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1. Introduction 

The most familiar of the moment problems is the one due to HAUSDORFF 
[4]. It consists in determining a set of necessary and sufficient conditions in 

order that a (real) sequence #, may have the representation /~,=S f dx(t), 
0 

where X(t) is a function of bounded variation in [0, 1]. HARDY [3] outlines 
the proof of HAUSDORFF; several alternate proofs of the result of HAUSDORFF 
are known (see for instance WIDOER [14] and LORENTZ [8]). One of these 
alternate proofs makes use of the uniform approximation of functions con- 
tinuous in [0, 1 ] by their Bernstein polynomials and is, to a large extent, due 
to HILDEBRANDT [5]. His proof is what is outlined by LORENTZ. An alternate 
set of necessary and sufficient conditions for the same representation has 
been given by RAMANUJAN [10] in his investigation on the quasi-Hausdorff 
methods. The results of HAUSDORrF and RAMANOJAN have been generalised 
by JAKIMOVSKI [6], [7]. Also, the uniform approximation through the Bern- 
stein polynomials enabled LORENTZ to determine the solution of the moment 
problem in the function spaces of the K6the-Toeplitz type; for the same 
function spaces, alternate solutions of the moment problems of LORENTZ 
have been provided by RAMANUJAN [12] and his solutions make use of the 
uniform approximation of continuous functions in [0,1] by certain power 
series, a result demonstrated by MEYER-K~NIG and ZELLER [9]. 

Among the modifications of the moment problem, the one concerning 
1 

the representation of #, in the form It, = S ta" dz (t), where 0 = 2 0 < 21 < . . .  < 2,-.. 
0 

and Y" 1/2n diverges and Z(t) is a function of bounded variation in [0, 1] is 
due to HAUSDORFF himself. For an account of this, see SHOHAT and TAMARKIN 
[13]. Recently ENDL [2] and JAKIMOVSrd [7] were led to consider the represen- 

1 
tation P,=S t'+~ dz(t), where e is real and Z(t) is, as before, a function of 

o 
bounded variation. Evidently this case is not covered by HAUSDOgFF'S results. 

They were led to this problem while considering the regularity conditions 
governing the summability matrix (H ~, p)=  (h~,), where 

h. , .= l~., (re>n), and =0, (re<n) 
/T/- -n  

10" 
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and they proved that 

sup ~=o , m--n 

is a necessary and sufficient condition for the above representation of /~. 
A close analysis of these two proofs reveals apparently no common ground, 
except the final result itself. 

In this paper we prove a uniform approximation theorem similar to the 
Bernstein theorem and then use the methods of HILDEBRANDT to arrive at 
the result of JAKIMOVSKI and ENDL. This method enables us also to give the 

1 
solution of the moment problems of the type/~,=S tn+~f(t) dt where f is in 

o 
any of the function spaces discussed by LORENTZ [8]. The uniform approxi- 
mation theorem in question is itself preceded by and derived from a general 
theorem on uniform approximation, which in turn is a generalization of a 
known theorem of BOHMAN [1]. 

2. Theorems on uniform approximation 

We start with the following general theorem on the uniform approximation 
of continuous functions. This theorem is an extension of a known theorem 
of BOHMAN [1] who considered the case when the %,(x) are all positive, for 
each m and n and for x in [a, b] and [c, d ] -  [a, b]. 

Theorem 1. For given a and b, - o o < a < b < o o  and for O<_n<_n(m), let 
{am,} be defined, with 

C~am, o<am, l<'"<am, n(m)~d where [a ,b]c[c ,d] .  

