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w 1. Introduction 

From any given permutation group acting on a finite collection of n points 
one can form, for each positive integer k<=n, two permutation groups by 
considering respectively the permutations induced by the given group on the 
unordered sets of k distinct points and those induced on the ordered sets of 
k distinct points. We consider relations between these two groups. Our main 
object is to prove Theorem 2 below. 

In w 1 we establish the following theorem. 

Theorem 1. I f  k >=2 and 2k<=n, then the number of orbits of the group on 
the unordered sets of k points is at least as great as the number of orbits on 
the unordered sets of k -  1 points. 

Using this result we deduce the following relation between the two groups. 

Theorem 2. I f  k>=2, 2k<=n and the group on the unordered sets of k points 
is transitive then 

(a) the group on the ordered sets of k - 1  distinct points is transitive (i. e. 
the given permutation group is (k-O-transi t ive) ,  and 

(b) /f also k>=5, the group on the ordered sets of k points is transitive (i.e. 
the given permutation group is k-transitive). 

Transitivity on unordered sets has been considered from time to time by 
various writers, e.g. MILLER [12]. HUGI-mS [9] has recently proved Theorem 2(a) 
under the stronger hypothesis k!=< n. ~) 

It has been shown by BEAUMONT and PETERSON [1] that if, for all k< n ,  
the group on the unordered sets of k points is transitive then the group is, 
in general, the full symmetric group or the alternating group. Exceptions 
occur only with the following groups: 

(i) n=5:  the affine group A1(5); 

(ii) n = 6 :  PGL2(5 ) ;  

(iii) n = 9: P G L 2 (8); 

(iv) n = 9 : P F L2 (8). 

This result may be deduced from our treatment, as is shown in w 4. 

1) The question has also been considered by WXELANDT, who showed in 1959, and privately 
communicated to the authors, that if k ~ 3 and 2 k ~ n, then G is at least doubly transitive. 
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I t  is clear that the condition 2k<=n is necessary for any statement having 
the form of Theorem2.  We show in w 6 that the additional condition k > 5  
in Theorem 2 (b) cannot be omitted. 

w 2. General definitions and notations 

We develop the notation introduced by WIELANDT [13, 14]. We consider 
a finite set f2 consisting of n elements called points. We shall use Greek letters 
c~,/~ . . . .  to denote points; S r~ and A a denote respectively the symmetric and 
the alternating group on O. 

if  G is a group of permutations of the points of O and 1 <k<n,  we say 
that G is k-transitive if G induces a transitive group of permutations on the 
ordered sets of k distinct points, and that G is k*-transitive if it induces a 
transitive group on the unordered sets of k points. 

If A is a subset of f2 we denote by Gta ~ the subgroup of G fixing A point- 
wise. We shall also call GtA 1 the stabilizer of A. If the stabilizer of every sub- 
set of k points of f2 is the identity we shall say that G is k-regular on f2. If G 
is k-transitive and k-regular on f2 we shall say that G is sharply k-transitive 
on g2. The subgroup of G fixing A as a set will be denoted by G(~). If the ele- 
ments of (2 have a natural order we use Gtk J and G(k) for the corresponding 
groups formed with respect to the first k points of O. 

If G is an intransitive group on O and F is a union of orbits of G then G r 
denotes the homomorphic  image of G obtained as a permutation group by 
restricting G to F. 

As is customary we shall denote the symmetric and alternating group on 
k points also by Sk and Ak respectively. The Mathieu groups on 11 and 12 points 
we shall denote by M l l  and M12 respectively. We shall denote the group 
of all linear transformations of the projective line over the field with q ele- 
ments by P GL2 (q). The corresponding group of all semilinear transformations 
we shall denote by PFL2 (q). The one-dimensional linear and semilinear affine 
groups, regarded as permutation groups on the q finite points of the line over 
the field of q elements, will be denoted by Al(q) and FAI(q) respectively. 

w 3. Proof of Theorem 1 

The proof of Theorem 1 will be based upon the description of the irreducible 
characters of S n given by FROBENIUS [5]. The character formulae enable us 
to compare the number of orbits on unordered sets of k points with the number 
on sets of k '  points. It  is first necessary to translate the enumeration problem 
to character-theoretic terms. This is effected by Lemmas 1 and 2 below. 

