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1. IntrODUCTION. The mapping degree in a real Banach space R was
established by Leray and Schauder!) for mappings of a bounded domain D
of R into R which are of the form

(1.1) y=1() =2x—F()

where F(x) is completely continuous. This was done by assuming Brouwer’s
theory of the mapping degree in finite dimensional Euclidean spaces as known,
and then using an approximation procedure based on the fact that to every
£>> 0 there exists a map S(x) of D into a finite dimensional subspace of R
such that

(1.2) IF(x) — S(l<e.

In the present paper an attempt is made to develop the degree theory
directly in the Banach space R. Here already the case that (1.1) is a linear
‘map requires some consideration due to the fact that no orientation is defined
in a Banach space?). Accordingly, the main part of this paper deals with the
linear case. The problem is to assign to a linear non-singular map (1.1) an
index j =4 (f) which is +1 or —1, is invariant under homotopy, and 41 if f
is the identity map I." It is natural to consider x —uF(x) for 0 <1, or
with A=y

(1.3) fi(#) = (AT — F) (%)

and the spectrum ¢(F) of F. If the part of ¢(F) with R({4) =13 contains
only a finite number of points and if it is possible to assign to each such peint

1) [6]. The theory was extended to linear convex topological spaces by Leray [§],
and Nagumo [9]. (Numbers in brackets refer to the bibliography at the end of the paper.)
The present paper is restricted to Banach spaces. As usual the norm of an element
of such a space will be denoted by |#||. i

%) In a finite dimensional space the case of a linear map (1.1) is quite trivial, the
degree being -1 or —1 according to whether the map (1.1) preserves the orientation
or not, i.e., whether the determinant of (1.1) is > 0 or < 0. However, it seems to be an
unsolved problem whether in case of a linear completely continuous Banach space map
F{#x) the approximation (1.2) can be effected by a linear S. Therefore in order to establish
the degree theory for linear maps (1.1) in the Banach space by the approximation method
one would (at least at the present state of our knowledge) have to use the degree theory
for non linear maps in the finite dimensional space.

3) R(A) denotes the real part of the complex number 4.
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a positive integer m, such that
(1.4) =3 (— )

is invariant under homotopy*), then (1.4) will represent a suitable definition
for the index 7 5). This program is carried through in section 2. In this setup
the homotopy theorem becomes a theorem on spectral perturbation, and, in
order to use fully the spectral perturbation thepry, we deal in that section
with linear maps of a complex Banach space XF into itself. In section 3 the
special situation is treated where X admits a ‘“‘conjugation” and where,
consequently, it is possible to define ‘“‘real” maps. Certain simplification in
the basic assumptions of section 2 and in the definition (2.4) of the index
can be made in this case. Section 4 deals with homotopy properties of real
linear maps of such a space X into itself. Section 5 treats the non linear
case in an arbitrary complex Banach space X, but only ‘smooth” mappings
(def. 5.1) are considered while the treatment of mappings with less restrictive
assumptions is left to further investigation. The results of section 5 for
‘complex. spaces are in section 6 carried over to real Banach spaces R by
imbedding them (def. 6.1) in a complex Banach space.

2. THE INDEX OF A .LINEAR MAP IN A COMPLEX BANACH SPACE X. Let X
be a complex Banach space and F a bounded linear map of X into itself
which satisfies the following assumptions ‘A, B, and C:

AssuMPTION A. No point of R(1) =1 belongs to the spectrum o (F) of F.

AssumptioN B. The intersection of ¢ (F) with % (1) > 1 consists of isolated
points.

Before formulating Assumption C we remark first that B together with
the boundedness of F implies that the intersection o (F) ~ {R(A ) > 1} consists
of a finite number of pomts Ay Ag, ..., Ay, Or is empty. Then, fori=1, 2, ..., 7,
let ¢; be the circumference of a counter-clockwise oriented circle with center
A;and such that A; is the only point of ¢(F) inside or on ¢;. Let Ej, be the
projection®) defined .by :

(2.1) 2%1/— 1 fR

where

(2.2) R,(F) = (uI — F)
Finally; let

(23) Xy=E. X

be the range of Ej,.

- 4.Tt.will be seen that these two properties are certainly true if F is completely con-
tinuous. ‘
%) For the Leray-Schauder index the validity of (1.4) is a theorem . (cf..[6] p. 58)
while it will be a definition in the present paper.
) [1], p. 196.
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AssuMPTION C. The dimension of X is a finite number m; 7).
DeFiNiTION 2.1, The index §j =4 (f) of the mapping (1.1) is defined by

(2.4) f=7(f) = (— &A™

The object of the preseht section is the proof of the following two theorems:
TuEOREM 2.4. Let Fy(x) satisfy the assumptions A, B, and C and let

(2.5) fo(#) = % — Fy().
Then there exists an £>0 of the followmg property: if the linear bounded map
(1.1) satisfies

(26 If — foll =IF — Fi<e
then F satisfies the same assumptions as F, and
2.7) i =1(f)-

THEOREM 2.2. For 0 (<1 et f,( )_x—F(x) where F( %) sabisfies
assumptions A, B, and C, and where in addition F, is continuous in ts) “Then

1) =1 (fo)-

Theorem 2.2 is an immediate consequence of theorem 2.1 as application-
of the Heine-Borel theorem to the interval 0<¢<1 shows. The proof of
theorem 2.1 is based on the following lemmas 2.1 and 2.2: '

LEmMA 2.1. Let Fy satisfy the assumptions of theorem 2.1. We denote by
o*(F,) and 6~ (F,) those parts of the spectrum o(EFy) of F, which lie in. R(2) > 1
and R(2) <1 respectively such that (by assumption A) o(Fp) =0*(F) + 07 (F).
Let 0~ be an open set in R(A) <1 containing o= (L) ), and let, for i=1,2, ..., 7,
¢; be counter-clockwise oriented circles defined as follows: by assumption B,
ot (F,) consists of a finite number of points 23, A3, ..., A%. -¢; is then a circle
with center A} which lies in R(A)>1 and such that the closed disk bounded by
¢; contains no other point of o(Fy)). Then there exists. a positive &, such that for

(2.8) [F— Fll< e

the spectrum o (F) of F is contained in the open set O which is the union of 0-
and the open disks bounded by the c;. i

ProoF. Since 0 is an open set containing o(F;) the lemma follows from
the well-known fact that the spectrum o (F) of F depends continuously on F19).

LemMa 2.2. If Fy is bounded linear and A; an tisolated point of o(Fy) then
theve exists a positive ¢; such that for all linear bownded F satisfying

(2.9) IF — Fll <&

7} Assumptions A, B, and C are automatically satisfied it F (%) is completely con-
tinuous. See, e.g., [I] p. 207. '

8) I.e., for each #, in 0 < #< 1 there exists to'each n>0 a { such that |F,—F_ | <p
or what is the same |5 (%) — F,, (#)]i <zl 5 for {#—4| <¢.

9} Such set 0~ exists since ¢~ (F;) is closed.

10) For definition and proof of the continuity of o(F), see [4] p. 118.

