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The correspondence between Self-Consistent Hiickel MO methods and Differential Ionization 
Energies methods is discussed in terms of the approximations used for the diagonal matrix elements. 
The two methods are shown to be equivalent if electronic correlation is neglected. Ground-state prop- 
erties of the hydrogen halides are calculated by these simple methods and shown to be in good overall 
agreement with experimental data. 

Die Ubereinstimmung zwischen selbstkonsistenten Hiickel MO-Methoden und Methoden der 
Differentiellen Ionisierungsenergien wird in Termen solcher N~iherungen diskutiert, die fiir die diago- 
nalen Matrixelemente benutzt werden. Es wird gezeigt, dab die beiden Methodell gquivalent sind, 
wenn die Elektronenkorrelation vernachlgssigt wird. Grundzustandseigenschaften der "hydrogen 
halides" werden mit diesen einfachen Methoden ausgerechnet und zeigen sich in tiberall guter Uber- 
einstimmung mit experimentellen Daten. 

La correspondance entre les m6thodes SCF Hiickel et d'6nergie d'ionisation diff6rentielle est 
discut6e en fonction des approximations utilis6es pour les 616ments de matrice diagonaux. Les deux 
m~thodes sont 6quivalentes si la corr61ation 61ectronique est n6glig6e. Les propri6t6s de l'6tat fondamen- 
tal des acides halog6n6s sont calcul6es par ces m6thodes simples et l'on constate un accord raisonnable 
avec les donn6es exp~rimentales. 

The purpose  of this paper  is to analyze the correspondence between Self- 
Consis tent  Hfickel (SCHMO)  methods  [ 1 - 3 ]  and the Differential Ioniza t ion  
Energies (DIE) calculat ions [4-7] .  This p rob lem has been dealt with by Jorgensen,  
Homer ,  Hatfield, and  Tyree [4], and  by K l o p m a n  [8], but  it is presented here 
in a more  general  way, together with calculat ions for the ground-s ta te  properties 
of the hydrogen halides. These can be compared  with S C F - L C A O - M O  calcu- 
lat ions of a -bonded  systems [9-11] .  

1. Self-Consistent Hiickel Methods 

Let ~Pi and  ~p~ be the valence orbitals  of a toms A and  B, respectively. We 
describe a doubly  occupied M O  as: 

~'~ = c i ~  + c ~ % .  (1) 

* Work supported by the Research Corporation and the National Science Foundation (Grant 
GY 2657/67). 

** Present address: Chemistry Department, University of Michigan, Ann Arbor, Michigan. 



112 R. Ferreira and J. K. Bates: 

The operator of Hu = (qh 2/f q~i) includes the interaction of one electron centered 
in ~og with all other nuclei and electrons, including the other electron in the mole- 
cular orbital 7Jm. The diagonal elements may be partitioned by Mulliken's appro- 
ximation [12] : 

H i  i ,~i + Vo + cZ Ju 2 = + cj  Jij (2) 

1 2 1 (pi(1)~ is the atomic one-electron where el = (p*(1) - ~-g l  - rl~. eigenvalue. 
/ 

ei is equal to - I i ,  that is, to the VOIP (or VSIP) corresponding to the atomic 
orbital q)i. V~j lumps together the core integrals (gj~o*cpi) and Ju and Jij a r e  the 
two-electron Coulomb integrals. We further assume [13, 14] that Ju = I i - A i ,  

where A i is the valence-state electron affinity (VSEA). Eq, (2) can be written: 

I 4 ,  = - I, + (I, - A , )  + V , j  + J ,j . (3) 

The first two terms in the right-hand side of (3) are the a t o m i c  terms,  the others 
the m o l e c u l a r  t e rms  of H..  The latter corresponds to an interatomic Coulomb 
correction, and has been called the Madelung-Jorgensen potential [15]. The 
charge dependence of the parameters H,  and Hi~ must be included in the differen- 
tiations leading to the minimum-energy condition. This important point has been 
recently stressed by Harris [16]. 

