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Abstract. In the setting of doubling metric measure spaces with a 1-Poincaré
inequality, we show that sets of Orlicz �-capacity zero have generalized Haus-
dorff h-measure zero provided that

∫ 1

0
�−1(t1−sh(t)) dt < ∞,

where �−1 is the inverse of the function �(t) = �(t)/t , and s is the “upper
dimension” of the metric measure space. This condition is a generalization of a
well known condition in Rn. For spaces satisfying the weaker q-Poincaré inequal-
ity, we obtain a similar but slightly more restrictive condition. Several examples
are also provided.

Mathematics Subject Classification (2000): 31C15, 28A78, 46E30

1. Introduction

In Rn, it is known that sets of p-capacity zero have generalized Hausdorff h-mea-
sure zero provided that

∫ 1

0
(tp−nh(t))1/(p−1) dt

t
< ∞,

see Frostman [7] (p = 2) and Theorem 7.1 in Havin–Maz′ya [10], or Theo-
rem 5.1.13 in Adams–Hedberg [2]. In particular, the Hausdorff dimension of such
sets is at most n−p. Similar results for weighted capacities and Hausdorff measures
in Rn can be found e.g. in Heinonen–Kilpeläinen–Martio [11], Theorem 2.32. For
capacities associated with potentials generated by various nonnegative kernels, a
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generalization of the above condition was proved by Aikawa in [1], Theorem 2.
Among Hausdorff measures and capacities generated by the powers tp, all these
results are sharp.

In this paper, we study the relation between Orlicz capacities cap� and gener-
alized Hausdorff measures �h on metric measure spaces. This problem has been
motivated by the recent development in the theory of Sobolev spaces and calculus
on metric measure spaces without a differentiable structure (see e.g Hajłasz [8],
Heinonen–Koskela [13], Cheeger [6] and Shanmugalingam [18]), and by applica-
tions in the theory of mappings with finite distortion, which appear e.g. in nonlinear
elasticity and are a generalization of mappings with bounded distortion. The fact
that sets of p-capacity zero have Hausdorff dimension at most n−p has been used
to show that certain mappings with Lp-integrable distortion are open and discrete,
see e.g. Reshetnyak [17], Heinonen–Koskela [12] and Villamor–Manfredi [19].
Our results about Orlicz capacities are used in Björn [4] to obtain openness and
discreteness for some mappings with distortion in Orlicz spaces. Orlicz–Sobolev
capacities on metric spaces have also been treated by e.g. Aïssaoui [3].

Under the assumption that the metric space is doubling and supports a 1-Poin-
caré inequality, we show that cap�(K) = 0 implies �h(K) = 0, provided that

∫ 1

0
�−1(t1−sh(t)) dt < ∞, (1)

where�−1 is the inverse of the function�(t) = �(t)/t , and s is the “upper dimen-
sion” of the metric measure space, see Theorem 3 and Proposition 2 for the exact
formulation.

In particular, the implication is true in the following two cases (Examples 2
and 3):

�(t) = tp, p > 1 and
∫ 1

0
(tp−sh(t))1/(p−1) dt

t
< ∞;

h(t) = tα, 0 < α < s − 1 and
∫ ∞

1

(
�(r)

r

)1/(1−s+α)
dr < ∞.

The former condition is the same as the condition valid in Rn, while the latter
is satisfied e.g. for�(t) = t s−α+ε and�(t) = t s−α logs−1−α+ε(e+ t)with ε > 0.

Under the weaker assumption that the metric measure space is doubling and
supports a q-Poincaré inequality for some q > 1, we show that cap�(K) = 0
implies �h(K) = 0, provided that

∫ 1

0
�−1(t−sh(t)) dt < ∞,

where �−1 is the inverse of the Young function �. This condition is somewhat
stronger than (1), as shown by Proposition 3 and Examples 4 and 5.
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2. Notation and preliminaries

Throughout the paper,X = (X, d, µ) will be a metric space equipped with a Borel
regular measure µ satisfying 0 < µ(B) < ∞ for all balls B = B(x0, r) = {x ∈
X : d(x, x0) < r} in X with 0 < r < ∞. We shall also assume that the measure
µ is doubling and that X supports a Poincaré inequality, see Definitions 1 and 3
below.

