
HIGMAN, D. G. 

Math. Zeitschr. 91, 70--86 (1966) 

Primitive rank 3 groups with a prime subdegree 
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As a continuation of the study of rank 3 permutation groups G begun in 
[4] we consider in this paper primitive rank 3 groups of even order in which 
the stabilizer Ga of a point a has an orbit of prime length. We show in particular 
that if G has no regular normal subgroup then the minimal normal subgroup 
M of G is a simple group of rank 3 and the constituent of 214, on the orbit 
of prime length is nonsolvable and hence doubly transitive. 

In the first section we present a theorem of WIELANDT on primitive per- 
mutation groups (hitherto unpublished) which is important for our discussion 
and certainly of independent interest. After listing some preliminary facts 
about rank 3 groups in w 2, we summarize our main results in w 3. The remaining 
sections contain the proofs of these results, essential use being made in w 4 
of a theorem of BRAUER and REYNOLDS [2]. 

The author is indebted to Professor WIELANDT for communicating the 
theorem of w 1 and its proof, and for much other valuable help. In particular, 
the short proof of (3.3) and the method of w 6 are due to Professor WIELANDT. 
The author is also indebted to Professor J. E. MCLAUGHLIN for many valuable 
discussions. 

We take this opportunity to list some corrections to [4] : 

p. 147 omit the second sentence of Lemma 2. Add to the Cor. to Lemma 3 : 

Hence 

{ %̀1 for b~F(a)  
IF(a)~r(b)l= #1 for b~A(a)  

where 21 = l -  k + p -  1 and #1 = l - k + 2 +  1 / f  I GI is even and 21 =#1 = 
`%=#/f IGI isodd. 

p. 148 Cor.2, read "imprimitive" for "primitive". 

p. 149 line 5, read "(a)" for "(d)". 

L e m m a 6 , { : } = ( - l + ] / - - - - n ) / 2 i f [ G ,  isodd. 

p. 150 lineg, O = k + s f 2 + t f 3 .  
Lemma 7, replace the last sentence by: " I f  fa =f3 then case I. holds. 
In case II. the eigenvalues of A are integers." 
lines 4 and 5 of w 6, read ". . .  then G is primitive and ,%=0, # =  1 by 
Lemma 5 and Corollary 3." 

* Research supported in part by the National Science Foundation. 
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p. 153 

p. 154 

line 15, Miquelian. 

line 10 of w 7, a• ". 
Theorem 2, first sentence, read ". . .  q an integer _->2." and in the next 
to last sentence, read ". . .  with $4 (q)." 

I. A theorem of Wielandt 

If X is a subset of a set f2 and H is a group of permutations of f2 stabilizing 
X, we write H x for the restriction of H to X. 

(1.1) Theorem. Given a nonregular primitive permutation group G on a set f2, 
let A(a) be a Ga-orbit4={a}, let beA(a) and let b'eA'(a), where A'(a) is the 
G,-orbit paired with A (a) (for the definition of paired orbits see [7], w 16). 
Then every composition factor of the pointwise stabilizer T(a) of {a} + A (a) 
is a composition factor of v,, (~) or ~,j-r "~,b'~' (a). 

Proof. For  a subgroup H of G, denote by H *  the smallest subnormal 
subgroup of H such that every composition factor between H and H *  is a 
composition factor of ~a (~) ~ ' ( " ) "  H *  ~ , b  or of is a characteristic subgroup of H ~ a  ~ b r 

(WmLANDT [61, Th. 13, p. 220). Now G~,,(ba) ~ G,, biT(a) and therefore G* b = T(a)*. 
Similarly G'b,= U(a)*, where U(a) denotes the pointwise stabilizer of {a}+ 
A'(a). We can choose the notation so that A(a)g=A(a g) for all aEf2, geG. 

* - U ( b ) * .  Hence Then A'(a)g=A'(a g) and b~A(a) implies aEA'(b) so G,,b-- 
T(a)* = U(b)*<~ (G,, Gb)= G so that T(a)* = 1 and the theorem is proved. 

2. Notations and preliminary results 

If G is a transitive permutation group on a finite set s we call the number 
of orbits of the stabilizer G, of a point a the rank of G, and, following a sug- 
gestion of WIELANDT, we call the lengths of these orbits the subdegrees of G. 
Of course, the rank and the subdegrees do not depend on the particular point 
chosen. From now on in this paper  we are interested in rank 3 groups of even 
order. 

The following notations will be fixed throughout:  G is a transitive rank 3 
permutat ion group of even order on a finite set ~?. For  a~f2, the G,-orbits 
are {a}, A(a) and F(a), with A(a)g=A(a g) and F(a)g=F(a g) for all a~I2, g~G. 
The subdegrees are 1, k=[A(a)[ and l=rF(a)[, so that the degree n=1~21 
of G is given by 

(2.1) n = l + k + l .  

The intersection numbers 2, # for G are defined by 

2 ff b~A(a) 
[A(a) a A(b)l = 

# if beF(a).  

According to Lemma 5 of [4], the set (k, l, 2, #) of parameters for G satisfies 

(2.2) ~ l =  k ( k - 2 - 1 ) .  
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The degrees of the irreducible constituents of the permutation representation 
of G can be computed from (k, l, 2,/z), giving further restrictions on the 
possible sets of parameters (cf. [4], Lemma 7). 