Lemma 1. Let A and F form a partition of t2: A wF=f2,  A c~F=0,  and let 
the number of points in A be k. Then the permutation group derived from G by 
its action on the unordered sets of k points is permutation isomorphic to the 
restriction to G of the permutation representation of S ~ on the cosets of S~). 
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To see the truth of this statement it suffices to consider the mapping 
f :  a-+a(A) defined on Sa . f (a )=f (b )  if and only if a - l b e S ~ ) .  Since S e is 
k-transitive all unordered sets appear in the image. Furthermoref(ab)= af(b). 
The group on the unordered sets is by definition the restriction of the image 
of S a. 

Lemma 2. I f  K and L are subgroups of a group H and if, for each irreducible 
representation Zx of H, ca and d~ denote the multiplicities of the identity represen- 
tations of K and L in the restrictions to these respective groups of the represen- 
tation Za of H, then the number of orbits of the restriction to K of the permutation 
representation of H on the cosets of L is given by the sum ~ c a d~. 

In fact the permutation representation of H on the cosets of L is the linear 
representation induced on H by the identity representation of L and therefore, 
by the Frobenius reciprocity law, decomposes as ~ dz Za. The restriction of 
the permutation representation to K contains the identity representation 
exactly once for each orbit of K. Hence the total number of orbits of K is 
equal to the multiplicity of the identity representation in the restriction to 
K, which is ~ ca d~. 

Since the numbers c a of Lemma 2 are non-negative integers, Theorem 1 
is an immediate consequence of the following lemma. 

Lemma 3. If, in the notation of Lemmas 1 and2, we take H= S ~ and L =  S~) 
then the numbers d~ are all 0 or 1. Moreover if A = A' and 2 k < n, and if d'~ is the 
number corresponding to da when A is replaced by A', then d~ <= dz. 

General decomposition theorems have been given for the Kronecker pro- 
ducts of representations of S a and the above lemma can be deduced from these. 
We shall instead outline a direct analytical proof based on the description of 
the irreducible representations in FROBENIUS [5]. 

Let 2 denote the partition [21, 2z . . . . .  2,] of n with parts written in descend- 
ing order and with 2~ > 0, and let s~ denote the ith partial sum of the sequence 
of parts. For  each r, 1 < r = n, let h, be the sum of all the monomial functions 
of degree r in a set of indeterminates x a . . . . .  x,;  define h o = 1. Finally let 6x 
and 3 o denote the n x n determinants 

. . . .  11,  o=fX}t. 
If A is the set of all partitions of n, we define three sets indexed by A as follows: 

n 

Sa:nS~ i ) ;  heal : i__I~Ilhxl ; h ( a / = - ~ ,  

where the index i runs from 1 to n. Then {hEzj:2eA } and {h~a~:2eA} form 
two bases for the vector space of rational integral symmetric functions of 
degree n, and FROBENIUS proved in [5], p. 517--520, that the irreducible 
representations Z of S a can be indexed by A so that the identity representation 
of S , ,  #cA,  induces ~ da Zx where d x is the h~x/-coordinate of hE, 1. For  the 
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lemma we require the coefficients da when /~= I n - k ,  k] and 2 k< n .  But by 
a theorem of JACOBI [8] we have, if 2r<n,  

h. h r -  1 
h~n-r"~= hn-~+l h.-r " 

By summation from r =  i to k we obtain because of ho = 1 and h~=h~,~: 

k 

h { n - r ,  r} = h [ n - k ,  kl , 
r=0 

from which the lemma follows. 

w 4. Proof of Theorem 2 (a) 

If a group G is k*-transitive on a set O then the stabilizers of the subsets 
of k points are conjugate. Our next four lemmas connect properties of stabi- 
lizers with multiple transitivity. The first of these lemmas is well known. 

Except in Lemma 8 we do not assume that 2 k< n .  

Lemma 4. Let G be a permutation group on a set f2 of n points. Let 1 < k  <n. 
I f  the stabilizer of every subset of k - 1  points is transitive on the remaining 
n - k +  1 points, then G is k-transitive on f2. 

The proof is obvious. 

Lemma 5. Let G be a permutation group on a set f2 and let ~ and 5 be two 
points of f2 and p a given prime. I f  there exist subgroups C and D of G each of 
order a power of p and having as their only f ixed  point ~ and 6 respectively, 
then ~ and 6 belong to the same orbit of G. 