Mathematische Zeitschriit. Bd. 63. 14
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the following is true: if m; (F) denotes the dimension of the range of the projection

(2:40) 2:;1/—-1 _/R

and if m(F;) is finite then m;(F) is finite and
(2.11) o (F) = m,(F).

We postpone the proof and show first that lemmas 2.1 and 2.2 together
imply theorem 1. Using the notations used in the formulation of the two
lemmas, we choose

{2.12) & =min(gy, &, &, ..., &)

“and will show that with this choice of ¢, theorem 2.1 is true. That F satisfies
assumption A is obvious from lemma 2.1. To prove assumption B we note
first that lemma 2.1 also implies that the part of o(F) with R(2) >4 is con-

“tgined in the open disks o; bounded by the circles ¢;. *Since there are only
a finite number of these disks it will be sufficient to prove that for fixed ¢.
the intersection g;=0; ¢ (F) is finite. Now by the assumption made on F,,
m;(F,) is finite (Assumption C). Therefore, by lemma 2.2, m;,(F) is also finite;
i.e., the range X; of the projection (2.10) is a finite dimensional space. Now.
0, is a spectral set of F1). Therefore, by a theorem of Dunford??) g, is identical
with the spectrum of the restriction Fiy, of F to the finite d1men51onal space
X, and “therefore certamly flmte Thus assumptlon B is proved, and as-
sumption C follows now easily: denote by A, 2%, ..., 2% the points of the set
o; which just has been proved to be flnlte Let o} be disjoint, circular disks
with centers l’ and lying in o;. Let ¢ be the counter clockwise oriented
boundary of o}. Then

24 R, (F)du = o | R (FYdu.
(2.13) f o= _ ﬂl/—1-/ () dp
G
Therefore, X, is the direct sum of the ranges X! of the projections which are
the terms of the right hand sum in (2.13) and

(2.14) m(F) :f i (F)

if m}(F) denotes the dimension of X¢. Since m; i(F) has alrealy been proved.
to be finite, (2.14) implies that each {(F) is finite which is assumption C.
At the same time (2.7) follows now from (2.14), (2.11), and definition 2.1.

It remains to prove lemma 2.2.  This lemma will be a consequence of four
further lemmas.

1) A spectral set of F is a subset of ¢(F) which is open and closed in ¢'(F). Cf. [1}
p. 196.

) 11 p- 197.
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LEMMA 2.3. Let B, be a.lincar bounded operator on X whose bounded inverse
Byt exists. Let B be a bounded linear operator which satisfies the inequality

(2.45) 1B — Byl <3181,
Then B exisis and satisfies the inequalﬂy
(2.16) 1B~ — Byt < 2| By I*| B — Byl
Proor. The fact that (2.15) implies the existence of B~ and the in_equali_’ftyr

B3 [B[| B — Byl
— 1B = Byl Ba* I

(2.47) 187 = Bil<

is well known13). But (2.17) together with (2.15) obviously implies (2.16).

" LEMMA2.4. Let A, be-a linear bounded operator -on X. “Let C bea closed
bounded ‘subset of the resolvent set' 9(A,) of Ay. Then-the résolvent R;(4) of
A'is contintious at A=A, for ACC, and the continuity ’LS uniform as A varies
over C. ‘

Proor.  Asis well known for each » (X, R;(4,)(*), and therefore also
| R (4o) (%), is continuous for 1 g{4,). Consequently, the latter real valued
function of 1 reaches a maximum in the closed bounded set C ahd we have
for suitable positive M, the inequality

(2.16)- CIR(Ay) (0| < M, * for 4 in C and all xCX.

. By a well-known theorem®) (2.16) impiies the existence of a constant M such
that ' ‘

(2.17)_ IR (A < M for ACC.
Let now A be such that

1
(248) 14— A< 55

We haye then by (2.18) and (2.17)

, : At 4 1 1 ; 1
WAL — Ag)— (A1 — A)|=]4 Aoll<ﬂ2M <

2Ra(dg - 2T = A

From this inequality we conclude by applyiﬁg lemma 2.3 with By=A41—4
B=)I—A4 that R;(4)=B™" exists and satisfies the inequality

1R (4) — Ry(Ap)] < 211 R, (Ag)[F] B — Byl = 2| Ry (4) 214 — 4o
which because of (2.17) proves the lemma.
LemMA 2.5. Let ¢ be a rectifiable curve in the resolvent set of Ay Then
S R.(4) du
[

is continuous at A =A,.

) [41 p. 92..
1) See, e.g., [4] p. 26, Theorem 2.12.2.

14*
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Proor. The lemma is an immediate consequence of the preceding lemma.

LemMA 2.6'%). Let E, be a projection whose range has the finite dimension
my, and let E be a projection for which ‘
1
(2.19) E "“Eo"<mj
Then the range of E has a finite dimension m and m=my.

ProOF OF LEMMA 2.2. Let E, be the projection obtained from (2.10) by
replacing F by F,. By lemma 2.5 we can choose an ¢; such that for F satis-
fying (2.9) the inequality (2.19) holds with E being the projection (2.10), and
the equality (2.41) to be proved follows now from lemma 2.6,

3. REAL TRANSFORMATIONS IN A COMPLEX BANACH spacE. In this section
we consider ‘‘real” transformations in certain complex Banach spaces (defi-
nition 3.3)18). It turns out that for such transformations in the definition (2.4)
of the index only those m; have to be considered which correspond to real
points of the spectrum (Theorem 3.1). In addition, some simplifications in
-assumptions A, B, and C of section 2 are possible (Theorem 3.2).

DEFINITION 3.1. Let X be a complex Banach space with elements %, y, ...
A map x—>% of X onto itself is called a conjugation if it satisfies the following
four properties:

Rt

(3.1) =x
3.2) X+ y=%+7
(3.3) fixll =%l
(3.4) Tx=1%

where 7 is the conjugate complex number to the complex number A.

DEFINITION 3.2. Let x—X be a conjugation in X. The elements x for
which x=7% are called real (with respect to the given conjugation).

LEMMA 3.4. Let x—>% be a conjugation in X.” Then the real elements of X
(with their original morms) form a Banach space R over the reals.

The proof consists in a rather obvicus verification. We omit the details.

LEMMA 3.2. Let x—>X be a conjugation in X, and let R be the real Banach
space of the preceding lemma. Then every element x of X can be written vmiquely as
(3.5) x=x 413"
where ¥ and x'' are elements of R and z'=]/;—1.

Proor. It is easily seen that x'= (x4 )/2, 5"= (¥ —%)/2¢ is the unique
couple satisfying the requirements. -

-DEFINITION 3.3. Let X and R have the same meaning as in lemma 3.1.
Then a continuous linear map A of X into itself or into another space with
a conjugation is called real if

(3.6) A7) = A(7).

15) For this lemma and its proof, see [10] p. 424, Lemma 4.
16} Cf. the similar definitions for the Hilbert space case given in [11], chapter IX, § 2.
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Lemma 3.3. The continuous lihear map A of X into itself is veal if and
only f it leaves R invariant.
We omit the obvious proof.
LEMMA 3.4, If A is real then. (i) the spectrum o(A) of A is symmetric with
respect to the real axis of the complex A-plane and (i)

(3-7) R;(4) () = R, (4) ).