As in w 1 we write H x for the restriction of H to X where H is a group 
of permutations of f2 stabilizing a subset X of O. We write G, a for the transitive 
constituent G, ~ (a). 

We now list some general facts about rank 3 groups to be used in the later 
sections. Since we are assuming that I G[ is even, 

(2.3) asA(b) implies b~A(a) (cf. [4], Cot. to Lemma 3). 
A useful criterion for primitivity is 

(2.4) G is primitive if and only if I~ :~ O, k (cf. [4], Cor. 3 to Lemma 5). 
As in w 1 we denote by T(a) the pointwise stabilizer of a• 

An immediate consequence of ([41, (vii), (viii)) is 

(2.5) I f  G is primitive and # > 2 +  1 then T(a) is semiregular on F(a) and 
I T(a) ] < k. 
It will be seen that the discussion in w 4 could be very much shortened if the 
assumption # > 2 +  1 could be dispensed with in (2.5). 

(2.6) I f  G is primitive and G2 is doubly transitive then 2=0.  

Proof. If G~ is doubly transitive and beA (a), then G,,b is transitive on 
A ( a ) -  {b}. Hence A ( a ) -  {b}__ A (b) or F (b). But A ( a ) -  {b} G A (b) implies 
2 = k - 1 ,  and hence that G is imprimitive by (2.2) and (2.4). Hence A ( a ) -  
{b}_ F (b) and 2 = 0. 

(2.7) I f  G is primitive and G~ is doubly primitive then either T(a) = 1 or # = 1. 

Proof. By (2.6), 2=0.  Assume that #>1 .  The assumption that G~ be 
doubly primitive means that Ga,b is primitive on A(a)-{b}, beA(a). Hence, 
since T(b) is a normal subgroup of Ga,b, either T(b) a(a) = 1 or T(b) is transi- 
tive on A ( a ) -  {b}. In the latter case, choose c e A ( a ) -  {b}. Then I A (b) n A (c) ] = 
# >  1, and therefore (A (b) -  {a}) c~ A (c)* 0. Hence A (b) -  {a}_c A (c) since 
T(a) <= G c, and it follows that # = k since a~A (e), contradicting the primitivity 
of G by (2,4). Hence T(b) d(")= 1, so that T(a)=T(b), and therefore T(a)< 
(Ga, Gb)= G so that T(a)= 1. 

(2.8) I f  G is primitive then ~ A(x)=f2 and (~ T(x)=l .  
x e a  • x ~ A  (a) 

Proof. Let 
A= Z 

x e a  .L 

then A ~ x  • for all xea • and G,~G a. Assuming that A=~f2 we have G,,=G a 
since G is primitive, and A = a z since G has rank 3. Hence A = x z and there- 
fore Ga=Gx• for all xea • contrary to the primitivity of G. Therefore 
A = I2 and this implies that 

N T(x) = 1. 
x ~ A  (a) 
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(2.9) A primitive rank 3 group G has a unique minimal normal subgroup M. 
I f  M is regular it is elementary abelian, and i f  M is primitive it is simple. 

Proof. If M and N are minimal normal subgroups of G, M:~N,  then M 
and N are transitive and (M,  N )  = M • N. It follows that M is regular and a 
direct product of nonabelian simple groups ([3], Ch. X, Th. XII, p. 200). Hence 
G belongs to the holomorph of M, and since this holomorph has rank > 3 
so does G, a contradiction. This proves the first statement. The rest is proved 
in a similar way. (The holomorph of A s has rank 4 so (2.9) is false for rank 4 
groups. Of course the argument shows that a primitive group with a nonregular 
minimal normal subgroup has a unique minimal normal subgroup.) 

3. Primitive rank 3 groups with a prime subdegree 

The main results of the present paper can be summarized as follows: 

Theorem. Let G be a primitive group of  rank 3 and degree n, with [ G[ 
even. I f  the subdegree k of G is a prime p, then either 

O) G has an (elementary abelian) regular normal subgroup, 

(ii) #--- 1, 2 = 0  and (a) p = 3  and G is isomorphic with A5 or S 5 , or (b) p = 7  
and G is isomorphic with U3 (5) or an extension of  U 3 (5) by a cyclic group of  
order 2, or 

(iii) # > 1, 2 = 0 and the minimal normal subgroup M of G is a simple rank 3 
group such that the constituent of M ,  of degree p is doubly transitive and non- 
solvable. 

In case (iii), p = c~ y -  # + 3 with ~ and y positive integers such that 

(1) /2 divides ~ y + 2  and ~ is even or odd according as ( e y + 2 ) / #  is even 
or odd, and 

(2) yZ--4~ y - - ( # - - 2 ) ( # - 6 ) = O .  

At present we do not have any example of case (iii). 

The discussion for the cases p > 1 (w167 4, 5) and # = 1 (w 6) are quite different. 
Before turning to the case # > 1 let us note the following facts. 

