is
an ellipse. Fix s ∈ C\K with |s| > R′ whereR′ is as in Lemma 3.5. Choosew ∈ C
with hK(s) = VK̃(s, w). Let S(L) be a variety in C2 \ K̃ containing (s, w) param-
etrized in (w1, w2)-coordinates by h(t) = (h1(t), h2(t)) as in (3.9). Lemma 3.5
shows that h1 is a conformal map of C\� onto its image h1(C\�) := C\U . More-
over, U ⊂ K; h1(T ) = ∂U is an ellipse or a line segment; and VK̃(h(t)) = log |t |
for |t | ≥ 1. Now (s, w) = h(t0) for some t0 ∈ C \�. Thus h1(t0) = s, and, using
the conformality of h1,

gK(s) = hK(s) = VK̃(s, w) = log |t0| = g�(t0) = gU(s).

But U ⊂ K implies that gK ≤ gU ; both functions are harmonic in C \ K; thus,
equality at one point s ∈ C \ K implies equality throughout. Now K and U are
compact, convex sets in C with gK = 0 on K and gU = 0 on U ; hence K = U .
Since K has nonempty interior, ∂K = ∂U is an ellipse. ��
Remark. There is no known Bernstein-Walsh type theorem for harmonic functions
in RN when N > 2 (but see [BL]); thus it is not clear, apriori, whether the “only
if” direction of Theorem 3.1 remains valid in this case.
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4. The function V (1)K

Following [BCL], letK ⊂ CN be a regular compact set and let pd be a polynomial
of degree d . Then pd(K) is a regular compact set in C and 1

d
Vpd(K)(pd(z)) ≤

VK(z). Conversely, if ||pd ||K ≤ 1, then Vpd(K)(w) ≥ log+ |w| for all w ∈ C;
in particular, Vpd(K)(pd(z)) ≥ log+ |pd(z)|, from which it follows that VK(z) ≤
suppd

1
d
Vpd(K)(pd(z)); i.e.,

VK(z) = sup
pd

1

d
Vpd(K)(pd(z)).

Using only the polynomials of degree one, we define

V
(1)
K (z) := sup{V�(K)(�(z)) : � is complex affine (� : CN → C)}. (0.2)

From the work of Baran and Lundin [Ba1], [Ba2], [L1], it follows that V (1)K = VK

forK ⊂ RN a compact, convex body which is symmetric with respect to the origin.
It was shown in [BCL] that for the simplex S2 := {(x1, x2) ∈ R2 : x1, x2 ≥
0; x1 + x2 ≤ 1} in R2, V (1)S2

�= VS2 . Indeed, more is true. Before we proceed,

we mention two results from [BLM] which we will need. Here, K,K ′ ⊂ CN are
compact and regular.

(i) ‖V (1)K − V
(1)
K ′ ‖CN ≤ ‖VK − VK ′ ‖CN (Lemma 3.3, [BLM]).

(ii) V (1)K is continuous. (Proposition 3.5, [BLM]).

Using the fact that �(K) is regular, and observing that in the definition (0.2) of
V
(1)
K we need only utilize �(z) =< a, z >with |a| = 1, it follows easily that for each

z ∈ CN , there exists �(z) =< a, z >with |a| = 1 for which V (1)K (z) = V�(K)(�(z))

(cf., Proposition 2.14 [Ma2]).
Let � denote the collection of regular compact sets K in CN that are polyno-

mially convex; i.e.,

K̂ := {z ∈ CN : |p(z)| ≤ ||p||K for all holomorphic polynomials p} = K.

Klimek has shown [K2] that

�(E, F ) := ‖VE − VF ‖CN , E, F ∈ �
defines a metric � on �. Now it is straightforward to show (cf., Prop. 4.2 [BCL])
that if K ∈ � satisfies V (1)K = VK , then K is lineally convex; i.e., the complement
ofK is the union of complex hyperplanes. Let�1 denote the collection of lineally
convex, regular compact setsK in CN with the property that �(K) is polynomially
convex in C for each �(z) =< a, z >. It follows from [Ma], Chapter 3 or [Ma2],
Lemma 2.4 that such setsK are polynomially convex in CN ; i.e.,�1 ⊂ �. Define

�(1)(E, F ) := ‖V (1)E − V
(1)
F ‖CN , E, F ∈ �1.

Then�(1) defines a metric on�1 (Proposition 3.7 [Ma] or Proposition 2.10 [Ma2]);
moreover, from (i),

�(1)(E, F ) ≤ �(E, F ).
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The set θ := {K ∈ �1 : V (1)K �= VK} is a non-empty open set in �1 equipped
with the �(1) metric (this is essentially Proposition 6.1 of [BCL] together with (ii)).
Moreover, if we let R be the collection of compact convex bodies in R2 – note that
R ⊂ �1 – then Corollary 6.2 of [BCL] states that

θR := {K ∈ R : V (1)K �= VK}

is a non-empty open set in R equipped with the �(1) metric. In Corollary 4.2 we
show that θR is dense in R with respect to both � and �(1). The key ingredient
is a strengthening and generalization of the simplex result. To state this, recall
in Theorem 2.4 we showed that if K ⊂ RN is a convex body, then through any
point q ∈ CN \ K there is a one-dimensional variety Lq = F(C \ �) where
F = (F1, ..., FN)with Fn(t) = an0 +an1t+an1/t for some an0 ∈ R and an1 ∈ C;
F(T ) ⊂ K; and VK(F (t)) = log |t | for t ∈ C \ �. These sets Lq are complex
ellipses; however, if the coefficients an1 are real, then Lq is a complex line. For
example, in C2, such an Lq is the complex line a21(z1 − a10) = a11(z2 − a20). We
call such an Lq degenerate.