Definition 1. If σ > 0 and B = B(x0, r) is a ball, we let σB denote the ball
B(x0, σ r). We say that the measure µ is doubling, if there exists C > 0 such that

µ(2B) < Cµ(B)

for all balls B in X.

In [13], Heinonen and Koskela introduced upper gradients as a substitute for
the modulus of the usual gradient. The advantage of this notion is that it can be
defined without the notion of partial derivatives and can easily be used in the metric
space setting.

Definition 2. A Borel function g onX is an upper gradient of a real-valued function
u on X if for all rectifiable paths γ : [0, lγ ] → X parameterized by the arc length
ds,

|u(γ (0))− u(γ (lγ ))| ≤
∫
γ

g ds.

Definition 3. We say that the space X supports a weak q-Poincaré inequality with
q ≥ 1, if there exist C > 0 and σ ≥ 1 such that

1

µ(B)

∫
B

|u− uB | dµ ≤ Cr

(
1

µ(σB)

∫
σB

gq dµ

)1/q

holds for all balls B = B(x0, r) in X and all pairs (u, g), where u is a Lips-
chitz function on X and g is an upper gradient of u. Here and in what follows,
uB = µ(B)−1 ∫

B
u dµ.

Definition 4. A convex function � : (0,∞) → (0,∞) satisfying

lim
t→0+

�(t)

t
= 0 and lim

t→∞
�(t)

t
= ∞

is called a Young function. If �(2t) ≤ C�(t) for some constant C and all t ∈
(0,∞), then � is said to be doubling (or satisfying the �2-condition).

Definition 5. The Orlicz space L�(X) is the set of all measurable functions with
the Luxemburg norm

‖f ‖L�(X) = inf

{
λ > 0 :

∫
X

�

( |f (x)|
λ

)
dx ≤ 1

}
< ∞,

where we interpret �(0) = 0.
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The estimates

‖f ‖L�(X) ≤
∫
X

�(f ) dµ, if ‖f ‖L�(X) ≥ 1,

‖f ‖L�(X) ≥
∫
X

�(f ) dµ, if ‖f ‖L�(X) ≤ 1 (2)

for the Luxemburg norm will be useful. For the proofs see e.g. Lemma 3.8.4 in
Kufner–John–Fučík [14] or Theorem III.13 in Rao–Ren [16].

Definition 6. Let � be a Young function and let

ψ(τ) := inf{t : ϕ(t) > τ },
where ϕ is the left derivative of� (it exists everywhere and is nondecreasing). Then
the function


(t) :=
∫ t

0
ψ(τ) dτ

is called the complementary Young function to �.

Note that � is the complementary function to 
. By Theorem 3.4.7 in Kuf-
ner–John–Fučík [14] or Corollary II.4 in Rao–Ren [16], the complementaryYoung
function to� is doubling if and only if there exist k0 > 1 and T0 > 0 such that for
all t ≥ T0,

�(t) ≤ �(k0t)

2k0
. (3)

The following generalized Hölder inequality for Orlicz spaces is proved e.g. in
Theorem 3.7.5 in Kufner–John–Fučík [14] or in Rao–Ren [16].

Theorem 1. For a pair�,
 of complementaryYoung functions and forf ∈ L�(X)
and g ∈ L
(X),

∫
X

|fg| dµ ≤ 2‖f ‖L�(X)‖g‖L
(X).

Definition 7. Let � be a Young function and K ⊂ B(x0, R) be compact. The
�-capacity of K with respect to the ball B(x0, 2R) is

cap�(K,B(x0, 2R)) = inf ‖g‖L�(X),
where the infimum is taken over all upper gradients g of all Lipschitz continuous
functions ϕ with compact support in B(x0, 2R) and ϕ ≥ 1 on K .

Unless otherwise stated, C denotes a positive constant whose exact value is
unimportant and depends only on the fixed parameters, such as the doubling con-
stant of µ and the constants in the Poincaré inequality. When needed, we will point
out the dependence on other parameters.
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3. Generalized Hausdorff measures

Definition 8. Let h : [0,∞) → [0,∞) be a nondecreasing function such that
limt→0+ h(t) = h(0) = 0. For 0 < δ ≤ ∞, and E ⊂ X, we define

�δh(E) = inf
∞∑
j=1

h(diamEj),

where the infimum is taken over all collections {Ej }∞j=1 such that Ej ⊂ X,

diamEj ≤ δ and E ⊂ ⋃∞
j=1 Ej . The Hausdorff h-measure is then

�h(E) = lim
δ→0+

�δh(E).