ProoF. Since ¢(4) and the resolvent set p(A4) of 4 are disjoint sets whose
union is the whole A-plane it will for the proof of i) be sufficient to show that
o(A4) is symmetric with respect to the real axis. Let then 4, ¢(4); we have
to prove that 1,Cp(4). By definition of the resolvent we have

(3.8) (gl — A)R; (4) (¥) = x  for.all xCX.
Since A4 is real it follows from lemma 3.3' th_at for all yC X
(A — 4)(3) = (A — 4) (»)
and therefore from (3.8)
(ol — ARy D) (3 = o] — D) By, (A () =7,

or replacing x by ¥

(3-9) (Aol — AV R, (A) @) = x.
We set now
(3.10) S(x) = R,, (4) ().

S (x) is bounded and as (3.9) shows a right inverse of 1] — 4. Interchanging
the two factors of the left member of (3.8) we would have seen that S(x)
is also a bounded left inverse. Thus 2, — 4 has a uniquely determined bounded
inverse which shows that A, is in o(4) and thus proves i). Moreover, since
S(x) is the bounded inverse of 1,] —A4 we see from the definition of the
resolvent that S(x) =Ry (4) (x). Comparison with (3.10) proves (3.7).

LrMMA 3.5. Let A be real and 2o an isolated point of the spectrum o(4)
of A such that by the preceding lemma X0 is also an isolated pomt of g(4). Let
¢y be a counter-clockwise oriented circle with center A, and such that the closed
disk bounded by c, contains no other point of a(A) but Ay, and let cq be thé counter-
clockwise oriented circle with center X, and of the same radius as cy. Finally,
let X;,, X3, denote the ranges of the projections

(3.11) E,,D:ﬁ:_—ifli‘y (4) du, Ezo,=;’——vijF(A) du

respectively. We then claim:

i) if Ay 45 not real then X, and X3, are conjugate to each other (i.e., if y varies
over X, then ¥ varies over X3, ), and, consequently, they are of the same dimension ;

il) if Ay is real then X, is invariant under conjugation.
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~ Proor. Since ¥ varies over all of X as-x does, X, may be characterized
as the set of all Ey (%) as x varies over X, and since X3, is the set of all E5, (#)
as x varies over X, it is clear that for the proof of i) it is sufficient to prove

(3-12) E;,(x) = E;,(®).

But (3.12) implies also ii), for in the case of a real }, it reads E;ﬁ E,{ (x )
Thus it remains to prove (3.12): let 7 be the common radius of ¢, and c;.
We set y = Zo+76é% =2 + re'? such that g =J1. We then have from
(3.11) and (3.7)

Ez (x z = 2nf re’“”dzp :-mfo(A Vrei?de
2 .
=5 [R@ @7y
]
2
— 2:”,le (4) @) (—ire~ivdg)

?_mfR dl=~_—le %) d) = E, (%).

LeMma 3.6. Let F satzsfy the assumptions A, B, gnd C of section 2 and, in
addition, be real. Let € be a simply closed rectifiable curve which is oriented in
the counter-clockwise sense, lies in the half plane R(Ay> 1, and encloses in its
interior the part of o(F) which lies in R (A ) > 1. Then the range of the projection

(3.13) E=_L_ f R,

is of finite dimension and mvanant under conjugation.

. Proor. Let o be the part of the spectrum ¢ (F) which is enclosed by C.
oc consists of a finite number of points. Now u ¢ implies i Co¢ by lemma 3.4.
Therefore the points of o can-be written as wyy, iy, .-, fy, fys Ay -0 4p
where the u’s are the different non real pomts of oc and the A’s the dlfferent
real pomts of g¢. If then the projections E » Eg» E 4 are defined as in (2.1)
we have
(344) E=3 (E,+ +2 E;.

j=
It now follows from assumption C (section 2) that the range of E is of finite
dimension and the invariance of this range is [because of (3.14)] a consequence -
of lemma 3.5.
THEOREM 3.1. Let f=1I—F where F satisfies the assumptions of lemma 3. 6.
Let 4y, ..., Ay be the real eigenvalues >1 of F. Let E;, be the projection (2.1),
and m; the dimension of its range. Then the index 7(}‘) ‘of f is given by

(315) ) = (i
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ProoF: As in the proof of lemma 3.6 let p;, @@y .., f,, i, be the distinct
non ‘real exgenvalues of F with real part =1, and E,.; E; the corresponding
projections. Let m;, m; be the dimensions of the ranges’».of‘ these projections.
Then by definition (2.4)

(3.16) i = (=1)
where

r »
Z m + m;) + X m,.
= =1
But by lemma 3.5, m;=m;. Therefore

?
s=2m; med 2,
i=1
and (3.15) follows from (3.16).

We will now show that for real transformations the set of assumptions A,
B, C may be replaced by the following less restrictive set of assumptions:

Assumption A’. (1.1) is not singular [i.e.,, A=1 does not belong to o (F)

Assumption B’. o (F) is discrete for R(A) =1.

Assumption C’ is the same as C except that the eigenvalues in question -
may have a real part =117).

THEOREM 3.2. Theorems 3.1, 2.1, and 2.2 are still true if assumptions A,
B, C ure replaced by A’, B', C' provided F is veal.

Proov. Inspéction of the proof of theorem 3.1 and the lemmas leading
up to it shows that these proofs with obvious modifications still hold under
the new assumptions if the curve C of lemma 3.6 is replaced by a simply
closed rectifiable curve which encloses the part of ¢(F) with R(4) =1 and
separates it from the part of ¢ (F) with % (1) < 1. It remains to prove theorem
2.1 since this theorem implies theorem 2.2. Let f, = x == F, where F, satisfies the
assumptions of our theerem 3.2. If R(A)y=1 contains no point of o(Fy) no
new proof is required. Otherwise, o(F};) contains a. finite. number of points on
R(4) =1 which we denote by »;,,,...,%. As in the proof of lemma 3.5
let gy, Uy, oo s e be the distinct complex and’ Al, i., Ap the distinct real
eigenvalues of F w1th ?R( 2)> 1 while ¢~ (F,) denotes the set a( o " {R(A ) <1}.
Let then ¢;, ¢ ¢ be c1rc1es with centers Aiv i jii, v; resp. of the follow-
ing property 1f 01, %, 0;, o, are the open disks ‘bounded by these circles
then the closures of these disks are disjoint; for each of these closures its
center is the only point belonging to ¢ (F), and those of these closures whose
centers are not on the real axis don’t intersect the real axis. Let then 0~ be
an open set in R(4) <1 containing o~ (F,;) and 0 be the union of 0~ and all
the open disks defined above.” Then there exists an & such that

(3.17) IF ~Fjl<e
implies
(3.18) o (F) C0®).