Assume that G is primitive of even order and that the subdegree k of G 
is a prime p, k = p .  Since # < p  by (2.3) we have by (2.2) that 

(3.1) # l = p ( p - 2 - 1 ) ,  # divides p - 2 - 1  and n = 1 + s p with s = 1 + (p - 2 - I)/#. 

(3.2) Gra is faithful. 

Proof. Let S(a) denote the kernel of Ga acting on F(a). Then S(a)+ 1 
implies that S(a)a(~):~l and hence that S(a) is transitive on A(a) since 
S(a)<Ga.  Since p<n /2  by (3.1), this implies by ([7], 13.4) that G is triply 
transitive, a contradiction. 

The case # >  I depends on an application of a theorem of BRAUER and 
REYNOLDS [2], made possible in the first instance by 

(3.3) P l l l a l .  
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Proof. Since G2 is a transitive group of degree p, p It I G, I and therefore 
p,~ IG2,~") I for beA(a). Hence p~/IT(a)l by (1.1), and, since G:G,=n=_-_I 
(modp)  by (3.1), p II I a l .  

For  a subgroup H of G we write N(H) for the normalizer of H in G. 

(3.4) If  P is a subgroup of G, of order p, then N(P) < G, and N(P T) = N(P) T, 
T= T (a). 

Proof. P fixes exactly a, for suppose that P<=G,, b, b#a. Then beF(a) 
by (3.3) so that / ~ = l A ( a ) n  A(b)[, and hence /1=0 or p, contrary to (2.4). 
Hence N(P)<__ G,. The rest follows by SYLOW'S Theorem. 

4. The case / ,  > 1 

Throughout this section we assume that G is a primitive rank 3 permutation 
group of even order, with k=p and # >  1. The end result of the section is 

(4.1) Theorem. If  G has no regular normal subgroup then the minimal normal 
subgroup M of G is a simple group. Moreover M is a rank 3 subgroup of G, 
and for each point a, M~ is doubly transitive and non-solvable. 

For H a subgroup of G, denote by C(H) the centralizer of H in G. Choose 
a subgroup P =  <n) of G, of order p. The proof of our Theorem depends on 

(4.2) C(P)=P x T(a). 

Proof. (a) If G2 is doubly transitive, then 2--0 by (2.6), so 2 + 1 = 1 < / ~  
and hence ] T (a) I <P by (2.5). But P T(a): Are r (,) ( P ) -  1 rood p and P T(a) :T(a) 
=p.  Hence PT(a) = Np r (,)(P), so T(a) <= N(P) and hence T(a) ~ C(P). Since 
PT(a)/T(a) is serf centralizing in G~/T(a), we have C(P)--P • T(a). 

(b) Now assume that G2 is not doubly transitive. Then by BURNSIDE'S 
Theorem ([3]; Ch XVI, Th VII, p. 341) G~ is solvable. Unfortunately we do 
not known at this stage that # > 2 +  1 so that (2.5) is not available and we have 
to make a rather long detour. 

Since G~,~G,/T(a) is a solvable group of prime degree we have that 
G,=N(P) T(a), and for beA (a), ~(~)~Ga biT(a) is a cyclic group of order ~ a � 9  b �9 

p--1 q-- 
t 

Now T(a) and T(b) are normal in G,, b and T(a)/T(a) n T(b)~T(a) r(b)/T(a)< 
G,,dT(a). Hence it follows by (2.8) that T(a) is abelian and the order of 
every element of T(a) divides q. 

Put W=C(P) n G~,b, then w<=r(a). For, if x e W  and P = @ > ,  then 
commutes with x and therefore permutes the fixed points of x. But x fixes 
bsA (a) and <n> is transitive on A (a). Hence x fixes A (a) pointwise. Now we 
have N(P) n r ( a ) =  C(P) c~ T(a)= W since N(P) n T(a)< C(P). Therefore W 
is a normal subgroup of N(P), and hence W is normal in G, since T(a) is 
abelian. It follows that W depends only on a, and not on beA (a) or P<_G,. 
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We write W= W(a). Furthermore, since PT(a)/T(a) is self-centralizing in 
G,/T(a), C(P)<T(a) and therefore C(P)=Px W(a). We also note that for 
beA(a), W(a)n T(b)= 1, and hence W(a) and T(b) commute elementwise. 
In fact, if xe W(a) c~ T(b), then x centralizes P=(n) ,  so that x=x~'eT(b)~'= 
T(b~*). Hence xeT(e) for all etA (a), and therefore x =  1 by (2.8). 

C~ 

Fig. 1 

We have Ga=N(P) T(a) so G,,b=T(a) [N(P) c~ G~,b]. Using once more 
that Ga/T(a) is isomorphic with the solvable transitive group G2 of degree p, 
we have G,=PT(a)G,,b=PG,,b, and hence N(P)=P[N(P)c~ Ga,b]. Now 

G.,b/T(a) =T(a)  [N(P) c~ G.,bl/T(a),.~ [N(P) c~ G.,bl/[N(P ) n T(a)] 

= [N(P) c~ G.,b]/W. 