Let also

λδh(E) = inf
∞∑
j=1

cjh(diamEj),

where the infimum is taken over all collections {(Ej , cj )}∞j=1 such that Ej ⊂ X,

diamEj ≤ δ, 0 < cj ≤ 1 and χE ≤ ∑∞
j=1 cjχEj .

In the proof of our main result, Theorem 3, we shall need the following Frost-
man lemma. For h(t) = t s , it is proved in Mattila [15], Theorem 8.17, and the proof
is the same for general h.

Theorem 2. Let K ⊂ X be compact and 0 < δ ≤ ∞. Then there exists a Radon
measure ω supported on K such that ω(K) = λδh(K) and ω(E) ≤ h(diamE) for
all E ⊂ X with diamE ≤ δ.

Theorem 2 is formulated in terms of the weighted Hausdorff content λδh, rather
than �δh. Clearly, λδh(E) ≤ �δh(E) for all E ⊂ X and 0 < δ ≤ ∞. The following
lemma gives a partial converse to this inequality. As we have not been able to find
it in this generality in the literature, we show how the proof of Lemma 8.16 in
Mattila [15] can be modified to obtain the result we need.

Lemma 1. There exists a constant C depending only on the doubling constant of
µ such that for all compact sets K ⊂ X and 0 < δ ≤ ∞,

�δh(K) ≤ Cλδh(K).

Proof. Let 0 < δ ≤ ∞ and fix 0 < t < 1. Let cj and Ej be as in the definition of
λδh(K) and find open balls Bj ⊃ Ej with radii rj ≤ 2 diamEj . Cover each ball Bj
by Nj balls Bij with radii rj /20 ≤ diamEj/10. This can be done so that Nj ≤ N

for all j , where N depends only on the doubling constant of the measure µ.
The sets

{
x :

∑k
j=1 cjχBj (x) > t

}
, k = 1, 2 . . . , form an open cover of the

compact set K and hence there exists k such that

K ⊂
{
x :

k∑
j=1

cjχBj (x) > t

}
.
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Now, apply the argument from the proof of Lemma 8.16 in Mattila [15] to B =
{Bij : j = 1, 2, . . . , k; i = 1, 2, . . . , Nj }. It shows that

�δh(K) ≤ �δh

({
x :

k∑
j=1

Nj∑
i=1

cjχBij (x) > t

})
≤ 1

t

k∑
j=1

Nj∑
i=1

cjh(diam 5Bij )

≤ N

t

k∑
j=1

cjh(diamEj).

Taking infimum over all admissible collections {(Ej , cj )}∞j=1 finishes the proof.

�

4. Measures and maximal functions

In this section we prove an integral estimate for maximal functions, which will be
used in the proof of our main result. First, we make the following definition.

Definition 9. For a Borel measure ω on X, we let

W(x, ρ) =
∫ ρ

0

ω(B(x, t))

µ(B(x, t))
dt and M(x, ρ) = sup

0<r<ρ

rω(B(x, r))

µ(B(x, r))
.

The following two estimates are metric space analogues of Theorem 3.6.1 in
Adams–Hedberg [2]. The proofs given here are similar to those in [2].

Proposition 1. Let X be a metric space equipped with a doubling measure µ. Let
ω be a Borel measure on X with suppω ⊂ B(x0, R). Let 
 be a doubling Young
function. Then∫

X


(W(x,R)) dµ(x) ≤ C

∫
B(x0,2R)


(M(x, 3R)) dµ(x),

where C depends only on the doubling constants of µ and 
.

Lemma 2. LetX be a metric space equipped with a doubling measure µ. Let ω be
a Borel measure on X with suppω ⊂ B(x0, R). Then there exist constants a > 1
and C > 0, depending only on the doubling constant of µ, such that for all λ > 0
and all 0 < ε ≤ 1, the following “good λ inequality” holds,

µ({x : W(x,R) > aλ}) ≤ Cεµ({x : W(x,R) > λ})
+µ({x ∈ B(x0, 2R) : M(x, 3R) > ελ}).