Proof. Let us suppose that 7 and 3 belong to different orbits. Denote 
these by F and A respectively. By considering the orbits of C it follows immedi- 
ately that I t  I - l  Co) and I A I - 0 ( p ) .  Also by considering the orbits of D it 
follows that I F I = 0(p) and I A I = 1 (p). This contradiction shows that ~ and 6 
belong to the same orbit. 

Lemma 6. Let G be a permutation group on a set f2 of n points; let 1 < k <n, 
and let p be a given prime. I f  for every subset F of f2 with Irl =k, there exists 
a subgroup C of G which has order a power o fp  and which f ixes the points of F 
and no further points, then G is k-transitive on f2. 

Proof. Let 2; be any subset of f2 containing k - 1  points and let ~ and 6 
be any two points of f 2 - S .  Further let C and D be subgroups of G[z], each 
of order a power of p, fixing ~ and 3 respectively and no further points of 
f 2 -  2;. Then by considering C and D as permutation groups on f2-2;  it follows 
from Lemma 5 that 7 and 6 belong to the same orbit of Gm.  Hence Gtz ] is 
transitive on f2-2;  and it follows from Lemma 4 that G is k-transitive on ~. 
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Lemma 7. Let G be a permutation group on a set f2 and let s and t be given 
integers with s> 1. I f  the stabilizer of every subset of k - 1  points has order s 
and the stabilizer of every subset of k points has order t, then G is ( k - 1 ) -  
transitive on f2. 

Proof. Let 2; be any subset of f2 containing k - 1  points. Then clearly 
G m splits 0 - 2 ;  into orbits of length s/t. Moreover s/t> 1 since otherwise 
G m is the identity and s = 1. Now let p be a prime dividing s/t. Then, if P is 
a Sylow p-subgroup of Gtz ], the subgroup P fixes the points of 2; only. The 
result now follows immediately from Lemma 6. 

We are now able to prove the "general" case of Theorem 2(a). 

Lemma 8. Let G be a k*-transitive permutation group on a set f2 of n points, 
with 2k <n .  Then, if the stabilizer of a subset of k - 1  points is not the identity, 
G is (k-1)-transitive on f2. 

Proof. It follows immediately from Theorem 1 and the definition of 
k*-transitivity that G is ( k -  1)*-transitive on f2. Consequently all the stabilizers 
of the subsets of k points have the same order and also the stabilizers of the 
subsets of k - 1  points have the same order which, by our assumption, is 
greater than 1. We may now apply Lemma 7. 

Our next lemma enables us to eliminate those cases of Theorem 2(a) not 
covered by Lemma 8. 

Lemma 9. Let k > 3. Let G be a permutation group on a set f2 of n points 
which is k*, ( k - l ) *  and ( k - 2 )  but not (k-1)-transitive on f2. Then n = k  
and G = A  ~ except in the following cases: 

(i) n=5 ,  k = 4 ,  G=AI(5) ,  

(ii) n = 6, k = 5, G=  PGL 2 (5), 

(iii) n = 9, k = 5, G = PGL 2 (8), 

(iv) n = 9, k = 5, G =  PFL 2 (8). 

Proof. Let 2; be a subset of k - 1  points and F a subset of k points. It 
follows from Lemma 7 that Grzl, hence also Gin,  is the identity. Consequently 
G(z) ~- G~z) and G(r )-~ G~r). 

By considering G as a permutation group on the unordered sets of k points 
we obtain 

[ G l = ( k )  a where a--[Gfr)[ .  (i) 

Also by considering G as a permutation group on the unordered sets of 
k - 1  points we obtain (~ (2) [G[= k - 1  b where b=lGf~)[. 
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Using the fact that G is (k-2)-transitive we obtain 

(3) [Gl=(k:2)(k-2)lh where 

From Eqs. (1) and (2) we obtain 
n-k+l  

(4) b = k a 

and from Eqs. (2) and (3) we obtain 

(5) 

h=lGtk-2][ �9 

n-k+2 b=h. 
( k - l ) !  

We must now consider separately the different values of k. 