If we take a generator Wa of this cyclic group of order q then 

N(P) c3G.,b=(W,a), N(P)=(PW,~r) and G.,b=(T(a),a). 

Our aim is to show that W(a)= T(a). This is accomplished in two further 
steps as follows: 

O) If W(a) 4= T(a) then W(a) = 1. 

Assume that W(a)+ T(a) and use bars to denote residue classes modulo 
W(a) in G,. Then N(P)=N(P), (normalizer in Ga), and 6 is an element of 
order q such that N(P)c~ G~,b=(6) ,  N(P)=(P, ~) and G~,b=(T---(~, 6 ) .  
Moreover, P =  ( ~ )  and ~ =  ~ with 7 a primitive root modulo p. 

The element ~ induces a fixed point free automorphism of order p on 
T(a) 4: 1. We have a homomorphisrn q~: N(P) -~ Aut (T--(-a)), the automorphism 
group of T(a), and 

~0 (~)~ ~ ) =  ~0(~ ~) = ~0 ( ~ ' )  = q~ (~)~.  

Hence 6 induces an automorphism of T-(-~ of order q, and q~ is one-to-one. 

Put C-- the  centralizer in Ga,b of T(a). If ~ C ,  then 5 = t  6 ~ with t~T(a), 
and (5, T---~)= 1 implies (6 ~, ~-(a~)=-i which in turn implies that 6~= 1 and 
hence that 5~ T--~. This proves that C=  T-(-~. But W(b) < C and W(b) c~ T(a) = 1 
as we have seen above. Hence W(b)= 1. But W----(~,~ W(b)W(a)/W(a)~ 
W(b)/W(a) c~ W(b)= W(b). Hence W(b)= 1. This proves (i). 
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(ii) W(a) = 1 implies T(a) = 1. 

Assume that W(a )=  1 and let bEA (a). In this case we have that ~ is an 
element of order q such that N(P) n G,, b = @),  N(P) = ( P, a), G,, b-= (T(a), a)  
and ~ = ~ ' .  Moreover, n induces a fixed point free automorphism of order p 
on T(a). Note that if U is any subgroup =~ 1 of T(a) invariant under N(P) 
then ~ induces a fixed point free automorphism of order p on U and a induces 
an automorphism of order q on U. 

If T(a) n T(b) = 1 then ] T(a) I [ q <p, and the argument for case (a) shows 
that T(a) centralizes P, whence T(a)= 1. Assume that T ( a ) n  T(b)+ 1. If 
T(a)=T(b) then T(a)= 1 by (2.8). Assume T(a)+T(b), and take an xeT(b), 
xCT(a). Then xeG,,b=(T(a) ,  a)  so that x = t  v with teT(a), z e ( a ) ,  ~4=1. 
Since x centralizes T(a) n T(b), so does v. 

Let r be a prime divisor of IT(a)] such that z centralizes elements of order r 
i n  T(a). The totality V of elements of order r in T(a) can be regarded as an 
N(P)-module  over Fr, the field of r elements. Let V1 be an irreducible P- 
submodule of V containing fixed elements + 0  of z. Then Va is invariant 
under v since V~ is again an irreducible P-module and V1 n V~ contains the 
fixed elements of z in V1. If V1 were fixed elementwise by ~ then the same 
would be true of the N(P)-submodule  W of V generated by Vj, contrary 
to the fact that o" ] W has order q. Hence the fixed point set U of Vt is a proper 
subspace of V 1. Since T(a)/T(a) n T(b) is cyclic, and since 

T(a) >= V 1 > U>= V 1 n T(a) ~ T(b), 

it follows that Va/U has dimension 1. 

Adjoin ~ to F=F~ in the ring of linear transformations of V~ to obtain a 
commutative ring A = F [ ~ ] .  Then V~ is a faithful irreducible A-module, so A 
is a field and V a has dimension 1 over A. We may identify V 1 with A so that 

becomes a field automorphism with fixed field U~F. But then we have 
1 = d i m  v A/U=dimv A - d i m  r U = ( o ( v ) - 1 ) d i m  v U, where o(z) is the order 
of v. Hence dimF U = I  so U=F, and o ( z ) = 2  so d i m v A = 2 .  Therefore 
] A l = r  z and, since g is fixed point free, p lr z -  1, and in particular p<__r+ 1. 
But r] q and q=(p-1) I t ,  where t >  1 since G, a is not doubly transitive. Hence 
r < p - 1 ,  so p < r +  1, a contradiction. This proves (ii), completing the proof 
of (4.2). 

(4.3) I f  N ~  1 is a normal subgroup of G such that p ~/ IN[ then N is regular. 

Proof. I f p y  INI then N ~ = I ,  i.e., N,<T(a)  for all a. Hence 

No<T(a ) n N<=Nb <T(b) 

for all b~A (a), and therefore N~= 1 by (2.8). 