17 However (because of assumption A7) ,7 = 1.cannot be an eigenvalue.
18) Cf. footnote 10),
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By lemma 2.2 it is possible to choose ¢ in such a way that in addition to
(3.18) the equality (2.41) holds with the m,;(F) denoting the dimensions of
the ranges of the projections (2.10) wher the ¢; are the above circles with
the real centers 1;. Now by the choice of ¢ the intersection o (F) n{f (1) =1}
is contained in the disks o;, 0}, 07, 0;’, and since by construction only the o;
intersect the real axis, the real points of ¢(F)~{R(A) =1} are contained in
the o;. Since F is real the pomts of a( Y~ {R(A) =1} contained in o; may
be written 1, .. },,i,,ul,/ul, i ,,u, ,‘u, where the A’s are real and the y’s
non real. To each of these points corresponds in the usual way a pmJectlon
and we denote .the dimensions of the ranges of these projections by #; :(F),
#i(F), #(F). Then an argument similar to the one leading to (2.14) shows

j i
that

P 75 . .
(3-19) mi(F) = 2 (F) + 2, () (F) + 7 (F)).

But #(F) = (F) since F is real. Therefore we see from (3.19) and (2.11) that

m, (Fy) = 2, mi(F) mod 2.

By theorem 3.1 this equality implies (2.7).

ReEMARK 3.1. If f(x)==x—F(x) is linear, non singular, real, and F(x)
completely continuous, then the assumptions A’, B’, C' follow. For the
restriction of f to R (cf. lemma 3.1) an index 7, (f) can then be defined by
Leray-Schauder’s method {cf. [6], section 11). It is easily seen that 7, (f) =7 (/)
if one observes that the “degree m; in the sense of Goursat” used in [6] is
identical with the number m; introduced in Assumption C of the present
paper, and if one uses the “Conclusion” in [6], p. 58.

4, HOMOTOPY PROPERTIES. THE PRODUCT THEOREM.

DEFINITION 4.4. Let F, G be Bounded linear real transformations mapping
the complex Banach space X into itself and satisfying the assumptions A’,
B’, C’ of section 3. F and G are called homotopic if for each ¢ in the 1nterva1
0<t<1 there exists an F, which satisfies all assumptions just mentioned for
F and G, which is moreover continuous in ¢ and such that F,=F, F,=G.
The maps

(4.1) f®)=x—F(x), gx)=x—G

are called homotopic' if F and G are homotopic.

THEOREM 4.1. Let the linear bounded maps F and G be real and satisfy
the assumptions A’, B', C'. Then the maps (4.1) are homotopic if and only if
i1(h=1(@). In particular: j(f)=-1 if and only if  is homotopic to the iden-
tity map, and j(f) = —1 if and only if f is homotopic to a map g(x) of the form
g(x) =1x —2¢@(x) x° where 20 is an arbitrarily chosen real element of X of norm 1,
and @ (x). an arbitrary linear real functional with ¢ (x%) =1.



Mapping degree in Banach spaces and spectral theory. 205

ProoF. - That j(fy=+1 if f is homotopic to the identity, and j(f) = —1
i f=g is a consequence of theorem 3.1 since the index of the identity map is
+1, and §{g) is easily seen to be —1. Before proceeding to prove the con-
verse we need a few simple facts which we state as lemmas.

LeEMMA 4.4, Let XO be a finite dimensional subspace of X, FO a veal linear
map of XO into itself and I° the identity map of XO. The eigenvalues Ay, 4y, ..., 4,
of o are supposed to be all real and > 1. Then j*=1° —Fois homotopic to —I°.

Proor. We choose the coordinate system in X in-such a way that the
matrix M representing F, in this coordinate system is in the Jordan normal
form, i.e., that M is direct sum of matrices each of which contains one of the
A; in the main diagonal and (unless it is one dimensional) contains one’s
directly above the main diagonal while all its other elements are zero. We
define for 0<¢<{1 as M, the matrix obtained from M by replacing each 1,
by A4;(1—1) 4 2¢ énd the one’s by 1 —t, and by INT;’ the transformation given
by M,. Then f{=1I°—F® has the matrix I®—2J°= —1I° and is homotopic
to fo=I0 2,

LEMMA 4.2. With the notations and assumptions of lemma 4.1 let N be the
dimension of X°. Then: i) if N is even, [° 1s homotopic to the identity I°; ii) if)
N is odd, {° is homotopic to a map of the form g(x)=x—2¢(x) x° where 2°
is an arbitrarily chosen element of X° of norm 1 and (%) a linear functional
with @ (2% =1; i) if X© ¢s snvariant under conjugation then x° and @{x) may
be chosen to be real.

PrOOF. On account of lemma 4.4 we may assume that f0= — I Now
it is well known that in a space of even dimension the negative identity mag
is homotopic to the identity map. Applying this fact to X9 proves i), and
applying it to the even dimensional space which together with x° spans X°
proves abviously ii). Under the assumption made.in iii), x® obviously can be
chosen real®®). We define ¢ (x) first for x = x? by setting ¢ () =a«. Since x°
is real @(x) is real. By the following lemma 4.3 we can extend ¢(x) to X
as a real linear functional.

LEMMA 4.3. Let X be a complex Banach space with a conjugation and X,
a finite dimensional linear subspace which is invariant under this conjugation,
and 1(x) a linear functional defined on X, which is real in the sense of definition
3.3... Then I(x) can be extended to X with the original bound L as a real linear
functional.

Proor. Let R be the real Banach space consisting of the real elements
of X (cf. lemma 3.1). It is then easily seen that the intersection R, =R~ X,
is a finite dimensional linear subspace of R. Therefore we can by the Hahn-
Banach theorem for real Banach spaces extend I{x) as a real valued linear
functional to R with the original bound L. Let now x be an arbiirary element

19 Let x % 0 be an element of X9 If then in the decomposition (3.5} #'+0 we set
A= (x+%)/llx+F|. U #=0 we replace » by ix.
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of X. By lemma 3.2 we can write uniquely
x=x+ix" (¥, 5" CR).
We then define
Hx) =1(x") +i1(x").
It is a matter of simple computation to verify first the additivity of /(x) and
then the equality I (« x) = o I (%) for arbitrary complex a. To prove the bounded-
ness of I(x) with the same bound L, let

Ix) = |I(x)| e7®, y=1xéP=y +iy"’ with ¥,y "CR.

[2(x)] = 1(x &%) = L(y) = 1(y') + i 1(y").

Since /(y’), I(y"") are real numbers and v’ C R, this implies
- ’ e - ‘ I f_ 3
1) =1y) S LI = Lly +7l2< L 237 = g = L,

Then

Finally, it is immediately verified that I(x) is real, i.e., satisfies (%) =1(x).

LeMMA 4.4. Let X be the divect sum of the subspaces X°® and X*, and E°
and E' the projections of X onto X° and X1 vesp. Let G* be a bownded linear
map of X’ into itself (1=0,1), Defme for xC X the map G(x) =G E®(x) -+
GlEY(x ). Then o(G) is the union of o(G° and o(GY). -

ProoF. Since for any bounded transformation T the spectrum rr(T) and
the resolvent set g(T) are comphmentary sets (with respect to the whole -
plane) the statement of the lemma is equivalent to the equality

0(G) =g (G%)np(GY).