(a) k =  3. Clearly b = 1 or 2. If b =2, we may interchange any two points 

Clearly b = 1, 2, 3, or 6. If b = 6, then G is 3-transitive. We may now readily 
verify that the only integral solutions of Eqs. (6) and (7) for the other values 
of b are: 

(1) b=2,  a = l ,  n = l l ,  h=3 ,  

(2) b=2,  a = 4 ,  n=5 ,  h = l ,  

(3) b=3,  a = 4 ,  n=6 ,  h = 2 ,  

(4) b=3,  a=12,  n=4 ,  h = l .  

In case (1), since h=3 ,  some permutation will permute three points 
cyclically. Consequently 3[b, which is a contradiction. 

In case (3), since h--2, some permutation fixes two points and transposes 
two other points. By taking Z to consist of one of these fixed points and the 
pair of transposed points we have that 21b, which is a contradiction. 

Cases (4) and (2) can occur and, as is easily verified, correspond respectively 
to A ~ and the exceptional case (i) of the lemma. 

(c) k =  5. Eqs. (4) and (5) become respectively 

(8) b = ~ a 
D 

n - 3  
(6) b = ~  a 

and Eq. (5) becomes 
n - 2  

(7) ~ -  b = h.  

and G is 2-transitive. Hence b=  1. Eq. (4) now gives 3 = ( n - 2 ) a ,  hence a =  1 
or 3. If a = l ,  then n = 5  and from Eq. (5) it follows that h=2 .  Again, this 
implies that two points may be interchanged, which is impossible. Hence 
a--3 and n--3. Clearly, in this case G=A ~. 

(b) k=4 .  Eq. (4) becomes 
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and 
n - 3  

(9) 2~4- b = h. 

We shall also need the following result due to GORENST~IN and H u a ~ s  [7] : 

If G is a 3 but not 4-transitive group on a set f2 of n points and G is 4- 
regular then either 

(I) G is sharply 3-transitive or 

(II) G=PFL2(2 q) where q is an odd prime and n = 2 q +  I. 

We shall deal separately with these two possibilities. 

(I) G is sharply 3-transitive. Clearly h =  1. We may now readily verify 
that the only integral solutions of Eqs. (8) and (9) are: 

(1) b=4 ,  n=9 .  

(2) b=6 ,  n=7 .  

(3) b=8 ,  n=6 .  

(4) b=12,  n=5 .  

Case (2) cannot occur, since the degree of a sharply 3-transitive group is 
one more than a power of a prime (see for example BURNSIDE [2], p. 178), 
and 7 is not of this form. 

Case (1) can occur and corresponds to the exceptional case (iii) of the 
lemma. This is easily seen as follows. It is well known (see for example COLE [3]) 
that there is a unique sharply 3-transitive group of degree 9, namely P GL2 (8). 
It is easily verified that the subgroup fixing an unordered set of three points 
is transitive on the remaining six points. Hence the group is 4*-transitive and 
consequently also 5*-transitive. 

Case (3) can occur and clearly corresponds to the exceptional case (ii) 
of the lemma. 

Case (4) corresponds to G=A ~. 
(II) G is PFL2(2q). In this case I Gl =n(n -1 ) (n -2 )  q. Eq. (3) shows that 

q = h. Eq. (9) now becomes 

(10) (2 q - 2 )  b =24 q. 

If q=3 ,  then n=9 .  Since PFL2(8 ) contains PGL2(8 ) it must also be 4* 
and 5*-transitive. This case corresponds to the exceptional case (iv) of the 
lemma. 

If q=5 ,  then n=33  and b=4 .  However these values contradict Eq. (8). 

If q=7 ,  then Eq. (10) has no solution for b. 

If q>7 ,  the left hand side of Eq. (10) is greater than the right hand side. 

(d) k = 6. We shall need the following result: the only 4 but not 5-transitive 
and 5-regular groups are A 6 and Ml l .  
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This is an immediate consequence of the result of Gorenstein and Hughes 
mentioned above and the following extension due to M. Hall of a theorem of 
Jordan (see for example HALL [8] p. 73): the only 4-transitive groups where 
the stabilizer of 4 points has odd order are $4, $5, A6, A7 and Ml i .  

The case n =  11 and G = M l l  cannot occur since using Eq. (2) we have 

1 1 . 1 0 . 9 . 8 . 7  
I G 1 = 1 1 " 1 0 " 9 " 8 =  5I b 

which leads to a contradiction. Hence n = 6 and G = A  ~ is the only possibility. 