Proof of Proposition 1. Multiply the “good λ inequality” from Lemma 2 by
 ′(λ)
(which exists for a.e. λ by the convexity of
) and integrate with respect to λ from
0 to �, ∫ �

0
µ({x : W(x,R) > aλ})
 ′(λ) dλ

≤ Cε

∫ �

0
µ({x : W(x,R) > λ})
 ′(λ) dλ

+
∫ �

0
µ({x ∈ B(x0, 2R) : M(x, 3R) > ελ})
 ′(λ) dλ.
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As ω has compact support, so doesW and the integrals are finite. The monotonicity
of 
 ′ and the doubling condition on 
 yield for a.e. λ > 0,


 ′(aλ) ≤ 1

aλ

∫ 2aλ

aλ


 ′(τ ) dτ ≤ 
(2aλ)

aλ

≤ C
(λ)

λ
≤ C

λ

∫ λ

0

 ′(τ ) dτ ≤ C
 ′(λ),

where C depends only on a and the doubling constant of 
. Similarly, 
 ′(λ) ≤
C
 ′(ελ). Changing variables we now obtain

∫ a�

0
µ({x : W(x,R) > λ})
 ′(λ) dλ

≤ Cε

∫ �

0
µ({x : W(x,R) > λ})
 ′(λ) dλ

+C′
∫ ε�

0
µ({x ∈ B(x0, 2R) : M(x, 3R) > λ})
 ′(λ) dλ,

where C depends on a and the doubling constants of 
 and µ, and C′ depends on
a, ε and the doubling constant of
. Choosing ε > 0 small enough so thatCε < 1

2 ,
and letting � → ∞ then finishes the proof. 
�
Proof of Lemma 2. As in Lemma 4.2 in Björn–MacManus–Shanmugalingam [5],
it can be shown that the function x �→ W(x,R) is lower semicontinuous. Hence,
the set

� = {x : W(x,R) > λ} ⊂ B(x0, 2R)

is open. Assume that �c is nonempty (the case � = X is easier). Then, for every
x ∈ � there exists rx > 0 such that B(x, rx) ⊂ � and B(x, 2rx)∩�c is nonempty.
The collection {B(x, rx/5)}x∈� covers � and by the Vitali type covering theorem
(Theorem 2.1 in Mattila [15]), there exist xj ∈ � and rj = rxj , j = 1, 2, . . . , such
that the balls B(xj , rj /5) are pairwise disjoint and � = ⋃∞

j=1 B(xj , rj ).
LetB = B(xj , rj ), a > 1 and 0 < ε ≤ 1 be fixed for a while but arbitrary. Then

either B ⊂ {x : M(x, 3R) > ελ} or there exists x′ ∈ B such thatM(x′, 3R) ≤ ελ.
Assume that the latter occurs and let x ∈ B be arbitrary.

If rj < R/4, then find x′′ ∈ �c so that d(x, x′′) ≤ 3rj . Then for t ≥ rj , we
have B(x, t) ⊂ B(x′′, 4t) ⊂ B(x, 7t) and B(x, t) ⊂ B(x′, 3t) ⊂ B(x, 5t). The
doubling property of µ then yields,

∫ R/4

rj

ω(B(x, t))

µ(B(x, t))
dt ≤ C

∫ R/4

rj

ω(B(x′′, 4t))

µ(B(x′′, 4t))
dt ≤ CW(x′′, R) ≤ Cλ

and
∫ R

R/4

ω(B(x, t))

µ(B(x, t))
dt ≤ C

∫ R

R/4

ω(B(x′, 3t))

µ(B(x′, 3t))
dt ≤ CM(x′, 3R)

∫ R

R/4

dt

3t
≤ Cελ.
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These two estimates together give

∫ R

rj

ω(B(x, t))

µ(B(x, t))
dt ≤ Cλ,

where C depends only on the doubling constant of µ. Hence, if W(x,R) > aλ

and a is sufficiently large, then W(x, rj ) > aλ − Cλ ≥ aλ/2. It follows that for
rj < R/4,

µ({x ∈ B : W(x,R) > aλ}) ≤ µ({x ∈ B : W(x, rj ) > aλ/2})
≤ C

λ

∫
B

W(x, rj ) dµ(x)

