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The Near-Stability of the Lax-Wendroff Method*

By
G. W. HEDSTROM

In discussing finite difference methods for the solution of hyperbolic partial
differential equations, STETTER [I] used estimates on some absolutely convergent
Fourier series to prove stability and instability with respect to uniform conver-
gence. If f, a complex valued function on the circle, has an absolutely convergent
Fourier series, then the n-th power of f also has an absolutely convergent Fourier
series:

f"(x):%ck”e’“, ]|f”[|=§|ck,,[<oo, n=1,2,....

A difference scheme determines a corresponding f. If this f is such that the
[f*| are bounded, then the difference scheme is stable in the uniform norm;
and if f is a polynomial with ||f*]| unbounded, then it is unstable [1, p. 407].

In this paper we supply a proof of the instability, but near-stability of the
Lax-Wendroff method. STETTER [1, p. 421] has shown that this is a conse-
quence of the following theorem.

Theorem. Let fcC? on the circle; let |f(f)] <1, ¢==0; and let

(1) f)=exp{iat+e()}, —p<it<g,
for some 9> 0, « real, and ¢(f) analytic in |¢| <g such that

(2 )= BN —y AN LO@BNTY),  t—o0,

where § is real, # 0, >0, and N is one of 2,3,4,.... Then there exist con-
stants C’, C, depending on N, such that

(3) C’n1/4N<[|]‘”"<Cn1/4N.

Remarks. When a (2N — 1)-point Lax-Wendroff average is used, the fis a
polynomial of this type [2, pp. 147—148], and thus there is a mild instability.
For the case N=2,

F(t) =1—a?(1—cos#) +iasint,
with 0<|«| <1, STETTER [I, p. 423] showed that |[F"|<C#x* and gave experi-
mental evidence to indicate that |F*|> C’n.
DProof of the theorem. We give a proof for the case > 0.

We need estimates for
ki3

(4) = f () e=*ae.

—n
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To get them we first rewrite ¢, in the form

__ 1 ” —inwt
_._n_fg (t) e dt,

where g(f)=/(t) e~** and

(5) w=k—na)ln.
Integration by parts twice gives
(6) | el < Cln 0?

for some C>0.
When || is small, we use a different estimate based on

7) ”__‘{f+f+f} et dp =T, 4 I, + I,
For I, +1, we have )
8 | I, +I4| <27 max @) =279,

esfs
for some ¥4, 0<<#<<1. To estimate I, we use a contour through 2 saddle points of
g't) e i=expu(p) —twt), |t|<o.
For w0+, the saddles we use satisfy
9) tj= (— 1)flw1/2(N—1) . ’in(N 1)~ 1 2N /(N -1) +0(w 3/2(N )),
7==1, 2, where
(10) A=[B(2N —1)]""*®™-1  2>0.

Since the saddle points depend continuously on , it is possible to find an 4
such that |#;| <g/2 if 0=<w=<A. It will be important that

Plt) —iwt=—i(— 1) AN —1) (N —§) " 1W-DN=1 _, j2N ;NN 4
+ O (@WHIIN-1y 504, j=1,2.

The Taylor series about a saddle is of the form

(11)

(12) (p(t)—iwt=(p(<)—zwt+2ak Y(E—2)F, j=1,2.
For some positive constants M,, independent of w,
14 |a2(w)| =M2w(N——%)/(N-—1)_|_0(w),
®—>0-4;

1} g |ak (w)l éMkw(zN-—k——l)/z(N—l),
NG| & 0sw=4, k=3,4,....2N—2;
-0 AN @ Goy_y=if +0(@W-1) o s04;

| (@) =M, O0=2wsd,
Fig. 1. This picture explains the last paragraph of p. 74. E=2N.2N +1

We make a contour of 4 arcs in the disk, |{| <p. We choose I through ¢,
j==1, 2, along the path of steepest descent of

exp {n az(w) (¢ — ;)% .
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We connect the beginning of I to the end of I] and require that I has length
less than 3 |¢|, j=1,2. I connects the end of I to the point ¢ in such a
manner that near [}, it is in the direction of the steepest descent of

exp{ni Bt —t,)?N1).