(e) k = 7 .  It follows from the last section that a 5 but not 6-transitive 
and 6-regular group is either A7 or a sharply 5-transitive group of degree 12. 
As in the previous case the use of Eq. (2) eliminates the second possibility. 

(f) k~8.  M12 has no transitive extension, since no primitive group of 
degree 13 other than A12 or S12 has order divisible by 5 (see BURNSIDE [2] 
p. 213). Hence the only ( k - 2 )  but not (k-1)-transi t ive and (k-1)- regular  
group, where k__>8, is A k. 

This completes the proof of Lemma 9. 

Since the conditions of Lemma 9 imply that 2 k > n ,  Theorem 2(a) follows 
from Theorem 1 and Lemma 8 by induction on k. 

The result of Beaumont and Peterson referred to in the introduction is 
also an immediate consequence of our Lemmas 7 and 9. 

w 5. Proof of Theorem 2 (b) 

Our proof will be based on showing that for k__> 5 the group G acts on some 
set of k letters as Sk. 

Theorem 3. Let k >  1, and let G be a k-fold transitive group on a set f2 of n 
points. I f  G is not (k + 1)-regular there exists a subset 1I, with n > I H [ > k, such 
that G(n) is k-transitive on 1I. 

Proof. Let A be a subset of k points of f2. Then since G is not (k+  1)- 
regular there exists a point g 6 f 2 - A  such that Gt~,,]~= 1. Let p be a prime 
which divides I Gtd,=al. Further, let S be a Sylow p-subgroup of Gt~ ]. There 
are now two cases to consider. 

(I) S f ixes points not in A. In this case we take 11 to be the set of all the 
points of f2 left fixed by S. By a theorem of MILLER (see for example HALL [8] 
p. 68) G(n) is k-transitive on 11. 

(II) S f ixes only the points of A. Let S split the points of f 2 -  A into orbits 
of lengths p% . . . , p% where l < a , < . . . < a s .  Also let ISl=p b. Then, if fi is a 
point of an orbit of length p% it follows that I Stp] l =pb-,x. 

Now let 11 be the set of all points left fixed by Sip ] . From our choice of p 
it follows that [ 111 < n. Let F be any subset of k points of 11. Clearly Sip ] is a 
subgroup of Gir I and since Sta~ is a p-group but not a Sylow p-subgroup of 



Transitivity of finite permutation groups on unordered sets 401 

Gtr ] there exists a p-group C in Gtr ] which contains St# ] as a normal subgroup 
of index p. Since Stp ] is a normal  subgroup of C a n d / / i s  the fixed set of Stp ] 
it follows that C maps H onto itself. 

We now wish to show that C fixes only the points of F. Let us assume 
that C fixes a point e not in F. Then if Tis  a Sylowp-subgroup of GEr I contain- 
ing C let the point e lie in an orbit of T of length pC. Clearly I Tt,al =pb-e and 
since C~Tt~ a it follows that pb-al+l ]pb-e, i.e., e<ap  Hence T has a shorter 
orbit than S which is impossible since S and T are conjugate in G. Thus C is 
a permutat ion group of /7 fixing only the points of F. We may now apply 
Lemma 6 to complete the proof. 

By repeated application of this theorem we obtain: 

Corollary. There exists a subset S of f2, with n > I S I > k, such that G(x) is 
k-transitive and (k + 1)-regular on ~. 

Lemma 10. Let G be a k-transitive group on a set g2 of n points, with 
n>k>=4. Then there exists a subset H of k+  1 points such that G~n)~A n. 

Proof. If G = S a the result is obvious. Hence we may now assume without 
loss of generality that G is not (k+l)- t ransi t ive.  We shall treat separately 
the various cases which may arise. 

(I) G is (k + 1)-regular. 

(a) k = 4 .  As was noted in w 4, the only groups of this kind are A 6 and 
M l l .  I t  was shown by FROBENIUS [6] that Mla acts as S 5 on some subset 
of 5 points (Alternatively we may use a simple counting argument on the 
unordered sets of 5 points to show that M t ~ splits these into at most 7 orbits 
and acts on a set of the shortest orbit as A s or S 5 . This suffices for our pur- 
pose). 

(b) k = 5 .  The only groups of this kind are A 7 and M12(see for example 
HALL [8] p. 80). Again, it was shown by FROBENIUS [6] that Mlz  acts as S 6 on 
some set of 6 points. (The same argument indicated in case (a) will show 
that  M I :  acts as A6 or $6 on some set of 6 points). 

