The Near-Stability of the Lax-Wendroff Method*

By
G. W. HEdStRom

In discussing finite difference methods for the solution of hyperbolic partial differential equations, Stetter [1] used estimates on some absolutely convergent Fourier series to prove stability and instability with respect to uniform convergence. If f, a complex valued function on the circle, has an absolutely convergent Fourier series, then the n-th power of f also has an absolutely convergent Fourier series:

$$
f^{n}(x)=\sum_{k} c_{k n} e^{i k x}, \quad\left\|f^{n}\right\|=\sum_{k}\left|c_{k n}\right|<\infty, \quad n=1,2, \ldots
$$

A difference scheme determines a corresponding f. If this f is such that the $\left\|f^{n}\right\|$ are bounded, then the difference scheme is stable in the uniform norm; and if f is a polynomial with $\left\|f^{n}\right\|$ unbounded, then it is unstable [1, p. 407].

In this paper we supply a proof of the instability, but near-stability of the Lax-Wendroff method. Stetter [1, p. 421] has shown that this is a consequence of the following theorem.

Theorem. Let $f \in C^{2}$ on the circle; let $|f(t)|<1, t \neq 0$; and let

$$
\begin{equation*}
f(t)=\exp \{i \alpha t+\varphi(t)\}, \quad-\varrho<t<\varrho, \tag{1}
\end{equation*}
$$

for some $\varrho>0, \alpha$ real, and $\varphi(t)$ analytic in $|t|<\varrho$ such that

$$
\begin{equation*}
\varphi(t)=i \beta t^{2 N-1}-\gamma t^{2 N}+O\left(t^{2 N+1}\right), \quad t \rightarrow 0 \tag{2}
\end{equation*}
$$

where β is real, $\beta \neq 0, \gamma>0$, and N is one of $2,3,4, \ldots$ Then there exist constants C^{\prime}, C, depending on N, such that

$$
\begin{equation*}
C^{\prime} n^{1 / 4 N}<\left\|f^{n}\right\|<C n^{1 / 4 N} \tag{3}
\end{equation*}
$$

Remarks. When a ($2 N-1$)-point Lax-Wendroff average is used, the f is a polynomial of this type [2, pp. 147-148], and thus there is a mild instability. For the case $N=2$,

$$
F(t)=1-\alpha^{2}(1-\cos t)+i \alpha \sin t
$$

with $0<|\alpha|<1$, Stetter [1, p. 423] showed that $\left\|F^{n}\right\|<C n^{4}$ and gave experimental evidence to indicate that $\left\|F^{n}\right\|>C^{\prime} n^{\frac{1}{2}}$.

Proof of the theorem. We give a proof for the case $\beta>0$.
We need estimates for

$$
\begin{equation*}
c_{k n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{n}(t) e^{-i k t} d t \tag{4}
\end{equation*}
$$

* This research was supported in part by NSF Grant 06016.

To get them we first rewrite $c_{k n}$ in the form
where $g(t)=f(t) e^{-i \alpha t}$ and (5)

$$
c_{k n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g^{n}(t) e^{-i n \omega t} d t,
$$

$$
\begin{equation*}
\omega=(k-n \alpha) / n . \tag{1}
\end{equation*}
$$

Integration by parts twice gives

$$
\begin{equation*}
\left|c_{k n}\right| \leqq C / n \omega^{2} \tag{6}
\end{equation*}
$$

for some $C>0$.
When $|\omega|$ is small, we use a different estimate based on

$$
\begin{equation*}
c_{k n}=\frac{1}{2 \pi}\left\{\int_{-\pi}^{-\varrho}+\int_{-\underline{Q}}^{\varrho}+\int_{\varrho}^{\pi}\right\} g^{n} e^{-i n \omega t} d t=I_{1}+I_{2}+I_{3} . \tag{7}
\end{equation*}
$$

For $I_{1}+I_{3}$ we have

$$
\begin{equation*}
\left|I_{1}+I_{3}\right| \leqq 2 \pi \max _{e \leqq|t| \leqq \pi}\left|f^{n}(t)\right|=2 \pi \vartheta^{n}, \tag{8}
\end{equation*}
$$

for some $\vartheta, 0<\vartheta<1$. To estimate I_{2} we use a contour through 2 saddle points of

$$
g^{n}(t) e^{-i n \omega t}=\exp n(\varphi(t)-i \omega t), \quad|t|<\varrho
$$

For $\omega \rightarrow 0+$, the saddles we use satisfy

$$
\begin{equation*}
t_{j}=(-1)^{j} \lambda \omega^{1 / 2(N-1)}-i \gamma N(N-1)^{-1} \lambda^{2 N} \omega^{1 /(N-1)}+O\left(\omega^{3 / 2(N-1)}\right) \tag{9}
\end{equation*}
$$