The form of the atomic terms in (3) is identical to Moffitt's approximation 
[13], and it is also consistent with the SCF matrix element formulation [1]. The 
atomic orbital energy function derived from the atomic terms of Eq. (3) is: 

ei(ni) = - I ,n i + 1/4 n~(1, - Ai)  (4) 

where ni = 2c~ is the occupation number of orbital qh. The quantum mechanical 
expression for the energy of an isolated atomic orbital is, on the other hand: 

e l ( h i )  = - -  I i n  i -I-  1/2 n i ( n  i - -  1) (I i - A i )  . (5) 

The difference (4)-(5) corresponds to the right-left correlation energy [17], which 
is entirely neglected in simple M O  theory. It will be shown in Sect. 3 that Eq. (4) 
is the only atomic energy function that leads to a complete equivalence between 
the SCHMO and the DIE methods. 

We assume that the point charge description [18] holds and if c 2 = 1 -  c 2, 
Eq. (3) transforms to: 

e 2 
Hu = - Ii + c~(I  i -  A 3 - c 2 - -  (6) 

r i j  

The off-diagonal matrix elements are calculated by an equation of the type: 

< j  = K S , j ( H , ,  + g.)/2.  (7) 

The procedure, however, is not strictly a Wolfsberg-Helmholz calculation because 
overlap integrals are neglected in the secular equations. As a result, the value of 
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K in Eq. (7) can be freely varied without the associated dangers of inversion of the 
energy levels [19-23]. 

Eq. (6) is the correct diagonal matrix element for the calculation of one-electron 
properties of AB systems, such as ionization potentials. Bond energies, force 
constants, dipole moments, etc., are, however, electron-pair properties and ex- 
pression (6) must be modified. From the cycle: 

we have: 

A(g) + B(g) 

-D~=Ee 

AB = A~Bv(G) 

~~ +P~ +I~ +i"~ , A+(g) + B+(g) + 2e - 

~"~ A~B + + (re) + 2 e -  

E e =  - De = SMO -JI- En -~- I ~  -Jr- P 2  -~- I ~  -]- P 0 . (8) 

With the usual conventions, D e > 0; E e is simply - D e ,  and binding occurs only 
ifeMo < 0 and ]eMOl > (E,  + I ~ + pO + i o + po). En is the core-core repulsion energy; 

Z A Z B  
in our calculations E, - , where Z A and Z B are the effective charges seen 

rAB 
by a unit charge at the distance rAB from A and B, respectively. We may write 

Z A Z  B e 2 (ZAZ B -- e 2) 
En = -- + (9) 

PAB /"AB tAB 

where the first term in the right-hand side is the Coulomb repulsion between A~ + 

and B~ +, and ( Z A Z " -  e2) is a penetration term. A v and By refer to the valence 
tAB 

states, and pO and pO are the promotion energies. Since the//~i and t I  u integrals 
are one-electron integrals, the Hamiltonian for the process A B ~ A B + +  e-  is 
different from the Hamiltonian for the process AB § --*AB ++ + e- .  In the latter, 
there is no screening potential from the second electron [12]. We have: 

= - + c a ( I ,  - A , )  - - -  

e 2 
, (6a) 

Y U 

(6b) 
e 2 

H u ( 2  ) = _ I i - _ _  
r i  d 

The diagonal matrix elements to be used for the calculation of two-electron 
properties is the average value: 

ca( i i_Ai)  ( l + c h  e 2 
(10) Hii = - Ii + 2 -  2 rij 

Eq. (10) and (7) give the correct one-electron integrals, and for the doubly occupied 
MO: 

eMO = 2 [C a Hii + c~ Hjj  + 2 c i cjHij] . (11) 
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e 2 
For the usual equilibrium internuclear distance, the terms (I~- A~) and - -  

r l j  

are of comparable magnitude and this [8] explains the success of SCCC-LCAO- 
MO methods in which one assumes [4] that H u = -(VSIP)i .  Also, because Eq. 
(10) shows a small dependence of H,  on c~, we can explain the use of the hydride 
or neutral atom ionization energies for the diagonal elements of ligand ions in 
complexes [24]. 