Let the functions % n (X) exist for 0 <-- n <--- n (m) and be finite for a <_ x <_ b. Suppose 
that for some no, Cm,(x)>O for no <=n<=n(m) and xe[a, b]. Assume also that 
the following conditions hold, uniformly in x, for a <_ x <_ b: 

(1) lim Cm,(x)=O, for n=O, 1 , . . . , n o - i ,  
m---~ ~o 

n(m) 
(2) lim ~ c , . . ( x ) = l ,  

m .--+ O0 n = O  

n (m)  

(3) l im Z Cmn(X) a m n =X, 
m "--> ~ ~ = 0  

n(m) 
(4) lim 2 Cmn(X) am2 n =X2. 

m - ' *  oo / ~ = 0  

Then 
i) if f (x)  is bounded in [e, d] and x~ [a, b] is a point of continuity off(x) then 

n (m) 

lim ~ Cm.(X)f(am.)=f(x); 
m - - ~  n = O  
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ii) if f (x)  is bounded in [c, d] and is continuous in a<a*< x<b*<b, then 
we have, uniformly in x for x in [a*, b*], 

n (m) 
lim ~ Cm.(X) f(am.)=f(x) .  

m ~ o o  n = O  

Proof. We prove the conclusion (i); the proof of (ii) will easily follow 
from that. 

First we make the following observations. Let a<_x<_b. Then 

.(m) { .(m) } 
lim ~ ICm.(X)I = lim Icmo(x)l +lcml(x)l +-"  +lcm,.o-l(x)l + Z Icm.(x)l 

m-~oo  n = O  m--+ oo ~ l = n o  

n ( m )  n ( m )  

= l i r a  ~ c m.(x)= lim ~ c m . ( x ) ,  
m ~ o o  n = n o  m ~ o o  n = O  

since lim cm.(x)=O , for n=O, 1 . . . . .  no -1  and lcm.(x)l =cm.(x) for n>n o. 
m--+ oo 

Thus 
n (m) 

lim ~ [Cmn(X)]=l. 
m--~ oo " = 0  

(2)' 

Similarly 

(3)' 

and 

(4)' 

n (m) 

l i m  ~, ]cm.(x)] a m .  = x  
m --> oo . = 0  

n (m) 

lira ~]ICm.(X)I 2 a m n = X  2 ,  

m...~ oo 1~ = 0 

all limits being uniform for x in [a, b]. 

We have, next, for x in [a, b] 
n (m) [- n (m) -] n (m) 

(5) f(x)-.=o ~ Cm"(X) f(am") = f(x) Ll-"=o ~ Cm.(x)l + =o Cm.(X) [f(x)-- f(am.)] . 

Let x be a point of continuity off(x)  in [a, b]; then (with the usual meaning 
for s and 5) we have 

n (m)  

f ( x ) -  ~ Cm,(X) f(am,) 
n = O  

F . (m) ] 

=f (x )  / 1 - y~ Cm.(X)[ +,y, Cm.(X) [ f (x)-- f(am .)] + s Cm.(X) I f ( x ) - - f (a  m .) ] ,  
L n=O d nezl~ neztx 

(where Ax=the set of n such that l am.--xl >~, and A" its complement) 

= E l  +E2 +E3 ,  say. 

Since f (x)  is bounded in [c, d] we get from (2), 

lim ~ t  =0.  
m--~ oo 
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Considering 22, we have, 
n (m) 

(6) l~2l <e Z Ic~.(x)l ~ 0 ,  
n = 0  

Also, 

Thus 

by (2)'. 

1~31=2M ~ ICm.(X) I, where ]f(x)l<=M, 
neAx 

< 2 M  =-U- ~ Icm.(x) l(am.--X) z 
nEAx 

,~,r n (m) 
< ~.1~16 z-  ~ I%,(x) l(am,,-x) e 

n = 0  

--*0, by (2)', (3)' and (4)'. 

n(m) <38 
lim sup f ( x ) -  ~ %,  (x) f(am,) , 

m---r o0 n=O 

and letting e ~ 0  we get the conclusion in (i). 

The proof of the theorem is now complete. 

Before proceeding to our main result in Theorem 2, we collect in the 
1emma below some relevant details. In what follows the binomial coefficient 

\ - - n / / m  

( m + ~ =  ( m + ~ ) ( m - l  +cO... (n+l  +~) 
m - n /  1 . 2 . . . . . ( m - n )  ' 

whenever cr is not a negative integer and if ~ is a negative integer then 

( m + ~ ) = 0  if n < - ~ ;  also ( ; ) = 1  for all0t 
m - -  n , /  

and 

( m + ~ = O f o r n > m .  
m - n~ 

At this stage we recall also the definition of the (H ", #) transformation of a 
sequence defined by ENDL [2]. The (HL #) transformation is provided by 
the matrix (H ~, #) ==- (h~n) where 

h" _ ( m  +c~'~ mn- \m_n/ iAm-n#n ,  (re>n) and =0 ,  ( m < n ) .  