$j=1,2$, where

$$
\begin{equation*}
\lambda=[\beta(2 N-1)]^{-1 / 2(N-1)}, \quad \lambda>0 . \tag{10}
\end{equation*}
$$

Since the saddle points depend continuously on ω, it is possible to find an A such that $\left|t_{j}\right| \leqq \varrho / 2$ if $0 \leqq \omega \leqq A$. It will be important that

$$
\begin{align*}
\varphi\left(t_{j}\right)-i \omega t= & -i(-1)^{i} \lambda(N-1)\left(N-\frac{1}{2}\right)^{-1} \omega^{(N-1) /(N-1)}-\gamma \lambda^{2 N} \omega^{N /(N-1)}+ \tag{11}\\
& +O\left(\omega^{\left(N+\frac{1}{2}\right) /(N-1)}\right), \quad \omega \rightarrow 0+, \quad j=1,2 .
\end{align*}
$$

The Taylor series about a saddle is of the form

$$
\begin{equation*}
\varphi(t)-i \omega t=\varphi\left(t_{j}\right)-i \omega t_{j}+\sum_{k=2}^{\infty} a_{k}(\omega)\left(t-t_{j}\right)^{k}, \quad j=1,2 . \tag{12}
\end{equation*}
$$

For some positive constants M_{k}, independent of ω,

Fig. 1. This picture explains the last paragraph of p. 74 .

$$
\begin{aligned}
&\left|a_{2}(\omega)\right|=M_{2} \omega^{\left(N-\frac{8}{2}\right) /(N-1)}+O(\omega), \\
& \quad \omega \rightarrow 0+; \\
&\left|a_{k}(\omega)\right| \leqq M_{k} \omega^{(2 N-k-1) / 2(N-1)}, \\
& 0 \leqq \omega \leqq A, \quad k=3,4, \ldots, 2 N-2 ; \\
& a_{2 N-1}=i \beta+O\left(\omega^{1 / 2(N-1)}\right), \quad \omega \rightarrow 0+; \\
&\left|a_{k}(\omega)\right| \leqq M_{k}, \quad 0 \leqq \omega \leqq A,
\end{aligned}
$$

$$
k=2 N, 2 N+1, \ldots .
$$

We make a contour of 4 arcs in the disk, $|t|<\varrho$. We choose Γ_{j} through t_{i}, $j=1,2$, along the path of steepest descent of

$$
\exp \left\{n a_{2}(\omega)\left(t-t_{j}\right)^{2}\right\}
$$

We connect the beginning of Γ_{2} to the end of Γ_{1} and require that Γ_{j} has length less than $3\left|t_{j}\right|, j=1,2 . \Gamma_{4}$ connects the end of Γ_{2} to the point ϱ in such a manner that near Γ_{2} it is in the direction of the steepest descent of

$$
\exp \left\{n i \beta\left(t-t_{2}\right)^{2 N-1}\right\}
$$

Γ_{3} connects $-\varrho$ to the beginning of Γ_{1} in a similar manner.
Let

$$
\begin{equation*}
J_{k}=\int_{\Gamma_{k}} \exp n(\varphi(t)-i \omega t) d t, \quad k=1, \ldots, 4 \tag{13}
\end{equation*}
$$

Then by the saddle point method [3, pp. 66-69] it follows that

$$
\begin{equation*}
J_{j}=C n^{-\frac{1}{2}} \omega^{-\left(N-\frac{3}{2}\right) / 2(N-1)} \exp n\left(\varphi\left(t_{j}\right)-i \omega t_{j}\right)\left\{1+O\left(n^{-\frac{1}{2}} \omega^{-\left(N-\frac{1}{2}\right) / 2(N-1)}\right)\right\}, \tag{14}
\end{equation*}
$$

$j=1,2$, if $n \rightarrow \infty$ and $\omega \rightarrow 0+$ in such a manner that

$$
\begin{equation*}
B(n) n^{-(N-1) /\left(N-\frac{1}{2}\right)} \leqq \omega \leqq \delta(n) \tag{15}
\end{equation*}
$$

where $B(n) \rightarrow \infty$ and $\delta(n) \rightarrow 0$. Later, when we estimate $\left\|f^{n}\right\|$, we shall want also that

$$
\begin{align*}
\delta(n) n^{(N-1) / N} & \rightarrow \infty, \\
B(n) n^{-\left(N-\frac{8}{2}\right) / 4 N\left(N-\frac{1}{2}\right)} & \rightarrow 0, \quad n \rightarrow \infty . \tag{16}
\end{align*}
$$