:But this equality is easily derived from the fact the equation Ax—G(x) =y

is equivalent to the pair of equations for x=E%x and #?=FE1(x)
Ax—GO(2%) = E°(y), Ax'—GH(x") = E(y)

together with the theorem?2) that an everywhere defined iriverse of an every-

where defined bounded linear transformation is itself bounded.

We now return to the proof of theorem 4.1.. Let I™ and I be two simply
closed rectifiable and disjoint curves oriented in the counter clockwise sense
of the following' properties: i} they lie in the resclvent set p(F) of F; ii) the
open domains -D® and D! bounded' by them are disjoint; iii) let o be the
part of ¢(F) which is real and >1; then there exists an interval of the real

axis which contains the point A=2 and ¢° and which itself is contained in
Do; iv) alzq(F) —o? lies in DY We set

1 .
fﬂR )dp, Fl= 'V'_‘_"{f/f‘Ru‘(F)_‘-l["
In

» o » o ‘1 .
4y E=m [RBdp, B= e [ Ry an
Ie n

(4.4) X0=E°X, X'=FE'X.
B 20) See e.g. [4], p. 29, Corollary.

(4.2) Fo =

2n g
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Then, as well known ), F® leaves X9, Flleaves X! invariant, the restriction
F0 of FO to X0 has o® as its spectrum, and X is the direct sum of X° and X2.
‘0% consists by assumption of a finite number of points 4,,..., 4,. If m; is
the dimension of the range of the projection {2.1) and N the dimension of X°

comparison of (2.1) with (4.3) and (4.4) shows that N= Z m;. Consequently,
we see froin theorems 3.1, 3.2 that =1

(4.5) i) = (="
Now X° is invariant under conjugation by lemma 3.6 and Fo satisfies the
assumptions of lemma 4.222). Therefore there exists for 0<t<1 a map F°
of X0 into ‘itself (satisfying A’, B’, C’) such that F?=F¢ while
- ~ x if N is even
(4.6) Bwy=x—F) = ,
| x—=2¢(x)x® if N is odd
where x°, @ are as in lemma 4.2. Let now F* be the map F* [defined in (4.2)]
restricted to X%, and F=(1—#)F! for 0<t<1. The spectrum o (F2) of F!
is obtained in multiplying the points of o (F 1) by 1—¢, and since the real points
of g(FY).=¢(FY) are in the half plane R(4) <1 and F! satisfies A, B’, C', it
follows easily that also F} satisfies A’, B!, C'.- We now define for arbitrary
xin X :
Fy(x) = FOE°(x) + FLE ().
Since by lemma 4.4, o(F) is the union of ¢(F?) and (FY) it follows that F,
satisfies assumptions A’, B’, C’; and f(¥) = x—F(x) = x— F,(x) is by (4.6)
“seen to be homotopic to
h(#) =2 —F () = (E°(x) — Y (%)) + E'(%) = fLE%(x) + E*()
=x if N is even
=% —2@{x)x® if N is odd.
Tt remains to prove that x° and @(x) can be chosen. arbitrarily subject to the
conditions of reality and to
(4.7) =1, @) =1,
ie., we have to show: if
Ho) =% —29(x) 2% g(x) = x—29(x)»°

where %9 4% are real elements of X and ¢@(x), ¢(x) real linear functionals
satisfying (4:7) and _
(4.8) Wolh=1, »0) =1
then 7 and g are homotoplc We distinguish two cases:

CasE1. 2% and y° are linearly dependent. In this case ¥°=gx® where
because of (4 7) (4.8), ¢ is a complex number of absolute value 1. Then

) 1. p- 197.
22} That F is real follows from the assumption that F is the real since F® is the re-
striction of F to X°.



208 Erice H. RoTHE:

(%)Y =7 (x) 2° if p (x) is defined as p(ex), and ¢ (2%) =p (2% =p(y°) =1,
which shows that we may assume that =1, i.e., =% With this assump-
tion we set @,(x) = (1—1) p(x) +fy(x) for 0<2<1. We note that ¢, (2% =1.
and that therefore the spectrum of F,(x) =2¢,(x)2° consists of the points
A=0 and A=2, and that the range of the projection belonging to A=2 is
of dimension 1. Therefore F;(x) satisfies A’, B’, C'. Moreover, with f,(x)=
x—F,(x) we have fy=/, f;=g. Thus { and g are homotopic in the sense of
definition 4.1.

Case 2. «® and 40 are linearly independent. Let X2 be the subspace of
X spanned by #° and 4°, and E? a real projection with range X2 28). Let for
2 X?, #,(x) be a rotation about the origin such that 7, (2% = %9, 7, (x%) = y° #),
let 7,=#/|7,Jl, and let the extension of 7, to all of X be defined by

7,(x) = x — E%(x) + 7,(E?(x)).
Moreover, set
@ (x) =¢(r' (%),  E(x) =2¢,(x) n,(x9).

If one observes that g,(7,(x%)) = @ (x°) =1, it is easily seen that the spectrum

of F, consists of the points A=0 and A=2, and that I satisfies A’, B, C'.

Therefore setting f,(x) =x — F,(x) shows that f(x) is homotopic to 4(x)=
% — 2@, (%) y° since 7,(x?) =4°. To see finally that % is homotopic to g we

have only to notice that we are now in case 1%).

LeMMA 4.5. Let X be a complex Banach space with a conjugation, and X,
a p-dimensional linear subspace which is invariant under this conjugation (p a
finite integer). Then there exists a real projection E, of X whose range is X,
(cf. definition 3.3).

Proor. Without the reality requirement E, may, according to Mackey %),
be constructed as follows: let x;, %,,..., %, be a base for X,. Then for
=1, ..., p the coefficient f;(x) of x; in the representation of an element x
of X as linear combination of x,, ..., %pis a linear functional on X, which
may be extended to X. Calling the extension again f;(#), it turns out that

E,(x)= Z %; f;(x) is a projection with range X,. We will now show that
7_..
with a proper choice of the basis %, ..., %, Ep is real. We will prove first

that it is possible to construct a basis of real elements let x==0 be an element
of X,; then by assumption £ X,, and therefore x+ % and (x — X)/s are real
element of X, at least one of them not being the zero element. Thus if ¢
denotes the maximal number of real elements of X, which are linearly in-
dependent (with respect to complex numbers) then ¢=1. We will prove
g=1p: let 7,7, e 7 74, be linearly independent real elements of X,, and

28) Such E? exists by the following lemma 4.5.
M) je., if ¥ =094 + o’ 30 then 7,(#) = f°2° + B »% where ¢ = o® cos (¢ 7/2) — o’ sin (¢ 7/2),
B’ = o® sin (t/n]2) + &’ cos (¢ 7/2).
%) Note that @, (3%) = @y (7 (#%) = @ (4% = 1.
'26) {7], lemma 3.1.
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x=x"4ix" (2, " real) an arbltrary element of X,. It follows from these
definitions that there exist constants o, a;; (Which may be complex) such that

Z a, i % = Zla;' 7;
j=1 j=

Then x=21x"+1%" is a linear combinations of the 7; which proves that the 7#;
form a base and ¢=4p. Thus we may assume that the elements x,, ..., %,
of the original base are all real. But then comparison of

Rl
T M-=

(x)x with x_Zf, i%xj

i=1

shows that f;(%)= (x), i.e., that the functionals f;{x) are real. Therefore,
by lemma 4.3 their extens1ons can also be constructed to be real, and the
above constructed projection E, is then obviously also. real.