Proposition 4.1. IfK is a convex polygon in R2 having no two sides parallel, then
V
(1)
K (z) < VK(z) at all points z ∈ C2 \ L where L is the union of all degenerate
Lq .

Remark 1. In the case of the simplex S2, direct calculation (cf., [Ma]) shows that
L is the union of the three families of complex lines whose intersection with R2

are real lines through one of the vertices of S2. This is a three (real) dimensional
set in C2. Thus, in some sense, V (1)S2

< VS2 on “most” of C2. In general, since
Lq ∩K must be a line segment for a degenerate Lq and a convex polygon K , the
set L is certainly contained in the set L′ of all complex lines whose intersections
with R2 are real lines which intersect K . Thus, for example, all points of the form
(R, i)withR > max(x1,x2)∈K |x1| lie in C2 \L′, and hence in C2 \L. In particular,

{z : V (1)K (z) < VK(z)} is nonempty and unbounded.

Remark 2. The assumption that no two sides of K are parallel is essential. For the
unit squareK = [−1, 1] × [−1, 1], V (1)K = VK ; indeed, this is true for any convex
polygon that is symmetric with respect to the origin.

Proof. For z �∈ L, by Theorem 2.4, we take a variety Lz = f (C \�) through z for
which VK(f (t)) = log |t |. For simplicity, we write f (t) = (

(c1t + c1/t), (c2t +
c2/t)

)
. Since z ∈ C2 \ L, Lz is nondegenerate and Lz ∩ R2 is a real (nondegen-

erate) ellipse forming the boundary in R2 of a convex, compact set U ⊂ K with
nonempty interior. In particular, U contains no vertices of K .

Since K is regular, we can find a linear map � : C2 → C such that V (1)K (z) =
V�(K)(�(z)). Then �◦f is a holomorphic map from C\� to C which is continuous
up to T = ∂�, and � ◦ f (T ) = �(∂U) where �(U) ⊂ �(K). Note that replacing t
by eiθ t in the parameterization for f still gives the same variety Lz. Moreover, for
the conjugate leafL∗

z ,L
∗
z∩R2 = Lz∩R2. Hence we may normalize our parameters
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as follows. If �(z) = az1 + bz2 with �(ab̄) ≥ 0, we may assume that c1 ∈ R+,
and �(c2) ≤ 0. Under this normalization, we will show that � ◦ f is 1-1. We have

� ◦ f (t) = (ac1 + bc2)t + (ac̄1 + bc̄2)
1

t

and it suffices to show (cf., (*) in the proof of Lemma 3.5) that |ac1 + bc2| ≥
|ac̄1 + bc̄2|. We compute

|ac1 + bc2|2 = |ac1|2 + |bc2|2 + 2c1[
(ab)
(c2)− �(c2)�(āb)]
|ac̄1 + bc̄2|2 = |ac1|2 + |bc2|2 + 2c1[
(ab)
(c2)+ �(c2)�(āb)].

If �(āb) < 0 we normalize so that �(c2) ≥ 0 and repeat the above procedure.
Thus �◦f is a one-to-one conformal map of C\� onto C\�(U). Writing z = f (t)

we have

VK(z) = log |t | = V(�◦f )(T )((� ◦ f )(t)) = V�(∂U)(�(z)) = V�(U)(�(z)).

Now �(U) ⊂ �(K), and in general, �(U) is the region bounded by an ellipse
while �(K) is the region bounded by a convex polygon. In the case where �, con-
sidered as a real-linear map from R2 to R2, has rank two, �(K) is a nondegener-
ate convex polygon (i.e., with nonempty interior in R2), and �(U) is the region
bounded by a nondegenerate ellipse. Since �(U) thus contains no vertices of �(K),
�(K) \ �(U) has positive area.

The case where �(K) is degenerate (i.e., a line segment) occurs when �, consid-
ered as a real-linear map from R2 to R2, has rank one. In this case we may consider
� as a projection map � : R2 → R. Suppose that �(K) = [α, β]. This means that α
and β must be the projections under � of parallel supporting lines M1 and M2 for
K . These lines cannot both contain sides of K as no two sides of K are parallel.
Thus at least one of the intersections M1 ∩ K or M2 ∩ K is a vertex of K . If it
were the case that �(U) = [α, β], then at least one of the intersections M1 ∩ U or
M2 ∩ U is a vertex of K . But this cannot happen as U contains no vertices of K .
Thus �(K) \ �(U) contains a (nontrivial) line segment.

Now �(U) and �(K) are nonpolar (since each contains a line segment), and
polynomially convex since both sets are, in particular, convex. Moreover, in each
case described above �(K) \ �(U) is nonpolar. From classical potential theory (see
e.g., [R]) we conclude that V�(K)(�(z)) < V�(U)(�(z)). But

V
(1)
K (z) = V�(K)(�(z)) and V�(U)(�(z)) = VK(z),

so the proposition is proved. ��
Corollary 4.2. The set θR is dense in R with respect to both � and �(1).

Proof. Fix K ∈ R. Given ε > 0 we may approximate K from the outside by a
convex polygon P such that ‖VP − VK‖CN < ε. By modifying P , if necessary,

we can assume that no two sides are parallel; hence V (1)P �= VP . Thus θR is dense
in �. Since �(1)(P ,K) ≤ �(P,K), θR is dense in �(1) as well. ��
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