= C

λ

∫ rj

0

∫
X

χB(x)

µ(B(x, t))

∫
X

χB(x,t)(y) dω(y) dµ(x) dt. (4)

Note that χB(x)χB(x,t)(y) is nonzero only if x ∈ B(y, t) ∩ B. In this case, we
have µ(B(y, t)) ≤ µ(B(x, 2t)) ≤ Cµ(B(x, t)) and y ∈ B(x′, 3rj ). The Fubini
theorem then implies

C

λ

∫
B

W(x, rj ) dµ(x) ≤ C

λ

∫ rj

0

∫
B(x′,3rj )

µ(B ∩ B(y, t))
µ(B(y, t))

dω(y) dt

≤ C

λ
M(x′, 3rj )µ(B(x

′, 3rj )).

Inserting this into (4) we have (still for rj < R/4)

µ({x ∈ B : W(x,R) > aλ}) ≤ C

λ
M(x′, 3R)µ(B(xj , 4rj )

≤ Cεµ(B(xj , rj /5). (5)

If rj ≥ R/4, then we have as above,

µ({x ∈ B : W(x,R) > aλ})
≤ C

λ

∫ R

0

∫
X

χB(x)

µ(B(x, t))

∫
X

χB(x,t)(y) dω(y) dµ(x) dt

≤ C

λ

∫ R

0

∫
B(x0,R)

µ(B ∩ B(y, t))
µ(B(y, t))

dω(y) dt

≤ C

λ
M(x′, 3R)µ(B(x′, 3R)) ≤ Cεµ(xj , rj /5),

i.e. (5) holds also for rj ≥ R/4. Finally,

{x : W(x,R) > aλ} ⊂ {x ∈ B(x0, 2R) : M(x, 3R) > ελ}
∪

⋃
{x ∈ B(xj , rj ) : W(x,R) > aλ},
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where the last union is taken over all balls B(xj , rj ) such that B(xj , rj ) �⊂ {x :
M(x, 3R) > ελ}. It then follows using (5) that

µ({x : W(x,R) > aλ})

≤ µ({x ∈ B(x0, 2R) : M(x, 3R) > ελ})+ Cε

∞∑
j=1

µ(B(xj , rj /5))

≤ µ({x ∈ B(x0, 2R) : M(x, 3R) > ελ})+ Cεµ(�),

which finishes the proof. 
�

5. The main result

Theorem 3. Let X be a metric space equipped with a doubling measure µ and
supporting a weak 1-Poincaré inequality. Let s > 0 be such that for every ball
B ⊂ X, there is C > 0 such that for all balls B(y, t) ⊂ B,

µ(B(y, t)) ≥ Cts. (6)

Let � be a Young function with a doubling complementary function 
. Let h :
[0,∞) → [0,∞) be a nondecreasing function such that limt→0+ h(t) = h(0) = 0.
If

∫ 1

0


(t1−sh(t))
t1−sh(t)

dt < ∞, (7)

then �h(K) = 0 for every compact K ⊂ X with cap�(K) = 0.

Remark 1. A simple iteration of the doubling condition for µ shows that (6) holds
with s = log2 Cd , where Cd is the doubling constant of µ.

Proof. Assume that K ⊂ B(x0, R/4). Let ϕ be a Lipschitz function with support
in B(x0, R/2) such that ϕ ≥ 1 on K . Let x ∈ B(x0, R/2) be arbitrary and let
rj = 2−jR and Bj = B(x, rj ), j = 0, 1, 2, . . . . Then by the Lebesgue differenti-
ation theorem,

ϕ(x) = lim
j→∞

1

µ(Bj )

∫
Bj

ϕ dµ

= 1

µ(B0)

∫
B0

ϕ dµ+
∞∑
j=0

1

µ(Bj+1)

∫
Bj+1

(ϕ − ϕBj ) dµ,

whereϕBj = µ(Bj )
−1

∫
Bj
ϕ dµ. Let g be an upper gradient ofϕ. Then the first term

on the right-hand side can be estimated using the Sobolev inequality (see e.g. the
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proof of Theorem 13.1 in Hajłasz–Koskela [9]) and the second term is estimated
by the weak 1-Poincaré inequality as follows

ϕ(x) ≤ Cr0

µ(B0)

∫
B0

g dµ+ C

∞∑
j=0

rj

µ(5σBj )

∫
5σBj

g dµ

≤ C

∫ R

0

1

µ(B(x, t))

∫
B(x,t)

g dµ dt.