2. The Differential Ionization Energies Method 

In this method [4-7],  the bond energy is given by a sum of atomic and inter- 
atomic terms expressed as functions of the atomic charges and, for the latter terms, 
of the bond distances. The relation between the occupation numbers of the orbitals 
~0~ and ~pj and the bond ionicity X depends on the way the orbital populations are 

2 defined. In our case, S i j =  0, and since ni + n~ = 2, we have X = n~-  1 = c ~ -  cj 
= 2c~ - 1. For  the atomic energy terms, it is customary [-4, 5, 7, 8, 25, 26] to use 
Eq. (5). We will show in the next section that the DIE method is equivalent to the 
SCH-MO method only if we use Eq. (4) for the atomic orbital energy terms. 
This means that for the separated atoms, or for a purely covalent bond (x = 0), 
we are including too much electron repulsion. We also must change coordinates 
since now ei(0)= + I  i, ei(1)= 1/4( I i -A i )  , and a i ( 2 ) = - A i ,  corresponding to 
)~ = - 1, 0, and + 1. Since ni = 2c 2 = x + 1 and nj = 2c 2 = 1 - x, Eq. (4) can now 
be written: 

~i(x) = 1/4(I i-  A i ) -  1/2(Ii+ Ai) x +  1/4(I i-  Ai) x 2 =ei(n~) +I~, (12a) 

ej(x) = 1 /4 ( I~ -A~)+I /2 ( I~+Aj )x+I /4 ( I j -A~)x  2 =ej(nj)+I~. (12b) 

In this paper, we will suppose that [Fu] > IFjjI (F. represents the Hartree-Fock 
matrix elements; see Sect. 3), and hence x is always positive. The interatomic 
term is described by the sum of a covalent and an ionic bond energy, each one 
multiplied by the corresponding bond-order [7, 27]. The covalent bond order 

e 2 
is 2cicj = (1 - x 2 )  1/2, the ionic bond order is x 2. The ionic bond energy is - ri-~-. 

Several approximations can be used for the covalent bond energy Ec, and our 
particular choice will be discussed in Sect. III. Thus, the bond energy function is: 

e 2 
E e ( X  ) = (1 - x 2 ) l / 2  Ec  - x 2 - -  "4-13i(x ) + 8 j ( x )  q- ~ . 

r i j  
(13) 

ei(x) and ej(x) are given by Eq. (12a) and (12b), and ~ is the repulsive penetration 

term for the approaching atoms and given by ~ - ZaZb -- e2 
r i j  

For any reasonable value of rij, Ee(x) is negative and, in fact, the bond energy 
is D e = - -  Ee(Xe). 

Bond energies are calculated by minimizing E(x) with respect to x. One must 
decide what approximation to use for Ec, the covalent bond energy. The arith- 
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metic and geometrical mean rules cannot be used, because they include the pene- 
tration term, whereas in Eq. (13), this term is shown explicitely. We will show in the 

next section that the point charge approximation leads to E~= ( 2 H ~ j -  e 2 1  - -  CiC j 
r U 

where tt~j is the off-diagonal matrix element. With this approximation, E(x) may 
be written as: 

e2 ] 
E(x) = 2H~j -- ~ -  (1 - x2) 112 (1 -- x2) ~/2 -- x 2 e 2  + ei(x) + ej(x) + ~l.  

rid 

Accordingly: 

dE(x) 

dx  

and hence" 

(1 - xa) 1/2 2H~j - x - 1/2(I~ + Ai) + 1/2(I i - A~) x 

+ 1/2(/j + A j) + 1/2(/j - A j) x = 0 

(13a) 

(14) 

X i -  X j  
x e  = ( 1 5 )  

- 2~i~(1 - x ~ )  - ' z -  e~  + 1 /2( / , -  Ai) + 1/2(I~- A~) 
rid 

where Xi = 1/2(I i + Ai) and X i = 1/2 (I i + A j). xe is, of course, a function of rid. 
Eq. (15) is identical to Eq. (32) of Jenkins and Pedley [11], which shows the 
correspondence between the two methods. It should be pointed out that Eq. (15) 
was derived from Eq. (4) and corresponds to complete neglect of correlation. 
As a result, Eq. (15) gives too high values for x~. Eq. (5) on the other hand over- 
estimates correlation and leads to an equation identical to (15) except that the 
terms (I - A) in the denominator appear with coefficients of one, instead of i/2. 