F rom now on in this section we assume that G has no regular normal  
subgroup, and we let M be the minimal normal subgroup of G. Since M is a 
direct product of isomorphic simple groups, and since p [][M[ by (3.3) and 
(4.3), it follows that M is simple. 
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Using (3.3) and (4.2) we have that the p-invariants of G (in the sense of 
BRAtrER and REYNOLDS [2]) are (q, w, r) with 

p - 1  
q =  and r = s + u + s u p ,  

t 
s as in (3.1), i.e., 

p - 2 - 1  
s = l - t - - - ,  and I + u p = G , : N ( P ) .  

# 

If we set T O = M n T(a) and Wo = I To I, then the p-invariants of M are 

p - 1  
( q o , w o , r )  with q0= , t lto. 

to 

We want now to prove that Man is non-solvable. Suppose that Ma n is 
solvable. Then u=O, for PTo/To<~ M,/To so that PTo<~ M, and therefore 
P<~ 3//,. Hence r=s. 

If Gff is solvable, then G,,b,c=T(a) for b, csA(a), b~-c, and 

G~ b: T(a) - p -  1 
' t 

Let esF(a) c~ F(b), then 

Gab, e=T(b), G,b:G, be - p - 1  and G,:G, ,e=p(s -1) .  

Hence s - 1 p -t 1 

If G~ is doubly transitive, then 

2 = 0  

In any case, r has the form 

and s = 1 4  p - 1  
# 

r = 1 4  p - 1  
x 

By a theorem of BRAUER and REYNOLDS ([2], Theorem 2) applied to the 

simple group M, exactly one of the following cases holds: 

( i )  r = 1,  

(ii) r =  p - 3  2 ' p a Fermat  prime, 

(iii) r can be written in the form 

h u p + u 2 + u + h  

u + l  
with positive integers h, u. 

Case (i). This is clearly impossible. 

Case (ii). Here 
16 p - 1  _ p - 3  

x 2 ' 
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giving 2 ( p - l + x ) = x ( p - 3 ) ,  i.e., x(p-5)=2(p-1) .  Hence p - 5 1 8 ,  p < 1 3  
and therefore p = 5  and r =  1, a contradiction. 

Case (iii). If 

1-~ P - l - h u p + u 2 + u + h  then h= ( u + l ) [ p - l - x ( u - 1 ) ]  
x u + l  ' x(up+l) 

If x ~ 2 ,  

h< (u+l ) [p-2u+l]  < 2 u ( p - 1 )  <1,  
2 ( u p + l )  = 2 ( u p + l )  

hence x =  1. But then r =p  and so 

p=l -~  p - 2 + 1  

giving 2=0 ,  # =  1, contrary to the assumption that # >  1. 

We have now proved that M~ is non-solvable, and hence it is doubly 
transitive by BURNSIDE'S Theorem ([3], p. 341). 

To complete the proof of Theorem (4.1) we must show that M has rank 3. 
But we know that Ma ~ is doubly transitive. Therefore M, permutes the sets 
A (x) n F(a), x~A (a), transitively (even doubly transitively), and for b~A (a), 
M,,b is transitive on the points of A(b)-{a}=A(b)c~ F(a). Hence M r is 
transitive by (2.8), which implies that M has rank 3. 

5. Parameters of G in case p > 1 

Here we assume that G is a primitive rank 3 group with a prime subdegree 
k=p. We assume in addition that # >  1 as in w 4, and that G contains no 
regular normal subgroup. By (4.1) we know that the minimal normal subgroup 
M of G is a simple group with the same properties. The following discussion 
applies equally well to M in place of G. By (4.1), G, ~ is doubly transitive and 
non-solvable, so 2 = 0. Hence, for b ~ A (a) we have the following index diagram: 

6" 

g~ 

N(P) 

C/P)=PxT(a, 

P 

where 

(5.1) 

/2 

Fig. 2 

~a,b 
l+u,p 

& wfp) na~,b 
q 
T(a) 
14," 

I 

n=l+sp ,  s = l + - -  
p - 1  u>l  and 

p - 1  q = - -  
t 
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Thus, in the notation of BRAUER and REYNOLDS [2], 
(5.2) The p-invariants of G are (q, w, r), with r = s + u + s u p .  The p-invariants 

for M are (qo, Wo, ro) with 

p - 1  
q o -  , t] to, w o = [ m c ~  T(a)[ .  

to 

If b, cEA(a), b+-c, then 
G,,b: T(a ) _ q(l  +u p) _ l + u p  

Ga'b'c: T(a)= G,,b: Ga, b, c p--1 t $ 

hence 

(5.3) t l 1 + u p. 

By (2.5), T(a) is semiregular on F(a),  and therefore wll. But p ~/w, so 

w] l/p= p - 1  
# 

For b, c~A(a), b~c ,  T(a) fixes A(b) n A(c) -{a} ,  a subset of F(a) of # - 1  
points. Hence w ] # -  1, and we have 

By (1.1), 

(5.5) Any prime divisor of w divides q(1 +u p ) .  

The parameters associated with G (or M)  in the sense of w are (p, / ,  0, #); 
we need only consider p and #. 

(5.6) Theorem. p = c~ y - # +  3, where o~ and y are positive integers such that 

(i) # l ~ y + 2  with ~ even or odd according as (c~y+2)/# is even or odd, and 
(ii) y2 _ 4 ~ y -  ( # -  2) ( # -  6) = 0. 