Thus the transform (tn) of a sequence (s,) by the (H ~, #) method will be defined 
by 

tm=hm{s.,#.}= ~ rn+e Am_.#" s.. 
.--o \ m  - n/  
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Lemma. The following equations are true when ~>0, O < x<  l, or ~= 
- 1 ,  - 2 ,  - 3  . . . . .  0 < x < l  ores<O, ~ # - 1 ,  - 2  . . . .  a n d O < x < l :  

(7) ~ m + e  x,,+.(1 _ n + e - 1  ( l - x ) " ;  
.='o \ m  - n /  n 

g. {m +s ,+,.._x),,_, n +~ (8) 2_, / ! x  t~ - - - -  
.=o \ m - n /  m +o~ 

(9) ~, (m+e~x.+,(l_x)~_ , n + e  
.='o \ m  - n /  m + c~ 

x" m n + ~ - 2  
- -  

r e + a - 1  

Proof of the lemma. It has been shown by ENDL [2] that the product of 
(H ~, #) transformations is commutative; (i.e.) 

(H", ~) [(H", v) ~] = (H", ~,) [ (H  ~', ,.) s] = (H", ~ ,,) ~. 
Consider 

v , = n + a ,  (n=>0); if tm=[(H~,v) S]m, 
then 

to=aS o and t ,~=(m+cO(sm-sm-1),  ( r e > l ) .  

The choice s n -  1 now gives, by commutativity of the transformations, that 
for m > 0  

,--o \ m  - n / A m - "  #" [(n +a) ( s , -  s,_ 1)] 

(o:) 
Am #o" 

Thus 

Choose now p , = x  ~+~, (n=>0); then we get (7). Since 

m - n / \ m + e ]  \ m - n  ] 

we obtain (8) from (7). Similarly (9) can be obtained from (7) or (8). 

Remark. In case e is a negative integer then the sums on the right side of 
each of the Eqs. (7) through (9) are finite sums and therefore, for m__> mo (•) 
they remain (respectively) unchanged and thus for m > mo (c0 each one of the 
sums on the left side remains unchanged. 

We prove now 
Theorem 2. Let e be a real number. Let f ( x )  be bounded in fl <=x<= 1, where 

= i n f (  n +.~ [1 ~ , , \  m + ~ ] "  
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Let 

(10) Bin(G f, x) = + ( a - x )  m-" x f - ~ -  , m =0, 1, 2, . . . .  
n = O  

Then 
i) at each point of continuity of f(x)  in 0 < x <  1, Bm(G f ,  x) tends to f(x); 

ii) if f (x)  is continuous in some interval O<a<_x<b<l, then Bm(~,f,x) 
converges to f (x)  uniformly in a<_x<b; 

iii) if c~ is a non-positive integer then in (i) and (ii) above, the < symbol 
.following 0 can be replaced by <. 

Proof of the theorem. If - p  > e > - (p + 1) where p is a positive integer, then 

If 

m +cr 0 
re_n~= for p<_n<_m=p,p+l,. . . .  

c ~ = - p ,  then \ m _ n / =  for O<n<p<m.  

Also, it can be easily seen that for each fixed n >0,  we have, uniformly in x 
for 0<6_x___ 1, 

(11) ,,-~ o~ lim (mm2~) (1-x)m-"  1"+~=0" 

From our lemma, we have [on evaluating the sums on the right side of Eq. (7), 
(8) and (9)] that the following equations hold, uniformly in x, for 0 < 6 < x < 1: 

(12) lim ~ ( m + ~ ( 1 - x ) m - " x " + ' = l ,  
. . . . .  o k r a - n /  

(13) 

(14) 

Since 

l im ~(m-I-~)(1-x)m-"x "+'. n+e 
m~oo n=O m - t - ~  ' 

lim ~ (m+~(1--x)m-nxn+'' n+c~ n+~--i _ X 2 .  