The relative merits of the two approaches have been discussed by Baird, 
Sichel, and Whitehead [28]. 

3. The Equivalence between the SCHMO and DIE Methods 

The equivalence between the self-consistent method in Hfickel theory and the 
DIE method can be established from the fact that the following identity holds: 

- ( 1  - x 2 )  1/2 - x 2 - -  
r i j  

+ 114(1 - A ) , -  1/2(1 + A),x + 1/4(I - A),x 2 + 1/4(1 - A b 

+ 1/2(1 + A)dx + 1/4(Ij - As)x 2 -F Z~Zb - e2 
ri d 

= 2c2[- /~  + c~/2(I - A)i - (1 + c~)/2e2/r,~] (16) 

+ 2c~[-  zd + c~/2(z - A)d - (1 + c ~ ) / 2 e / r J  

ZaZb 0 0 + 2(2clcj) Hij + - + l~  + po + I~ + P~ . 
ri d 
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The identity (16) holds provided x=c~-c~(Sij=O ). It also depends on the 
r- ? ' 7  

identification of E c with [2Hq- c 1 c2 e - / .  It is sometimes assumed that Ec= 2Hifi 
L rij J 

but this is only true if we drop the Coulomb interatomic terms in the diagonal 
elements. 

Harris [16] has recently drawn the attention to an important point: in mini- 
mizing eMo with respect to the variational coefficients the charge dependence of 
H u and Hij must be included. That is, the correct eigenvalue equations are: 

cl(Fll - g) -'[- c 2 ( F 1 2 )  = 0 ,  Cl(V12)+c2(V22-g)=O (17) 

where 

Fla = H l l  + ~ -  l - A ) 1 -  = - I  1 + c~(I- A ) -  
e 2 (I +2c  2) 

rij 2 
(17a) 

and 

 $12 E e21c2 [ e21 fl2=Hi2+c2 T ( I - - A ) I  - -  ~ / j  + 4 K S 1 2  ( I - A ) - ~  (17b) 

which, on the one hand, corresponds exactly to the system of Eq. (9) of Harris [16] 
and, on the other hand, to the minimization procedures of the DIE method 
leading to Eq. (15) and hence to the energy function (13) above. 

4. The Hydrogen Halides: Results and Discussion 

The main points in the calculation of ground state properties of the hydrogen 
halides are as follows: Fll,  F22 and Fi2 were given by (17a) and (17b); Hi2 is 
given by (7); the best value of K in Eq. (7) was found by trial to be 0.4. Since the 
calculation is not a Wolfsberg-Helmholz treatment, no special significance should 
be assigned to the chosen value of K. Overlap integrals in Eq. (7) are from Mulliken, 
Rieke, Orloff, and Orloff [29], and S(4p, ls) values are interpolated from S(3p, ls) 
and S(5p, ls). Self-consistent solutions of Roothaan Eq. (17) were attained by 
the usual procedures [9, 30]. Core-core repulsions, E,, are calculated by the method 

suggested by Pohl and Raft [10], E , -  ZAZ~ , where Z g and Z a are estimated 
rij 

from the Herman-Skillman atomic structure tables [31]. Valence state ionization 
energies and electron-affinities are from Hinze and Jaffe [32]. Calculations were 
made with an IBM 1130 computer. 