Proof. The case I of ([4], Lemma 7) is impossible since # >  1 and 2=0 .  
Hence case II applies, giving #2 + 4 ( p -  #) = y2, a square, such that y I P (P + / ~ -  3) 
and 2 y l p ( p + # - 3 )  if and only if ( p - l ) / #  is odd. If PlY then p l # ( # - 4 ) ,  
which is impossible. Hence p + # - 3 = ~ y .  Then y 2 - 4 c ~ y = ( # - 2 ) ( # - 6 ) ,  and 

p - 1  ~ y + 2  1 

giving p = e y - # + 3 ,  with c~ even or odd according as ( e y + 2 ) / #  is even or 
odd. This proves (5.6). 

It is easy to see that the conditions of (5.6) are equivalent to those of 
([4]; Lemma 7) in our present case. We note that the incidence matrix A = V(A) 
of the block design A associated with G has the eigenvalues p with multiplicity 1 
and 
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with multiplicities 

AJ=-~-( - T J  
respectively. 1 , f2 , fa  are the degrees of the irreducible constituents of the 
permutation representation of G (cf. [4]; w167 4, 5). 

If # = 2, we have by (5.4) that w= 1, i.e., T(a)= 1 and G, ~ is faithful. The 
conditions of Theorem (5.6) are equivalent to: p=4c~2+1, e odd. The first 
three possibilities are as follows: 

~z p n 

1 5 16 
3 37 704 
5 101 5152 

For  the first of these we must have Go=As or $5, giving I GI =960 or 1920. 
It is known (cf. [1], p. 403) that there is no simple group of either of these 
orders, hence this case is impossible. 

I f /~=6 ,  (5.4) gives w= 1 or 5 and 

w P - 1 6  

The conditions of Theorem(5.6) become: p = 4 a 2 - 3 ,  a odd, 3 12a2+1.  
Here the first three possibilities are: 

p n w 

5 97 1,649 1 
7 193 6,369 1 

13 673 76,049 1 

For  each # + 2 ,  6 there are at most finitely many corresponding primes p, 
as follows at once from Theorem (5.6). Solutions of the conditions of Theo- 
rem (5.6) can be found, for example, by putting # = 4 p  and assuming that 
31p -21 ) .  The smallest solution of this kind is /~=116, p =  1,088,777, n =  
10,222,340,312. We do not know of any solution with # odd and > 1. 

6.  T h e  c a s e / ~  = 1 

In this section we prove 

(6.1) Theorem. Let G be a primitive rank 3 permutation group of even order 
with k =p,  a prime, and IX = 1. Then either 

(i) p=2,  n = 5  and G is a dihedral group of order 10, 

2) This possibility was pointed out by MARSHALL H~STENES jr. 
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(ii) p = 3 ,  n = 1 0  and G is isomorphic with one of A 5 or S 5 acting on the 
unordered pairs of distinct letters, or 

(iii) p = 7, n = 50 and G is isomorphic with U 3 (5) or the group 0 s (5) obtained 
by adjoining the field automorphism to U s (5). 

Proof. We first show that 2=0 .  Let a, b be points such that b~A(a), then 
[A (a) n A (b)[ =2.  If 2 = p - I  then # = 0 ,  a contradiction. Hence 2=<p-2  and 
there is a c~A(a), c+b, cr Then ] A ( c ) n  A(a) l=2,  A(c )n  A(b)={a} 
and b, eCA(e). Hence 2 2 < p - 2 .  If 2 2 = p - 2  then p = 2  and 2=0 .  Otherwise 
22 < p -  2 and there is a point de A (a), de A (c), dJe b, e. Then ] A (d) ~ A (a) I = 2, 
A(d) n A(b)=A(d) n A(c)={a} and b, e, d6A(d). Hence 32=<p-3,  and either 
p = 3  and 2 < 0  or 3 2 < p - 3 .  Continuing in this way we eventually get 
p 2 < p - p = 0  and hence 2=0 .  

Now it follows at once from Theorem 1 of [4] that one of the following 
conditions holds: 

(a) p = 2 ,  n=5 .  

(b) p = 3 ,  n=lO.  

(c) p = 7 ,  n=50.  

We know that the groups listed in the theorem have representations of 
the stated type ([4], [5]). We must show that this list is exhaustive. 

In case (a), G must be a Frobenius group ([7], w 18.7), and hence dihedral 
of order 10. 

In case (b) let us arrange the points as follows: a, A (a) = {b, c, d}, A ( b ) -  {a}, 
A (c)-{a},  A (d)-{a}.  Then for suitable arrangement of the points in the sets 
A(x) -{x} ,  xeA(a), the incidence matrix of the block design A associated 
with G (cf. [4], w167 3, 4; this is the matrix V(A) of [7], w 28) takes the form 

0 

1 
1 
1 

0 
0 

0 
0 

0 
0 

11 
0 11 

11 

1 0 I X 
1 

1 I 0 I 
1 

1 Xt I 0 
1 

Since the row sum is 3, X must be I or 

Math. Z., Bd. 91 6a 
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and since A2+A=2I+F ([3], w 3), we must have X = J .  Because S 5 has a 
representation of the given type, it follows that the full collineation group of A 
has a subgroup S~$5. We easily see that S is the full collineation group and 
that any rank 3 subgroup contains the subgroup of S isomorphic with A 5. 