REMARK 4.2. It is well known 27) that the range X 5, of the projection’ (2.1)
is the space spanned by the solutions of the totality of equatlons (LI-F)*=0
for n=1,2,.... If now F and J; is real then X, is-invariant under con-

jugation (lemma3 5). It follows (as shown in the proof of lemma 4.5) that
X;, can be spanned by elements of R, in  other words, the dimension m; of
X, is the number of linearly independent solutions in R of the above ‘equations.
It follows then from theorem 3.1 that the index § (/) is determined if F is known
in R. If F is in addition completely continuous it also follows that'j(f) agrees
with the Leray-Schauder index of f (cf. [6] p. 57, 58).

THEOREM 4.2. (Product theorem.) Let f(x)=x—F(x) and g(x)=x— G(x).
Let F(x), G(x), and x— (fg) (x) be real and satisfy A’, B',~C'. Then

(4.9) 1(te) =7(f) 7).

Proor. If one of the mappings, say f, has index -+ 1, then by theorem 4.1
‘f is homotopic to the identity map and therefore fg is homotopic to g. We
have then, again using theorem 4.1, 7(fg)=7(g)=1-7(g)=7(f)7(g), which
proves (4.9) in the case considered. Assume now

(4.10) iy =ik =—

Then by theorem 4.1, f and g are both homotopic to a map of the form
(4.11) h{z) =x —2@(x) 2* with 2% = ¢ (%) =1.

Then fg is homotopic to 42, and by theorem 4.1, we have j(fg) =75 (#?). This

equality together with (4.10) shows that for the proof of (4.9) it will be suf-
ficient to show that

(4.12) j (%) =+1.
But (4.12) is certainly true since h%(x) =~ as is easily verified from (4.11).

%) See e.g., [1], p- 198.
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5. NoN LINEAR MAPS. Let X be a complex Banach space, D a bounded
open set in X, D its closure, and B==D — D'its boundary. We will define the
mapping degree and prove the homotopy property for a class of “smooth”
mappings of D into X.

DEFINITION 5.1. A mapping

(5.1) f(#) = x — F(x)

of D into X is called smooth if it satisfies the following conditions: i) in each
point x of D, f(x) has a bounded Fréchet differential (¥, )2) which is
uniformly continuous in x in the sense that to each positive ¢ there exists a
d such that

(5-2) I (x, B) — d(xo, Bl < e}l for - flx — xol| < J;

ii) d(x, &) (as linear operator in %) has an inverse d(x, &) =1(x, ) with a
bound which is uniform for-all ¥ ¢ D; iii) if the point ¥ of X is not on the
‘image of the' boundary B of D, then there are at most a finite number of
points x in D which satlsfy the equation

(5.3) %) =y,

iv) the linear operator in %, D(x, h)=h—d (%, h) satisfies the conditions A,
B, C of section 2; v) the image of a closed set-is closed.

REMARK 5.1. If only i) and ii) are assumed and F(x) is completely conti-
nuous then v) is automatically satisfied; so is iii), for it can be easily seen
that otherwise there would be a point # in D satisfying (5.3).in every neighbor-
hood of which there would be other solutions of (5.3) which would be a contra-
diction to the lemma 5.1 below. If in addition D (%, #) is completely continuous
(in %) then iv) is also automatically satisfied.

DEFINITION 5.2. Let f(x) be a smooth mapping of D into X, and v a point
of X which is not on the image of the boundary B of D. We define the degree
7{f, v, D) of f at y with respect to.D as follows: if (5.3) has no solution x in
D we set 1(f, v, D) =0; if there are solutions in D there are by assumption iii)
of definition 3.1 only a finite number, say %y, %,, ..., %,. By assumption iv)
of definition 5.1 for each of the linear opérators in %, d(x,, 2). (0=1,...,7)
the index j,=7(d(%,, 4)) is defined according to definition 2.1. Let p be the
number of those 7, which are 1, and ¢ the number of those which are —1.
Then we define

(5.4) iy, D) =p—q®).

28) For fixed x, d(#, k) is a bounded linear operator in Z.

2) In the Leray Schauder theory the equality (5.4) is a theorem (cf. [6], p. 56)-
In finite dimensional spaces p is the numbers of those » for which the Jacobian of f(#)
is positive, and ¢ the number of those for which it is' negative. With this interpretation
(5.4) is the basic definition used as starting point in Nagumo’s theory for the degree in
finite dimensional spaces. (See [8].)
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DEFINITION 5.3. Let f(x)=x-—F(x), g(x¥)=x—G(x) be two smooth
mappings of D into X. Then f and g are called homotopic if for each ¢ in
the interval 0 <¢<1 there exists a smooth map

(5.5) fi(x) =x—F(x,8) with fo(x) =/f(x), f(x)=g(*)

where F(x,1) is continuous in the product /T =D x{0<¢<1}, where the
continuity in ¢ for fixed x is uniform for x CD, and where moreover the
following two conditions are satisfied: ‘a) the Fréchet differential d(x, ¢, )

of f,{x) (with respect to x) is continuous in x in the sense that to every posi-
tive ¢ there exist positive numbers 6 and 7 such: that

Id(x, 8, B) — d(x, b, Bl < el Bl for |x— xfl <O, |t —1tp]<7;

b) the inverse 47 (%, ¢, ) =1(x, ¢, h) of d(x, ¢, k) as linear operator in % exists
and is bounded uniformly. on D, i.e., there exists a positive # such that

(5.6) 12 (x, 2, B)| < m| .

THEOREM 5.1. Let f, g be two smooth mappings of D into X, and y a point
of X which does not lie on the image of the boundary B of D under f or g. We
assume that | and g are homotopic (Def. 5.3) and that moveover the miap (5.5)
can be chosen such that

(5.7) Lix)s=y for x(B, 0<i<1.
Then
(5.8) 1(f,», D) =1(g ».D).

Proor. It will be obviously sufficient to show that j(f,, v, D) is con-
tinuous in ¢. To do this we first prove

. LEMMA 5.1%%). For each t in the unit interval let f,(x) =[(x, f) = x —F(x, ?)
be a-map of D into X which satisfies conditions i) and ii) of definition 5.1, is
continuous on the product of D with the unit interval, and satisfies conditions
a) and b) of definition 5.3. Let 9,94, a4, by, and T be positive numbers which
are chosen as follows:
(5.9) 0<d< P, < 1.

aq is then chosen in such a zéay that
(540)  Nd(x 0, h) — d(x, &, I<|hIDfm for |x — %ol < a5

where m 1s a number satisfying (5.6); this choice ts possible by assumption i)
of definition 5.1. For by we thew choose any number satisfying

(5.11) 0 << by < ag(1 —9y)/m.
Let %, be a point-of D and set
(5.12) iz, ) = yo(t)  (0<tZ1).