~-.~ .=okra -n /  m+~ m + c ~ - I  

n+ct']2 n+e n + a - 1  _ n+a m - n  
m+c~] m + c ~  r e + e - 1  m + e  ( m + c 0 ( m + e - 1 )  

n + ~  m < 
= m + a  ( m + ~ ) ( m + c ~ - l )  

we have, by (12), (13) and (14) that 

Now the theorem follows from Theorem 1 by utilising (11), (12), (13) and (15) 
and also the remark following the lemma. 
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Note.  If a is non-negative then f l=0 ;  for c~=0, we get the Bernstein 
approximation theorem. 

3. Applications 
We give now the application of our Theorem 2 to the solution of certain 

moment problems. We start with a sequence {#,} of real constants and shall 
be concerned with the determination of the necessary and sufficient conditions, 
involving/~,, so that for each n, #, has either of the following representations: 

1 

(16) #, =S t"+~ d z ( t ) ,  
0 

where Z is a function of bounded variation over the interval [0, 1 ] or 

1 

(17) #, = I  t "+ ' f ( t )  d t ,  
0 

where f ( t )  belongs to a suitable function space like the space L p [0, 1 ] or more 
generally to the space X ( C )  of LORENTZ [8] whose definition is found else- 
where in this section. 

First we shall deal with the representation of p, in the form (16) and prove 
the following theorem (Theorem 3), one alternate proof of which is due to 
ENDL [2] and another is due to JAKIMOVSKI [7]. We remark here that we shall 
be content with proving Theorem 3 for e > 0 and refer the reader to the papers 
by ENDL and by JArdMOVSKI, where the case c~ < 0 is discussed and the discussion 
is based on the case of positive e. 

Theorem 3 1). Let  a > 0 .  The real sequence #,  has the representation (16) 
where Z is a function of  bounded variation over [0, 1 ] / f  and only i.[ 

~  (18) sup ~ / n + e  IA m-" 
m ,=ok~n- -n~  #"l < ~ 1 7 6  " 

Proof  of  the sufficiency. We start with the assumption that 

sup ~ /n +o~ [ Am-" ml = N <  oo. 
m n=0 k / n - n /  

Consider the linear space Q of polynomials of (possibly) fractional powers, 
of the type 

(19) q(x)  =a0 x~ + al x l + ' +  "'" + ak x k +" 

and x e  [6, 1], 6>0 .  

Consider also the linear space P of polynomials of the type 

(20) p (x) = ao + a 1 x + . . .  + a k x k, 

for x in the same interval as before. 

1) The case c~= 1 has been discussed by RAMANUJAN [11]. 
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We can associate in a 1 - 1 manner,  to a polynomial  q(x) in Q a polynomial ,  
to  be precise the polynomial  p(x), in P. This can be easily shown to be a 
linear homeomorph i sm between the Banach spaces P and Q, each with its 
natural  supremum norm topology.  We shall indeed have 

<• 
[]qll--<llpll- - 5~ IlqLI. 

We denote now by L(p)  as also by L(q)  the quanti ty ao/~o + aj ~1 + " "  + ak ilk. 
Since for  

> 0,  < \ m -  n /  for all m and n ,  

we have in virtue of our  hypothesis that  

But, whenever the condit ion (21) above is satisfied, it can be shown, as has 
been demonstrated by LORENTZ ([8], p. 5 8 -  59) that  L(p)  is a linear cont inuous 
functional  on P and that  IL(p)l<Nllpll where N is the same for all peP. 
Thus 

1 - -  
] L ( q ) ]  =]g(p)l<=g ]]Pll _ _ < g . - ~  ]]q]] = M  Ilqi], for all qeQ. 

Consequently L(q)  is a linear cont inuous functional  over Q. 

Consider now the member  q~+'(x) of Q, defined by 

{ /1 ' ~ \ k + ~  ) 
Then 

. - o  \ m  - n / A  m - .  m "  ~-m-~-j �9 

By Theorem 2, qk+'(X) converges uniformly, and therefore in norm,  to xk+% 
Since qkm+'(X), m = 0 ,  1 . . . .  are all members  of Q and L is a linear continuous. 
functional  over Q, we have L(qk+O~L(x k+') as m ~ o o ;  i.e. 