Calculated and experimental [33-36] ground-state properties of the hydrogen 
halides are given in the table and the calculated potential curves for these four 
molecules are shown in Fig. 1. In general, the calculated values are in reasonable 
agreement with the experimental ones. The trend in dissociation energies, equi- 
librium internuclear distances, bond dipole moments, dipole moment functions 
and force constants is the correct one throughout the series HX. As predicted, 



MO and Differential Ionization Energies Methods 

Table 
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HF HC1 HBr HI Ref. 

De(calc ) (eV) 7.59 4.84 3.73 1.85 
be(exp) (eV) 6.08 4.47 3.80 3.10 [33] 

R~(calc) (A) 0.87 1.30 1.48 1.64 
Re(exp)(A ) 0.917 1.275 1.414 1.604 [33] 

Ze(calc) 0.68 0.26 0.16 0.075 

#pr~m(Calc) (D) 3.26 1.24 0.77 0.36 
#(exp) (D) 1.82 1.08 0.82 0.44 [34] 

( 8 # )  (calc)(D/A) +2.12 +1.08 +0.71 +0.36 
at/Ire 

(~--~-~r),e (exp)(D//~) +1.8 _+1.0 +0.9 -t-0.2 E35, 36] 

k(calc) (dynes/cm) 20.2 x l0  s 4.6 x l0  s 2.5 x 105 1.1 x l0 s 
k(exp) (dynes/cm) 9.6 x 10 s 5.1 x l0 s 4.1 x 105 3.1 x 105 [33] 

0.5 1.0 1.5 2 .0  r (~,) 
+ 1 . 0  I I I I 

0.0- 

- 1 . 0  - 

-2.0- 

-3.0= 

-4.04 

-5.0- 

-6.0 

-7.0 

-8.0- 

E (eV) 

/i ,,jl/ 
/ \ ,Y 

\ / HF 
HCL 

Fig. 1. Potential curves of the hydrogen halides 

function (4) tends to introduce a high ionicity, and this is reflected in the high 
values of the calculated dipole moments of HF and HC1. Actually, these values 
represent the primary moments only, the total dipole being the sum of the primary 

and the homopolar moments. The calculated values of ~ are in good 
re 

agreement with the experimental ones. They are also in general accord with 
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d i p o l e  m o m e n t  func t ions  c a l c u l a t e d  (for H F  a n d  HC1) us ing  a d v a n c e d  S C F  

t echn iques  [37] .  T h e r e  is l i t t le  d o u b t  t h a t  the  s ign of  ~ a t  the  e q u i l i b r i u m  

d i s t a n c e  is pos i t i ve  a n d  t h a t  for  o r d i n a r y  c h e m i c a l  b o n d s  the  s t a t i o n a r y  va lue  of  
the  b o n d  m o m e n t  occu r s  a t  d i s t ances  l a rge r  t h a n  the  e q u i l i b r i u m  i n t e r n u c l e a r  

d i s tances .  Th is  is t rue  in o u r  c a l c u l a t i o n  a l t h o u g h  ~\d(~-) is a l w a y s  nega t ive .  

T h e  c a l c u l a t e d  b o n d  energ ies  a n d  force  c o n s t a n t s  a re  t o o  l a rge  for  H F ,  a n d  
t o o  s m a l l  for  HI .  T h e r e  is l i t t le  d o u b t  t h a t  the  p o i n t  c h a r g e  a p p r o x i m a t i o n  as  
used  he re  o v e r - e m p h a s i z e s  the  M a d e l u n g - J C r g e n s e n  ene rgy  t e r m s  in Fa l  [8] .  
Because  of  p o l a r i z a t i o n  effects, the  c h a rg e s  s h o u l d  n o t  be  l o c a t e d  a t  the  n u c l e a r  
centers .  C o r r e c t i o n s  a l o n g  these  l ines  w o u l d  u n d o u b t e d l y  p r o d u c e  be t t e r  resul ts ,  
n o t a b l y  for  h y d r o g e n  f luor ide ,  b u t  a t  the  ex p e nse  of  one  m o r e  a r b i t r a r y  p a r a m e t e r .  
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