3) Lemma 5.4 and its proof are essentially an adaptation to the present purpose of
results and methods contained in [3]. The proof is here given for the sake of completeness
and of the possibility of referring later on to some of the inequalities contained in it.
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Thén choose T>0 in such a way that
(5.13) o) — volioll <2 for 16 —to] <.
Finally let y be any point of X which satisfies
(5.14) ly — o < by for [t—tl<7.
Then the equation for x
(5.15) y=f(x,1)
has one and only one solution x==x(y,!) which satisfies
(5.16) 2 v) — 2ol < aq (1t —t] < 7)
and this solution is continuous in the product DX {|¢t—1,| <7}.
Proor. Subtracting (5.12) from (5.15) and setting
(5.17) { PmR=E 7%l =1,
F(x,8) — F(xq,8) — d(%y, 2, x — %) = R(x, %, t)
we see that the equation for &
(5.18) n(t) = d(x, 2, &) + R(xy+ &, %0, %)
is equivalent to (5.15). Multiplying (5.18) by d1=1 and setting
(5.19) ) =C, UR(xo+& %, 1) = = S(#p, 1, §)
we obtain for £ the equation
(5.20) E=C@)+ S(x,,18)

which is still equivalent to (5;1 5). In order to solve (5.20) by successive
approximations we prove the following two inequalities:

(5.21) IE1 < @y (1 — 3y

if (5.14) is satisfied, and

(5.22) 1S (x4,2 &) — Sz, £, EN < BIE" — &
if

(5.23) 1€ < ag, &< ao.

The proof of (5.21) is immediate since by (5.19), (5.6}, (5.17), (5.14), and (5.11)
Il <mlinll = mlly — yo (O}l < mby << ag(t — ).

As to the proof of (5.22) we obtain from the definition (5.17) of R using the
fact that d(x, ¢, &) is linear in its third argument

R(xg+ &, %9, 1) — R+ &, %, 1)

(5.24) { =[x+ & t) — f(x+ &, 8)] —d (%, 8, 6" —&).
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If we apply the mean value theorem®) to the difference in the bracket, the
right member of (5.24) may be written as

1
J{d(%g+E+BE &), 1,8 — &) —d(x, 1, ' — &)} dB.
(1]

Since (5.23) implies the corresponding inequality for &g (&' —&) if 0<f <1,
we see from (5.10) (with % replaced by &’—&) that the norm of the above
integral is <<||§” —& ||#/m. Therefore using (5.6) and ‘the definition (5.19) of
S we see that

IS (%0, 2, &) — S (%0, &, EV = AR (% + ", %, 1) — R (%, + &', %, )}
<m|[R(xg+§&", %, 2) — R(xg+ &, %0, 1)
<m|j§" — & d/m
which proves (5.22). As a special case we note that the inequality
(5.25) IS (0, &, E)I < BNEN

is obtained from (5.22) by setting & =§&, §&'=0 since S(x,, {, 0)=0 as is seen
from (5.19) and (5.17). -

Now from the inequalities (5.21), (5.22), and (5.25) one proves in the well-
known fashion (see, e.g., [3]) that the iterations

E],:CJ fnv-!—l:g—}—s(.xovt:én) (n=1'2"")

are well defined (for { and #in the domains specified) and satisfy the inequalities
IEN < ap(t — B/t — ),  Eu— Exeil < 2o0" "
which show that £=§&({, ¢) = lim §, exists uniformly and that
151 < ap (1 — BY)/(1 —F) < ap.

Obviously, & satisfies (5.20), and x==x(y, ) obtained from &=£((,¢) by
{5.17) and (5.19) satisfies (5.15). The continuity of x(y, f) follows from the
uniformity of the convergence since each iteration &, is continuous in (, #).
The uniqueness of £ as solution.of (5.20) follows in the usual way from (5.22)
and (5.9).

We now return to the proof of theorem 5.1. We have to show: if y=1v,
is'a point of X for which (5.7) is satisfied then there exists a 7> 0 such that
(5.26) 70 y1, D) =7k, 1, D) for |t —p <.

We distinguish two cases:

CASE 1. -f, maps no point of D on y,. Then by (5.7) no point of the closed
set D is mapped on ¥, by £,» and it follows from assumption v) of definition 5.1
that the image under f, of D has a positive distance from y,. This again
implies by definition 5.3 that for small enough |¢—¢,|, ¥, is not image point
of D under the map /.. Therefore for such ¢ (5.26) is true, both members of
the equation being zero by definition 5.2.

31) [2]_
Mathematische Zeitschrift. Bd. 63. 18
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CASE 2. y, is image point of D under the map f, =f(x,4). Then by
assumption iii) of definition 5.1 there are only a finite number of points in
D, say %, %%, ..., " in D such that

(5.27) 128 8) = v (e=12,...,7).

Now by theorem 2.1 there exists an >0 such that any bounded linear
operator 22(£) which satisfies the inequality

(5.28) Id(x2, %, &) — F(EN < el
satisfies also the equality
(5.29) 7(de, 4y, &) =7(1*(8)).

In order to construct the required 7 we remark first that by assumption a)
of definition 5.3 it is possible to choose two positive numbers 7, and é such
that

(5.30) d(x, ¢y, &) — d{x, ¢, E) < &
if

(5.31) It —tyl <7y

and

(5.32) Ix — xef|< 8.

We now chqgose a number a, which satisfies the following requiremerits:
1) (5.10) is satisfied with xy=x¢; ii) we have

(5-33) I%I <9

iii) the r solid spheres with centers ¢ and radius 4, are disjoint and contained
in D. We then choose a number b, subject to the restriction (5.14), and a
number 7, such that

(5.34) (%2, 8) — f(xe: toll < Bof2
if
(5.35) [t —tp] < 7y

We finally choose a positive number 7, as follows: let C be the closure
of the set obtained from D by cutting out the spheres with centers x? and
radius a,, and denote by £,(C). the image of C under the map f;. Then /, (C)
does not contain y,. Therefore by assumptionv) of definition 5.4, £, (C)-
has a positive distance from y,. Consequently, there exists a 73 such that
1#,(C) does not contain y, for |¢—#,| < 7,; we can then conclude that for
some g of the set 1,2,...,7

(5-36) v — 2l <ay if f(x,f)=y, and [¢—{]<7s.

We claim that (5.26) holds with v ==min (7, 7,, 7;). Indeed, consider f,=f(x, )
for a ¢t in |£—{,| <t. Let

(537) fat. ) = y°(8).
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With the choic of the constants 4, b,, © made we can apply lemma 5.1 with
xo=2% and ¥,() =°() and see that the equation

(5.38) fmb) =y
has for all y satisfying

(5-39) ly — y2 ) < &

one and only one solution x2(y,’#) which satisfies the inequality
(5.40) 2 (3, 1) — 2°)l < ap.