Let ω be the measure provided by the Frostman lemma (Theorem 2), i.e. suppω ⊂
K , ω(K) = λ∞

h (K) and ω(B(x, r)) ≤ h(2r) for all x ∈ X and r > 0. As ϕ ≥ 1
on K , we get integrating the last estimate with respect to ω,

ω(K) ≤ C

∫
X

∫ R

0

1

µ(B(x, t))

∫
B(x,t)

g dµ dt dω(x).

Write
∫
B(x,t)

g dµ as
∫
X
χB(x,t)(y)g(y) dµ(y). The Fubini theorem and the fact

that χB(x,t)(y) = χB(y,t)(x) then yield

ω(K) ≤ C

∫
X

g(y)

∫ R

0

∫
X

χB(y,t)(x)

µ(B(x, t))
dω(x) dt dµ(y). (8)

Note that χB(y,t)(x) �= 0 only if d(x, y) < t and in this case the doubling condition
impliesµ(B(x, t)) ≥ Cµ(B(y, t)). Inserting this into (8) and using the generalized
Hölder inequality (Lemma 1) we get

ω(K) ≤ C

∫
X

g(y)

∫ R

0

ω(B(y, t))

µ(B(y, t))
dt dµ(y)

≤ C‖g‖L�(X) ‖W( · , R)‖L
(X), (9)

where W(y,R) is as in Definition 9 and 
 is the Young function complementary
to�. We shall now show that the last norm in (9) is finite. By (2) and Proposition 1
we have

‖W( · , R)‖L
(X) ≤ 1 +
∫
X


(W(y,R)) dµ(y)

≤ 1 +
∫
X


(M(y, 3R)) dµ(y). (10)

To estimate the last integral, we first note that by the doubling property and mono-
tonicity of 
, we have for all r > 0,

∫ 2r

r




(
tω(B(y, t))

µ(B(y, t))

)
dt

t
≥ C


(
rω(B(y, r))

µ(B(y, r))

)
.

Hence,
∫
X


(M(y, 3R)) dµ(y) ≤ C

∫ 6R

0

∫
X




(
tω(B(y, t))

µ(B(y, t))

)
dµ(y)

dt

t
. (11)
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Next, let us write




(
tω(B(y, t))

µ(B(y, t))

)
= 


(
tω(B(y, t))/µ(B(y, t))

)
tω(B(y, t))/µ(B(y, t))

∫
X

χB(y,t)(x)

µ(B(y, t))
t dω(x). (12)

The integrand is nonzero only if d(x, y) < t and in that case we have B(x, t) ⊂
B(y, 2t) and χB(y,t)(x) = χB(x,t)(y). Moreover, by (6),

tω(B(y, t))

µ(B(y, t))
≤ Ct1−sh(2t).

Inserting this into (12), together with the monotonicity of the function t �→ 
(t)/t

and the Fubini theorem, then yields

∫
X




(
tω(B(y, t))

µ(B(y, t))

)
dµ(y)

≤ C′t

(Ct1−sh(2t))
Ct1−sh(2t)

∫
X

∫
X

χB(x,t)(y)

µ(B(x, t))
dµ(y) dω(x)

≤ C′ω(K)t

(Ct1−sh(2t))
t1−sh(2t)

.

As 
 is doubling, inserting this estimate into (11) and (10) gives

‖W( · , R)‖L
(X) ≤ 1 + Cω(K)

∫ 12R

0


(t1−sh(t))
t1−sh(t)

dt,

which together with (9) and the assumption (7) yields

ω(K) ≤ C(1 + ω(K))‖g‖L�(X),

where C depends only on 
, h, R, s and µ, but not on g. Taking infimum over all
functions ϕ and g admissible in the definition of cap�(K) finishes the proof. 
�

6. Equivalent conditions and special cases

Proposition 2. If � is a Young function with a doubling complementary function

, then the condition (7) is equivalent to each of the conditions

∫ 1

0
ψ(t1−sh(t)) dt < ∞, (13)