( n + ~ y  +" (22) 2) m-~lim~ .--o ~ \m(m _+~n/ 3"-" I~," \ - ~ ; ~  / =lXk. 

We shall now define a sequence of functions Zm(t) as follows: for  each fixed m, 
;( , , (0)=0 and it is a step function with the jumps  

(m+~Am_ . n+~ m-n~ #,  at t=----,rn+~ n = 0 , 1 , 2  . . . . .  rn. 

2) The above equation is very similar to the one obtained by JAKIMOVS~ ([7], p. 30); 
however the above equation can also be obtained, following the method of JAVJMOVSKI [6] 
and utilising the equation (11.13) of [7] and in this case the above equation can indeed be 
obtained with no restriction on/~n- 
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Thus for each m, Xm(t) is a function of bounded variation in [0, 1 ], since by 
hypothesis 

(m + ~  iA,,_ ~ #,l <_ N. 
.--o \ m -  n~ 

Also, Eq. (22) gives that 
1 

#k = lim ~ t k+~ dZm(t), k =0, 1, 2, 3 . . . . .  
m "* oo 0 

Now since the functions Xm(t) are all of uniform-bounded-variation first an 
application of the Helly theorem (see W~DDER [14], p. 29) and then of the 
Helly-Bray theorem (WINDER [14], p. 31) yields a function Z(t) of variation 
bounded by N and such that 

1 

#k =I tk+~ dz(t)' k =0, 1, 2 . . . . .  
0 

Thus the condition is sufficient. 

That the condition is necessary follows from the following 

Lemma. For O<_t<_ 1 and a>0 ,  

,=o n ( 1 - 0 "  _ 1 .  

The proof of the above lemma follows from Eq. (4.2.4) of ENDL [2]. 

We now indicate briefly the method of solution of the moment problem (17) 
i.e. to represent the sequence (#,) in the form 

1 

ttn =I t"+~f(t) dt, 
0 

wheref  belongs to the space X(C) defined as below: 

The class C is a class of positive integrable functions defined on [0, 1 ] and 
the class possesses the properties 

1) I~C,  

2) the class C is normal in the sense that if cl(x)~C and c2(x)<=cl(x ) a.e. 
then c 2 (x) E C, 

1 

3) the integrals ~ c(x) dx, c~ C, are bounded. 
0 

The space X(C) consists of all measurable funct ionsf  for which 

1 

sup Slf(x) l  c(x)dx=llfl[<oo. 
c ~ C  0 

That the space X(C) is a Banach space, with the norm llf  I[ is easily verified; 
also suitable choice of the class C will yield LP(p > 1) and also the Orlicz spaces 
(for details on this, see, LORENTZ, pp. 6 5 -  68). 
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Define now the functionsf~(x) and K,~(x, t) as follows: 

f 2 (x )=(m+a+l )  m+ Am_.#~, <x< 
m -  m+c~+l  - m+o~+l  ' 

(m+~ '~ . . . .  - .  n=O, 1,2, m; 
K~,(x, t)=(m+~+l) m _ n ) ( 1 - t )  t"+~ m = 0 , 1 , 2  . . . . .  " " '  

f,~(x) =0  ~ 0 < x <  
K~(x, t)=OJ = m + a + l  ' m = 0 , 1 , 2  . . . . .  

It is then easily verified that 
1 

K~,(x, t) d t = 1, 
0 

as also 

I K~ . (x ,  t) d x  = t l  - 1 
0 n=O m - n  - -  

in virtue of lemma above. 

Further, if 
1 1 

#m =I tm+~f(t) dt, then f,~(x) =S K~(x, Of(t) d, 
0 0 

The above facts, and Eq. (22) lead to the following theorem, the proof of 
which is parallel to the proof of the same result in case ~ = 0 given earlier by 
L O R E N T Z  [ 8 ] .  

Theorem 4. Let the space X ( C) have the property of re-arrangement invariant 
norm and let the integrals 

1 

~f(x) dx, f E X  and IIf[]=<l 
0 

have the property of uniform absolute continuity. Then for a > 0 the real sequence 
(Pn) has the representation 

1 

#n =~ tn+~f(t) dr, 
0 

with f ~ X ( C) and with ]If [1 < M, if and only if for each m, [If~ 1[ < M .  