To handle case (c) we apply a method due to WmLANDT (oral communica- 
tion). Let G be a rank 3 group of degree 50 with k = 7, 2 = 0 and # = 1. Let A 
be the incidence matrix of the block design A associated with G. We know that 

(1) A2+A=F+6I 

where F=Fso is the 50 x 50 matrix with all entries 1 and I=Iso is the 50 x 50 
identity matrix, and the eigenvalues of A are 7, - 3  and 2 with multiplicities 1, 
21 and 28 respectively (cf. [4], w167 4, 5). 

Choose a subgroup H=(~) of G of order 7. Then H fixes exactly one 
point a, has A (a) as an orbit and decomposes F(a) into 6 orbits of length 7. 
We can arrange the points so that in the permutation representation D of G 
we have 

D(n)--diag {1, C . . . .  , C} 

where C =  C7 is the 7 x 7 cyclic matrix 

(i I 0 1  
�9 ~ ~ 

and at the same time A takes the form 

o ! . . . 1  o 

0 [ I7 B61 

0 

I7 

" "  ' B 6  6 

where B = (B~) is a symmetric 42 x 42 matrix partitioned into 7 x 7 blocks B U . 

From the properties of A, in particular the relation (1), we have 

(2) F B,j=F-I, 
and 

EBijBjk+Bik= S F+5I for i=k (3) [ F - I  for i # k 
(where, of course, F=F7 and I=I7) .  
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Now form the matrix A by replacing each of the indicated blocks of A 
by its row sum: 

0 7  
1 0  

A - - 0 1  

0 1  

. , .  0 

1 . . .  1 

f i l l  " ' "  ill6 

~ .~ .  ~ 

Since D (~) commutes with A, each block Bij of B is a sum of powers =# I of C. 
Hence the symmetric matrix b =(flii) has non-negative integral entries, and since 
B is symmetric with all diagonal entries 0, the diagonal entries flu are even. 
The row sum of b is 6, 

(4) ~fl~j=6. 
J 

There is a similarity transformation reducing A to the form diag {A, A~, ..., 
A6} where the A~ are algebraically conjugate 7 x 7 matrices, and reducing F 
to the form diag {F, 0 . . . .  ,0}, where 

7 

comes from F in the same way as A comes from A. Hence A 2 + A = / ~ + 6 I  
by (1), and trace 6 trace A 1. Hence b2+b=6(F+I), i.e., 

~fl~jflik+fi~=512 for i n k  (5) 
6 for i+k. 

From (4) and (5) we see easily that f lu= 0 or 2 for each i, and that the cases 
fln=O for all i and fii~=2 for all i are impossible. Hence b has trace 6, which 
means that we can assume that ill ,  =flz2 =f133 =0  and f144=fis s =f166 =2. 
Then by (4) and (5) we see that (disregarding order) the set of off diagonal 
entries in each of the first three rows (columns) must be either 

(1) {2, 2, 2, 0, 0} 

o r  

(II) {3, 1, 1, 1, 0} 

while the set of off diagonal entries in each of the last three rows (columns) 
must be {2, 1, 1, 0, 0}. A straightforward analysis of the possible cases (say, 
according to the possible values of fllz and flla) shows that (up to row and 

M a t h .  Z . ,  B d .  91 6b 
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column permutations) 

0 
2 
2 

b 1 - 
2 
0 
0 

exactly two 

2 2 2 0 0  
0 2 0 0 2  
2 0 0 2 0  

0 0 2 1 1  
0 2 1 2 1  
2 0 1 1 2  

matrices b exist, 

0 0 0  
0 0 3  
0 3 0  

b 2 - 
2 1 1  
2 1 1  
2 1 1  

namely 

2 2 2  
i l l  
1 1 1  

2 0 0  
0 2 0  
0 0 2  

Now we determine the matrices A, or what is the same thing, the matrices 
B=(B~i), corresponding to b 1 and bz. 

First suppose that b 1 arises from B. Then with p a suitable power of C we 
have B16=0, Bz6=pk+p t, B36=0,  B46=p j, Bs6 =  p and B66=pi+p -i, so 
that B6t=0,  B62=p-k+p -z, B63=0,  B6,~=p -j and B6 5 =p  6. Applying (2) 
and (3) we see that {1, i, - i , j , k ,  l} and {k- l ,  l - k ,  2i, -2i ,  i, - i }  are 
complete residue systems modulo 7. There are exactly two possibilities 

i j k I  

2 6 3 4  
5 6 3 4  

each of which gives B 26 = p3 + p4, B46 = p6, B54 = P and B66 = p2 + p~. Putting 
B15 = B2 s = 0, B35 = P" + pV, B4 s = P'~ and B s s = pS + p -  ~ and applying (2) and 
(3) again we see that {s, - s ,  m, u, v, 6}, {u-v, v -u ,  2s, -2s,  s, - s}  and 
{m + 1, s + 6, - s + 6, 1, 4, 6} are complete residue systems modulo 7, which is 
impossible�9 