∫ 1

0
�−1(t1−sh(t)) dt < ∞, (14)

where ψ is the left derivative of 
 and �−1 is the inverse of the function �(t) =
�(t)/t .
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Proof. As 
 is doubling, we have by the monotonicity of ψ ,


(t)

t
= 1

t

∫ t

0
ψ(τ) dτ ≤ ψ(t) ≤ 1

t

∫ 2t

t

ψ(τ ) dτ ≤ 
(2t)

t
≤ C
(t)

t
,

which shows (7) ⇔ (13).
Similarly, we have �(σ) ≤ ϕ(σ) ≤ 2�(2σ) for all σ > 0, where ϕ is the left

derivative of ϕ. Hence, for all τ > 0,

ψ(τ) = inf{σ : ϕ(σ) > τ } ≤ inf{σ : �(σ) > τ } = �−1(τ ),

which yields (14) ⇒ (13). Similarly, we get �−1(τ ) ≤ 2ψ(2τ) ≤ C
(τ)/τ and
hence (7) ⇒ (14). 
�
Example 1. If h(t) ≤ Cts−1, then the value of the integral in (7) is at most

(C)/C < ∞, i.e. the Hausdorff h-measure ofK is zero whenever cap�(K) = 0,
independently of�. In particular, this is true for the (s−1)-dimensional Hausdorff
measure.

Example 2. If �(t) = tp, p > 1, (i.e. cap� is the p-capacity), then the condition
(14) can be written as

∫ 1

0
(tp−sh(t))1/(p−1) dt

t
< ∞.

Theorem 7.1 in Havin–Maz′ya [10] (or Theorem 5.1.13 in Adams–Hedberg [2])
states that every set in Rn with zero Cα,p-capacity, 0 < αp < n, has Hausdorff
h-measure zero provided that

∫ 1

0
(tαp−nh(t))1/(p−1) dt

t
< ∞.

So, for α = 1, our condition is a generalization of the condition in Rn.

Example 3. If h(t) = tα , 0 < α < s − 1, (i.e. �h is the α-dimensional Hausdorff
measure), then (14) (and thus (7)) holds if and only if

∫ ∞

1

(
�(r)

r

)1/(1−s+α)
dr < ∞. (15)

Indeed, the change of variables t = �(r)−β , with −β = 1/(1 − s + α) < 0, and
integration by parts show that the integral in (14) is equal to the limit, as R → ∞,
of

[
−r�(r)−β

]R
�−1(1)

+
∫ R

�−1(1)
�(r)−β dr

= �−1(1)
(
1 −�(R)−β

) +
∫ R

�−1(1)

(
�(r)−β −�(R)−β

)
dr

≤ C +
∫ R

1
�(r)−β dr.
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Hence, (15) implies (14). Conversely, (3) yields �(R) ≥ 2�(R/k0). Thus, for
sufficiently large R,

∫ R/k0

�−1(1)

(
�(r)−β −�(R)−β

)
dr ≥ (

1 − 2−β) ∫ R/k0

�−1(1)
�(r)−β dr,

which shows that (14) implies (15).

7. A weaker Poincaré inequality

In this section we weaken the assumption of 1-Poincaré inequality from Theorem 3.
Instead, we assume a q-Poincaré inequality for some q ≥ 1 and obtain a condition
sufficient for the validity of the implication

cap�(K) = 0 �⇒ �h(K) = 0,

which is somewhat stronger than the condition in Theorem 3, see Proposition 3 and
Example 4.

Note that in the following theorem we do not assume that the complementary
function to � is doubling. Also, the proof is simpler than that of Theorem 3.

Theorem 4. Assume thatX supports a weak q-Poincaré inequality for some q ≥ 1
and thatµ is doubling. Let� be aYoung function such that the function t �→ �(t1/q)

is convex and let h : [0,∞) → [0,∞) be a nondecreasing function such that
limt→0+ h(t) = h(0) = 0. If

∫ 1

0
�−1(t−sh(t)) dt < ∞, (16)

then �h(K) = 0 for all compact K ⊂ X with cap�(K) = 0.