(c) k > 6 .  In this case G=A a. 

(II) G is not (k+ 1)-regular. The proof in this case follows immediately 
f rom the corollary of Theorem 3 and case I above. 

We may now finish the proof  of Theorem 2 (b). Since G is, by assumption, 
k*-transitive it is clearly sufficient to show that for k > 5  there exists a s e t / 7  
of k points such that n n G(a)=S �9 Theorem2(a)  and Lemma 10 have shown 
that G~n)- A n, hence it only remains to show that G(nn) contains an odd permu- 
tation. 

We know that  G is 4-transitive and has degree at least 10. Let A be a subset 
of 3 points. Suppose first that  Gta I has odd order. Then the stabilizer of 4 
points has afortiori also odd order, hence by M. HALL'S theorem quoted in 
w 4(d) the group must be M l l .  However, in MI~ the stabilizer of 3 points 
has even order, which is a contradiction. Hence Gta I has even order. Let a 
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be an element of order 2 in G[A ]. We now select/7 to consist of an odd number 
of pairs of points interchanged by a and of points fixed by a. Clearly a restricted 
t o /7  is an odd permutation. 

This completes the proof of Theorem 2. 

w 6. Some examples of k*-transitive groups 

We append in this paragraph some remarks on groups which are k*- 
transitive but not k-transitive. We shall say that a group is of type k* if it is 
k* but not k-transitive and has degree at least 2k. Then Theorem 2(b) shows 
that groups of type k* can exist at most for k = 2 ,  3 and 4. We discuss these 
cases separately and give some examples for each case. 

(a) k = 2 .  A group of type 2* contains no permutation which interchanges 
two points. It is therefore of odd order and hence soluble (FEIT and THOMPSON 
[4]). Also every 2*-transitive group is primitive, since if c~ and /3 were two 
points in one block and 7 a point in another the group would contain a per- 
mutation carrying the pair e,/3 to the pair e, 7. Hence we may write n =pV, p 
an odd prime, and we know that the group is contained in Av(p). Also, since 

the group is transitive on the ( 2 ) u n o r d e r e d  pairs, p - -  1 (4) and v is odd. 

The groups of type 2* can be characterized as those transitive groups 
of degree greater than three and of odd order in which the subgroup fixing 
one point has exactly two orbits on the rest. That the condition is necessary 
follows from the above remarks and the observation that the group has 
exactly two orbits on the ordered pairs, since if e,/3 are any two points any 
pair can be mapped to (e,/3) or to (/3, e). It is clearly sufficient. 

Using this condition it is immediate that if q - -  1 (4) then the group of 
all permutations of the elements of the field Fq given by x~a  x+b with a a 
square is of type 2*. 

(b) k =  3. It is easy to determine the soluble groups of type 3*. The doubly 
transitive soluble groups have been described by HVPPERa" [10]. Apart from 
some exceptional groups of known order and degree they are all transitive 
subgroups of the groups FAI(q). Comparison of the orders and degrees shows 
that the exceptional groups are not 3*-transitive. It will now suffice to deter- 
mine the values of q for which FAI(q) is 3*-transitive. 

FAI(q), q=p~, is 2-transitive and the subgroup fixing the two elements 
0, 1 of Fq is the group of automorphisms of Fq. Hence this group has orbits 
of equal length on the remaining symbols if and only if v=  1, or p = 2  and v 
is a prime. 

If v=  1 and FAI(q) is 3*-transitive then 

and p=<6 and prime. These conditions are incompatible. 
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If p = 2  the condition 

shows that 2 v -  216 v. Hence v = 3 or 5. Examination of the individual groups 
shows that FA 1 (32) is transitive and regular on the sets of three points and 
that FAI(8) is also of type 3*. Thus it is only in the latter case that it is 
necessary to consider subgroups. A1(8) is transitive and regular on the sets 
of three points. 

An example of an infinite family of non-soluble groups of type 3" is provided 
by the groups P S L  2 (q), q > 3, q--- - 1 (4). 

(c) k = 4. By reasoning similar to the above it may be verified that, among 
the groups PFLm(q) and their transitive subgroups, there occur precisely 
three groups of type 4", viz. PFL2(8), PFL2(32 ) and PGLz(8 ). 
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