Now assume that b2 arises from B. Just as for bt we have B16=pa+p 4, 
B26=P 6, Bs6=p ,  B46=B56=0 and B66=p2+p s. Putting Bas=p~+p b, 
B z 5 = p  s, B3s=p m, B 4 s = 0  and Bss=p"+p-" and applying (2) and (3) we 
see that {u, -u ,  m, s, a, b}, {a-b, b-a ,  2u, -2u,  u, -u}  and {a+3,  b+3 ,  
a + 4 ,  b+4 ,  s + l ,  m+6} are complete residue systems modulo 7. We need 
only consider the two possibilities 

a b s  u m  

1 6 5 3 2  
2 5 3 1 4  

By repeated application of (2) and (3) we see that the first of these arises from 
exactly one matrix B, namely 

0 0 0 p2+p5 p+p6 pS+p4 

0 0 p+p2_Fp4 p3 pS p6 
0 pS+pS+p6 0 p4 pa p 

p2+p~ p4 pS p+p6 0 0 
p+p6 p2 p5 0 p3+p4 0 

p3+p4 p p6 0 0 p2+pS. 
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In the same way we see that the second possibility arises from exactly one 
matrix B, which differs from this one only by the transposition (4, 5) applied 
to the rows and columns. Since the resulting matrix A is clearly independent 
of the choice of p as a power :~ 1 of C, we obtain exactly one matrix A (up to 
row and column permutations). 

Assume that G is the full collineation group of the corresponding block 
design A. Then G has a rank 3 subgroup F isomorphic with U3(5), and 
F~,~ $7, G,,= T(a). F~, where T(a) is the kernel of the action of Ga on A (a). 
We want to show first that G = F, i.e., that T(a) = 1, 

For  x~A(a), T ( a ) <  G~,x and G~,x acts as $6 on s If T(a) 
acts trivially on I;(x) then T(a)=T(a) c~ T(x) and this holds for all xeA(a). 
Hence T(a )=  1 by (2.7). Hence if T(a)+-1 it acts as A 6 or $6 on 2;(x). 

Now list the points of A as follows: a, the points of A(a)={b, c . . . . .  d} 
in some order, the points of A ( b ) -  {a}, the points of A ( c ) -  {a}, ..., the points 
of A (d)-{a}.  For  suitable arrangement of the points in each of the sets 
A(x)-{a}, x~A(a), A takes the form 

0 1111111 

1 
1 
1 

1 0 
1 
1 
1 

0 0 0 1 . . .  
- - I  

E1 ~2 ~3 -.. 

0 , T l  
o ;  I 

0 0 

Ee E~ 

0 1 

0 

where E/has  l 's  in the i-th row and all other entries 0. Then for z~T(a), D(T) 
has the form diag {1,/7, X, ..., X} where X is a 6 •  permutation matrix. 
Under our assumptions every 6 • 6 permutation matrix X occurs for some 
"r~T(a). Thus each of the 6 • 6 b locks ,  commutes with every even 6 • 6 
permutation matrix and hence must be the identity, which is impossible. Hence 
T(a) = 1 and G = F. 

Consider finally a rank 3 subgroup H of G, H@G. If H,,~S7 or A 7 then 
H ~ U 3 ( 5 )  or U3(5). We must therefore have that either H,  is solvable and 
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contained in the normalizer of an element of order 7, or Ha ~ the simple 
group of order 168. The minimal normal  subgroup M of H is a transitive, 
nonregular  simple group, so M is isomorphic with a subgroup of U =  U3 (5), 
and we regard M as a subgroup of U. If  M = 7 . 5 0 ,  M would be a Frobenius 
group,  so we have two cases: ] M [ = 2 1 . 5 0  and I M 1 = 1 6 8 - 5 0 .  To dispose 
of these we consider U as it acts transitively on the 126 absolute points of the 
projective plane over the field of 25 elements. Let  P be an absolute point  and 
suppose that  I M I = 21 �9 50. Then U: M =  120 and we have M :  M e - -  21 x < 126 
and I M~,l=50/x. If 5Ix then M:Me=105 ,  i,e., there is an M-orbi t  of absolute 
points of length 105, and hence there must  be one of length 21, i.e., M :  M e = 2 1  
for some absolute point  Q. But then 25 [I Me] so M e contains an element 
a + 1 of the center of the 5-Sylow subgroup of U o. Then a is an elation with 
center Q and has for  its orbits {Q} and the sets of 5 absolute points + Q and 
collinear with Q. Hence the M-orbi t  of length 21 consists of the absolute 
points on 4 nonabsolute  lines th rough  Q, and this must  be true for each of 
its points Q, which is clearly impossible. Hence 2 5 l i M P [  for all absolute 
points P, so M contains an elation with center P for all P and therefore M =  U. 
If I M 1 = 1 6 8 . 5 0  we have at once that  25 I IMpI for all P, and hence that  
M =  U. Thus both  cases are impossible. 
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