Proof. Assume that K ⊂ B(x0, R/4) and �h(K) > 0. As in the proof of The-
orem 3 with the 1-Poincaré inequality replaced by the q-Poincaré inequality, we
have

0 < ω(K) ≤ C

∫ R

0

∫
X

(
1

µ(B(x, t))

∫
B(x,t)

gq dµ

)1/q

dω(x) dt,

where ω is the Frostman measure from Theorem 2, g is an upper gradient of a
Lipschitz function ϕ with support in B(x0, R/2) and ϕ ≥ 1 on K . As the function
t �→ �(t1/q) is convex, two applications of the Jensen inequality imply

1 ≤ C

∫ R

0

∫
X

�−1
(

1

µ(B(x, t))

∫
B(x,t)

�(g) dµ

)
dω(x)

ω(K)
dt

≤ C

∫ R

0
�−1

(∫
X

∫
X

χB(x,t)(y)

µ(B(x, t))
�(g(y)) dµ(y)

dω(x)

ω(K)

)
dt.
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The integrand is nonzero only if x ∈ B(y, t) and in this case we have µ(B(x, t)) ≥
Cµ(B(y, t)). The Fubini theorem and the fact that χB(x,t)(y) = χB(y,t)(x) then
imply

1 ≤ C′
∫ R

0
�−1

(∫
X

ω(B(y, t))�(g(y))

Cµ(B(y, t)) ω(K)
dµ(y)

)
dt.

As ω(B(y, t)) ≤ h(2t) and µ(B(y, t)) ≥ Cts , we have

1 ≤ C′
∫ R

0
�−1

(
Ct−sh(2t)
ω(K)

∫
X

�(g) dµ

)
dt. (17)

If cap�(K,B(x0, R/2)) = 0, we can find Lipschitz functions ϕj with support in
B(x0, R/2) and upper gradients gj , such that ϕj ≥ 1 on K and ‖gj‖L�(X) → 0,
as j → 0. By (2) we then have for all t ∈ (0, R],

�−1
(
Ct−sh(2t)
ω(K)

∫
X

�(gj ) dµ

)
→ 0, as j → 0.

Using (16), the dominated convergence theorem then shows that the right-hand
side in (17) can be made arbitrarily small, which is a contradiction. Thus, we must
have cap�(K,B(x0, R/2)) > 0. 
�
Proposition 3. If the complementary function to � is doubling, then the condi-
tion (16) implies (14).

Proof. Assume that (16) holds, i.e. that
∫ 2t

t

�−1(τ−sh(τ )) dτ <
∫ 2t

0
�−1(τ−sh(τ )) dτ ≤ 1

for sufficiently small t . It follows that �−1((2t)−sh(t)) ≤ 1/t and hence, using
(3),

t−sh(t) ≤ 2s�(1/t) ≤ �(C/t),

or equivalently,

�−1(t−sh(t)) ≤ C/t

for some C > 1 and sufficiently small t . Next, with σ = �−1(t1−sh(t)), we have

�(�−1(t−sh(t))) = t−sh(t)
�−1(t−sh(t))

≥ t−sh(t)
C/t

= t1−sh(t)
C

= �(σ)

C
.

Iterating the inequality �(σ) ≥ 2�(σ/k0) (which follows from (3)) and inserting
it into the last estimate yields for some C > 1,

�(�−1(t−sh(t))) ≥ �(σ/C).

The monotonicity of � then gives

�−1(t−sh(t)) ≥ σ

C
= �−1(t1−sh(t))

C

and the condition (14) follows. 
�
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Example 4. Let h(t) = tα , 0 < α < s, (i.e. �h is the α-dimensional Hausdorff
measure). Then it can be shown as in Example 3 that (16) holds if and only if

∫ ∞

1
�(r)1/(α−s) dr < ∞.

In particular, if�(r) = rp logd(e+r), then (16) is satisfied if and only if p > s−α
or p = s − α and d > s − α.

At the same time, again by Example 3, the condition (14) holds if and only if
p > s − α or p = s − α and d > s − α − 1, which is sharp in Rn.

This shows that the condition (16) is more restrictive than (14).

Example 5. Let �(t) = tp, p ≥ q, and h(t) = tα . Then the conditions (14) and
(16) are equivalent and hold if and only if p > s − α, which is sharp in Rn.

Problem 1. Is the condition (14) sufficient also under the assumption of q-Poincaré
inequality with q > 1? Is it necessary?
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