Now by (5.34), (5.27), and (5.37), v=1y,=7/(2%, ¢,) satisfies (5.39). Therefore
the equation for x

(5.41) fx.8) =5

has one and only one solution x§ = #2(y;, #) in (5.40). Then, by (5.33), £ =48
satisfies (5.32). Consequently, since ¢ satisfies (5.31) we see that d (%, ¢, 3:)_
satisfies (5.30), i.e., that (5.28) is true with 2(&) =d (4, ¢, &), and gives us
the equality

(5.42) 7(d(x, 1, 8) =7 (d(x5,1,8)).

Since by (5.36) 1, 41, ... &}, are the only solutions in D of (5.41) we obtain
by definition 5.2 of the degree the desired equality (5.26) by summing (5.42)
over .

THEOREM 5.2. Let y=1{(x) be a smooth mapping of the closure of the open
bounded domain D of X into X, and vy, a point of X which is not situated on
the image of the boundary B of D. Then there exists a positive number b, such
that

(5.43) 1, ¥, D)y =1(t, v0, D) for- Iy — voll < by.

Proor. We detinguish two cases. Case 1. No point of D is mapped on y,.
Then it is easily seen from assumption v) of definition 5.1 that for small
enough |ly — y,, the point y is also not in the image of D or B. Therefore
for such y equation (5.43) is true, both members of the equality bemg Zero.

Cask 2. Some points of D are mapped on y,. In this case let x5, 53, ..., xo'
be the points of D which are mapped on y,. We choose a number a, which
satisfies the following conditions: i) (5.10) is satisfied with xy= 28 (0 =1,2,...,7);
ii) the equality
(5.44) (d(#,8) =7(d(x.8)) for |z —gI<a,

holds for. p=1, 2, ..., 7, this choice being possible on account of (5.2) and
theorem 2.1; iii) the sphere< with centers #¢ and radius 4, are disjoint.and
lie in D. We then choose a number b, sub]ect to the following conditions:
i) (5.11) is satisfied; ii) the sphere with radius b, about %, does not intersect
the image of B’ which choice is possible by assumption v) of definition 5.1;
iii) let C be the closure of the complement in D of the union of the spheres
¥ — x|l << a,; the image of C does not. contain y, and has therefore (by the
15%
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assumption just mentioned) a positive distance from y,; we choose b, less
than this distance. We claim that (5.43) is satisfied with this choice of &,.
Indeed, if {ly — y,ll < b, then the equation f(x)=1y can have a solution only
in one of the spheres [x — 28| <a,, and by lemma 5.1%) it has exactly one,
say % = x?, in each of these spheres. Then (5.44) holds for x = 2, and it follows
from definition 5.2 that we obtain (5.43) by summing (5.44) (with x replaced
by x9) over p.

6. REAL BanNAcH sPACES. The preceding sections dealt with complex
Banach spaces. However, it is easy to carry over the theory from such spaces
to real Banach spaces by imbedding them into a complex Banach space as
will be done in this section.

DEFINITION 6.4. We say that the real Banach space R is imbedded in
the complex Banach space X if X has a conjugation {def. 3.1) of the following
property: let R, be the Banach space over the reals which is formed by thé
elements of X which are invariant under thi$ conjugation3¥); then R and
R, are algebraically isomorphic and isometric.

LeEMMA 6.1. Every real Banach space R can be imbedded in a complex
Banach space.

Proor. We construct X as follows: the elements x of X are the ordered
couples x=(2/, ¥’') where «', " are elements of R. If x=(x', ") and
y={(y', ¥'} are two elements of X and a=a'+¢a’”’ a complex number we
define the linear operations by

rr rH ’ r 1 I)

xty="+y,4"+y"), ax=@s—a"s", 5" +o"x

Finally, following Krein and Gelfand [I. Gelfand, Normierte Ringe, Recueil
Math., T. 9 (51), 1941, 3—23, §8] we define the norm |x|| of the element
x=(«x', ') by [[x]|=sup,||x’ cos ¢ + x"* sin g||.

DEFINITION 6.2. Let

(6-1) y=1(x) =x—F(x)
be a linear non singular map of the real Banach space R into itself with
completely continuous F(x). Denote by 4;,4,,..., 4, those eigenvalues of

F(x) which are real greater than 13%). Let m,; be the number of linearly in-
dependent solutions in R of the totality of equations (4x—F (x))*=0 for
n=1,2,...%). We then define the index j(f) of f by the equation

62 i =35 (0.

3%) We apply lemma 5.1 with f(#, #) =f(#).

33) Cf; Definition 3.2 and lemma 3.1.

3) That there are at most a finite number of eigenvalues = 1 is a well known con-
sequence of the complete continuity of F.

) It is well known that me; is finite.
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THEOREM 6.1. Let F(x) satisfy the assumptions of definition 6.2. Then
there exists a 6> 0 of the following property: if g(x) = x— G (x) where G(x)
is completely continuovis and
(6.3) If —gl=IF —Gll<é,
then
(6.4) i) =1i()-

Proor. let X be the complex Banach space in which R is imbedded by-
lemma 6.1. By lemma 3.2 every element of x of X is of the form

(6.5) x=2a"-1x" where x' = (x+7%)/2 and 2= {x —%)/2{ are in R.

We define _
Fx) =F(x) +iF(x"), f(x)=x—F(x

and G, § correspondingly. It is then easily verified that (x) is a linear com-
pletely continuous map of X into itself and that the real points of its: spec-
trum coincide with the real eigenvalues of F(x). Moreover, F(x) is real in
the sense of definition 3.3 and satisfies the assumptions A’, B’, C’ of section
3 (cf. remark 3.1). Now by remark 4.2 the numbers m; of definition 6.1 agree
with those of: theorem 3.1. Therefore

(6.6) i =i

and similarly

(6.7) i(g) =7().

Now by theorem 3.2 there exists an &> 0 such that
(6.9 i) =i@

if’

(6.9) IF —GlI<e.

We now set §=g¢/2 and claim that with this §, (6.3) implies (6.4). Indeed,
if we set H=F —G.and H=F — G, we obtain, recalling (6.5) and (3.3)

WF(®) — G (@) = 1H @) = 1H(x) +§ HE ) <IHI 2]+ 121}
=H|{lx + Z|| + llx — z|l}/2-
< HN =l + 121} = 2 H|| - [l«]
= 2||F — Gll|Ix]| < 26 ]lx]| = ell»|
thus proving (6.9) and therefore (6.8). (6.4) follows now. from (6.6) and (6.7).

REMARK 6.1. Let R be a real Banach space. Let D be a bounded open
set of R, D its closure, B its boundary, and let (6.1) be a map of D into R
with completely continuous (not necessarily linear) F(x). We then call f(x)
smooth if it satisfies conditions i) and ii)- of definition 5.1 and if in addition
the linear operator in 4, D(x, h) =h —d(x, k) is completely continuous (cf.
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Remrark 5.1). Perusal of section 5.1 shows then that everything said in this
section remains valid if the following substitutions are made throughout:
i) X is replaced by R; ii) definition 5.1 of a smooth map is replaced by the
definition just given; iii) references to theorem 2.1 are replaced by references
to theorem 6.1, and definition 2.1 by definition 6.2.

By the preceding remark the degree is defined and homotopy properties
are established for smooth mappings in a real Banach space R%).
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