Using (11) we find that for some positive constants C, C_{1}, C_{2},

$$
\begin{align*}
J_{1}+J_{2}= & C n^{-\frac{1}{2}} \omega^{-\left(N-\frac{8}{8} / 2(N-1)\right.} \exp \left\{-C_{1} n \omega^{N /(N-1)}\right\} \times \\
& \times \cos \left\{C_{2} n \omega^{\left(N-\frac{1}{2}\right) /(N-1)}(1+o(1))\right\}\{1+o(1)\}, \tag{17}
\end{align*}
$$

uniformly if $n \rightarrow \infty$ and ω satisfies (15).
In any case

$$
\left|J_{j}\right| \leqq 3\left|t_{j}\right| \exp \left\{n \operatorname{Re}\left(\varphi\left(t_{j}\right)-i \omega t_{j}\right)\right\}, \quad j=1,2
$$

and for some positive constants C, C_{1},

$$
\begin{equation*}
\left|J_{1}+J_{2}\right| \leqq C \omega^{1 / 2(N-1)} \exp \left\{-C_{1} n \omega^{N /(N-1)}\right\} \tag{18}
\end{equation*}
$$

$0 \leqq \omega \leqq$.

To estimate $\left|J_{3}+J_{4}\right|$ we use the fact that on $J_{j}, j=3,4$, there are positive constants C, C_{1}, such that

$$
\begin{equation*}
|\exp n(\varphi(t)-i \omega t)| \leqq C \exp \left\{-C_{1} n\left|t-t_{j-2}\right|^{2 N-1}\right\} \tag{19}
\end{equation*}
$$

$j=3,4,0 \leqq \omega \leqq A$. Consequently, we find that for some $a>0$

$$
\left|J_{3}+J_{4}\right| \leqq 2 \int_{\boldsymbol{a} \boldsymbol{\omega}^{1 / 2}(N-1)}^{\infty} C \exp \left\{-C_{1} n v^{2 N-1}\right\} d v
$$

Treating the integrand as a square, and using the 2 -nd mean value theorem, we find that for some other positive C, C_{1},

$$
\begin{equation*}
\left|J_{3}+J_{4}\right| \leqq C n^{-1 /(2 N-1)} \exp \left\{-C_{1} n \omega^{\left(N-\frac{1}{2}\right) /(N-1)}\right\} \tag{20}
\end{equation*}
$$

$0 \leqq \omega \leqq A$.

There are some differences when $\omega<0$. In the first place the saddle points we use are different from those in (9). We have as $\omega \rightarrow 0 \cdots$

$$
\begin{equation*}
t_{j}=\lambda_{j}|\omega|^{1 / 2(N-1)}+O\left(|\omega|^{1 /(N-1)}\right), \quad j=1,2 \tag{21}
\end{equation*}
$$

Here

$$
\begin{equation*}
\lambda_{j}=[-\beta(2 N-1)]^{-1 / 2(N-1)} \tag{22}
\end{equation*}
$$

chosen such that

$$
\begin{equation*}
\arg \lambda_{1}=\pi[1-1 / 2(N-1)], \quad \arg \lambda_{2}=\pi / 2(N-1) . \tag{23}
\end{equation*}
$$

This time in place of (11) we have

$$
\begin{align*}
\varphi\left(t_{j}\right)-i \omega t_{j} & =i \lambda_{j}(N-1)\left(N-\frac{1}{2}\right)^{-1}|\omega|^{(N-1) /(N-1)}+O\left(|\omega|^{N /(N-1)}\right) \tag{24}\\
j & =1,2
\end{align*}
$$

$\omega \rightarrow 0-$. Note that now for some $C_{1}>0$

$$
\operatorname{Re}\left(\varphi\left(t_{j}\right)-i \omega t_{j}\right)<C_{1}|\omega|^{\left(N-\frac{1}{2}\right) /(N-1)}, \quad j=1,2,
$$

$-A \leqq \omega \leqq 0$, where A is again chosen so that $\left|t_{j}\right|<\varrho / 2$ if $|\omega|<A$.
For $N=3,4, \ldots$ we use a contour similar to that used when $\omega>0$:

$$
c_{k n}=\int_{-\pi}^{e}+\int_{\Gamma_{3}}+\int_{\Gamma_{1}}+\int_{\Gamma_{3}}+\int_{\Gamma_{4}}+\int_{e}^{\pi}=I_{1}+J_{3}+J_{1}+J_{2}+J_{4}+I_{3} .
$$

For $N=2$ the saddle points coincide, and $J_{1}+J_{2}$ collapses to some J_{1}.
The estimate (8) still holds for $\left|I_{1}+I_{3}\right|$. In place of (17) and (18) we use an estimate similar to (18): for some positive constants C, C_{1},

$$
\begin{equation*}
\left|J_{1}+J_{2}\right| \leqq C|\omega|^{1 / 2(N-1)} \exp \left\{-C_{1} n|\omega|^{\left(N-\frac{1}{2}\right) /(N-1)}\right\} \tag{25}
\end{equation*}
$$