I connects —p to the beginning of I in a similar manner.
Let

(13) Li=fexpn(pl)—iwi)dt, Ek=1,.., 4.
Iy
Then by the saddle point method [3, pp. 66—69] it follows that
(14) J=Cn o~ W-BRN-Yexpu(p(t,) —iwt) {1 +0n o~ W-HRN-1
j=1, 2, if #—o00 and w—0-+ in such a manner that
(15) Bn) n~W-UWN-D< < §(n),

where B(n)—oco and &(n)—0. Later, when we estimate |f*
also that

(16)

|, we shall want
3(n) n =N s oo,
B(n) n~W~DANN-H 0, #—> 00,
Using (11) we find that for some positive constants C, Cy, C,,
Ji+ o= Cn o W-DRE-Dexpf  C npNE-1} x
% c0s{Cyn ™ =B (1 1 o (1))}{4 +o(1)},

uniformly if #—oc0 and w satisfies (15).

(17)

In any case
|71 =314| exp{n Re () —iwt)}, j=1,2,
and for some positive constants C, C,,
(18) |]1 +]2| < C M2 W-1) exp{— Cln le(N—l)} ,
Ifw=4.

To estimate | J;+ J;| we use the fact that on I}, j=3, 4, there are positive
constants C, C;, such that

(19) |exp #(p(t) —i wt)| < Cexp{—Cyn|t—t, > '},
7=3%, 4, 0Sw=A. Consequently, we find that for some a>0

VEFAEY: j'o Cexp{—C,nv*¥ }dv.
2(N—1)

aw
Treating the integrand as a square, and using the 2-nd mean value theorem,
we find that for some other positive C, Cy,
(20) |]3 _I_Ll é C n"‘ll(zN"‘l)exp{_ Cln w(N_})/(N‘_l)} R
I=sw=<A.
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There are some differences when w<<0. In the first place the saddle points
we use are different from those in (9). We have as w —-0—

(21) ti=A]_|wl1/2(N—1)+0(|wlll(N—1))’ ]'21’2_
Here

(22) 3 =[—B@N — )]0,

chosen such that

(23) arg Aj=a[t—1/2{N —1)], arg Ap=mj2(N —1).

This time in place of (11) we have

ey PO 0= =) (N 37 ]I 0] V),
=12,

w—>0—. Note that now for some ;>0
Re(p(t) —iowt) <C|o|W-WE-1_ j=1 3

—A<w=0, where 4 is again chosen so that |¢,]| <g/2 if || < 4.
For N==3,4,... we use a contour similar to that used when w>0:
~f+rf + 4] +rf+f LtJs+h+Lh+h+1s
For N=2 the saddle points coincide, and J; + ], collapses to some J;.

The estimate (8) still holds for |I; +I5|. In place of (17) and (18) we use
an estimate similar to (18): for some positive constants C, C,

(25) |11+ J2] < C| o]0 exp{— C,n|ew|W-H-1},

—A=<w=0. Since the estimate (19) also holds on I3, I} for —A<w=0, we
find that for some positive C, C,, _
(26) | Js + o] S CnYeEN-Vexp{— Cyn|w|¥-HEN=11
—ALwz0.
We now can estimate ||f*|. We split it up

27 = 2 lad+ 2 [ L+Ll+ 2 | h+Rl+ 2 [+ =2 S
|} >4 jo| =4 o] =4 o] =4 k=1

The main contribution comes from S;. We split S; into

IEAIJ,HZI >+ X 4+ X 4+ X,

—4ASw=s0 g<w<BmMn~? BmnPsosén Hn)<wsd
where

(28) p=N=-1)/N—

Making use of (16), we estimate these sums with (25), (18), (17), and (18), re-
spectively, and find that for some constant C

(29) Se=Cn'tN, n=1,2,....
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Note that we can also get an estimate from below. In fact, it follows from
(16) and (17) that for some C'>0

(30) S, = > L+ | =C ntt¥, n=1,2,....

Bin)n~? S < 6(n)
From (6) we see that for some constant C
31) S<C,  n=1,2,....
To estimate S, we use (8) and find that for some constant C
(32) SeZ4mAnd<C, n=1,2,....
We split S, into
Se=( B+ 3 N+l

~AZ0<0 0<wsd

and then we use (26) and (20) to obtain for some constant C
(33) S4§C, n=1,2,....

If we add together (29), (31), (32), and (33), we find that for some C depend-
ing on N

4
(34) IS X S,=Cnlty,  u=1,2,....
1

On the other hand we find from (30), (31), (32), and (33) that for some C'>0
(35) I )=Ss~ (S;+Se+S)=Cu¥,  n=1,2,....

These are the required estimates.
If <0, the analysis is similar; it essentially amounts to replacing w with
—m in several of the estimates.
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