At this stage we make the following observations. A known theorem of 
MEYER-K6NIG and ZELLER [9] gives the following result. 

Theorem 5. Let f(x)  be continuous in [6, 1 ], 6 > O, and let for ~ > 0 the 
sequence of functions Pro(a, f ,  X) be defined by 

n _ m ) ( l _ x ) . _ m  xm+~+l f .m+a + l 
n = m  n + ~  

Then Pm(~,f, X) uniformly approximate f(x)  for x in [6, 1]. 

Utilising Theorem 5 in the place of Theorem 2 we can prove the following 
analogues of Theorems 3 and 4. 
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Theorem 6 s). A real sequence (p~) has the representation in Eq. (16) with 
the function X(t) being of bounded variation in [0, 1 ] / f  and only if 

sup  I An-'~ #m+l I < 00. 
m n n 

Theorem 7. Let the sequence of functions FT,(x) be defined as follows: 

m + a + l  m + c ~ + l  < 
n + ~ + 2 < x =  n + ~ + l '  F : ( x ) _ ( n + ~ + l ) ( n + ~ + 2 )  (n+cr ~An_ m 

(m + e + l )  n - m /  /tin+ 1' m = 0 ,  1, 2 . . . . .  

n=m, m + l ,  . . . .  

Then the real sequence {#n} has the representation (17) with f eX(C) ,  where the 
space X(C) satisfies the hypothesis in Theorem 4, and with [If  II < M, if and 
only if, for each m, 11Fm ~ [1 < M.  

I n  the  case c t = 0  the  resul t  is due  to  RAMANUJAN [12] a n d  the  p r o o f  of the  
p re sen t  t h e o r e m  is o b t a i n e d  o n  s imi la r  l ines.  

References 
[1 ] BOHMAN, H. : On approximation of continuous and of analytic functions. Ark. Mat. 2, 

43-- 56 (1952). 
[2] ENDL, K. : Untersuchungen tiber Momentenprobleme bei Verfahren vom Hausdorffschen 

Typus. Math. Ann. 139, 403--432 (1960). 
[3] HARDY, G. H. : Divergent Series. Oxford: Clarendon 1949. 
[4] HAUSDORFF, F.: Summationsmethoden und Momentfolgen, I, II. Math. Z. 9, 74--109; 

280--299 (1921). 
[5] HILDEBRANDT, T. H. : On the moment problem for a finite interval. Bull. Amer. math. 

Soc. 38, 269--270 (1932). 
[6] JAKIMOVSKI, A. : Some remarks on the moment problem of Hausdorff. J. London math. 

Soc. 33, 1-- 14 (1958). 
[7] -- The product of summability methods; part 2. Technical report no. 8, Jerusalem 1959. 
[8] LORENTZ, G.G.:  Bernstein polynomials. Toronto: University of Toronto Press 1953. 
[9] MEYER-KONIG, W., and K. ZELLER: Bernsteinsche Potenzreihen. Studia Math. 19, 

89-- 94 (1960). 
[10] RAMANUJAN, M. S. : Series-to-series quasi-Hausdofff transformations. J. Indian math. 

Soc. 17, 47--53 (1953). 
[11]- On Hausdorff and quasi-Hausdorff methods of surnmability. Quart. J. Math. 

(Oxford II) 8, 197--213 (1957). 
[12] -- The moment problem in a certain function space of G. G. LORENTZ. Archiv der Math. 

15, 71--75 (1964). 
[13] SrIOHAT, J.A., and J.D. TAMARKIN: The problem of moments. Providence: Amer. 

math. Soc. 1943. 
[14] WIDDER, D.V.: The Laplace transform. Princeton: Princeton University Press 1941. 

The University of Tel-Aviv, Tel-Aviv, Israel 
University of Michigan, Ann Arbor, Mich., U.S.A and 
Ramanujan Institute of Mathematics, Madras, India 

(Received October 5, 1963) 

3) An alternate proof to Theorem 6, based on an extended version of Theorem 3, has 
been given by JAKIMOVSKI [7]. 