$-A \leqq \omega \leqq 0$. Since the estimate (19) also holds on Γ_{3}, Γ_{4} for $-A \leqq \omega \leqq 0$, we find that for some positive C, C_{1},

$$
\begin{equation*}
\left|J_{3}+J_{4}\right| \leqq C n^{-1 /(2 N-1)} \exp \left\{-C_{1} n|\omega|^{\left(N-\frac{1}{2}\right) /(N-1)}\right\}, \tag{26}
\end{equation*}
$$

$-A \leqq \omega \leqq 0$.
We now can estimate $\left\|r^{n}\right\|$. We split it up

$$
\begin{equation*}
\left\|f^{n}\right\| \leqq \sum_{|\omega|>A}\left|c_{k n}\right|+\sum_{|\omega| \leqq A}\left|I_{1}+I_{3}\right|+\sum_{|\omega| \leqq A}\left|J_{1}+J_{2}\right|+\sum_{|\omega| \leqq A}\left|J_{3}+J_{4}\right|=\sum_{k=1}^{4} S_{k} \tag{27}
\end{equation*}
$$

The main contribution comes from S_{3}. We split S_{3} into

$$
\sum_{|\omega| \leqq A}\left|J_{1}+J_{2}\right|=\sum_{-A \leqq \omega \leqq 0}+\sum_{0<\omega<B(x) n^{-p}}+\sum_{B(n) n^{-p} \leqq \omega \leqq \delta(n)}+\sum_{\delta(n)<\omega \leqq A},
$$

where

$$
\begin{equation*}
p=(N-1) /\left(N-\frac{1}{2}\right) \tag{28}
\end{equation*}
$$

Making use of (16), we estimate these sums with (25), (18), (17), and (18), respectively, and find that for some constant C

$$
\begin{equation*}
S_{3} \leqq C n^{1 / 4 N}, \quad n=1,2, \ldots \tag{29}
\end{equation*}
$$

Note that we can also get an estimate from below. In fact, it follows from (16) and (17) that for some $C^{\prime}>0$

$$
\begin{equation*}
S_{3} \geqq \sum_{B(n) n^{-P} \leqq \omega \leqq \delta(n)}\left|J_{1}+J_{2}\right| \geqq C^{\prime} n^{1 / 4 N}, \quad n=1,2, \ldots \tag{30}
\end{equation*}
$$

From (6) we see that for some constant C

$$
\begin{equation*}
S_{1} \leqq C, \quad n=1,2, \ldots \tag{31}
\end{equation*}
$$

To estimate S_{2} we use (8) and find that for some constant C

$$
\begin{equation*}
S_{2} \leqq 4 \pi A n \vartheta^{n} \leqq C, \quad n=1,2, \ldots \tag{32}
\end{equation*}
$$

We split S_{4} into

$$
S_{4}=\left(\sum_{-A \leqq \omega<0}+\sum_{0<\omega \leqq A}\right)\left|J_{3}+J_{4}\right|,
$$

and then we use (26) and (20) to obtain for some constant C

$$
\begin{equation*}
S_{4} \leqq C, \quad n=1,2, \ldots \tag{33}
\end{equation*}
$$

If we add together (29), (31), (32), and (33), we find that for some C depending on N

$$
\begin{equation*}
\left\|f^{n}\right\| \leqq \sum_{1}^{4} S_{k} \leqq C n^{1 / 4 N}, \quad n=1,2, \ldots \tag{34}
\end{equation*}
$$

On the other hand we find from (30), (31), (32), and (33) that for some $C^{\prime}>0$

$$
\begin{equation*}
\left\|f^{n}\right\| \geqq S_{3}-\left(S_{1}+S_{2}+S_{4}\right) \geqq C^{\prime} n^{1 / 4 N}, \quad n=1,2, \ldots \tag{35}
\end{equation*}
$$

These are the required estimates.
If $\beta<0$, the analysis is similar; it essentially amounts to replacing ω with $-\omega$ in several of the estimates.

References

[1] Stetter, H. J.: Maximum bounds for the solutions of initial value problems for partial difference equations. Numerische Math. 5, 399-424 (1963).
[2] Strang, W. G.: Trigonometric polynomials and difference methods of maximum accuracy. J. Mat. Phys. 41, 147-154 (1962).
[3] Bruitn, N. G. De: Asymptotic methods in Analysis. Amsterdam: North-Holland Publishing Co. and Groningen: P. Noordhoff Ltd. 1961.

The University of Michigan,
Dept. of Mathematics, Ann Abor, Michigan 48104 (USA)
(Received July 6, 1964)

