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An Exactly Solvable Model for the Fermi Contact
Interaction

S. M. Blinder

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

A model for the Fermi contact interaction is proposed in which the nuclear
moment is represented as a magnetized spherical shell of radius r,. For a hydro-
gen-like system thus perturbed, the Schrédinger equation is solvable without
perturbation theory by use of the Coulomb Green’s function. Approximation
formulas are derived in terms of a quantum defect in the Coulombic energy
formula. It is shown that the usual Fermi potential cannot be applied beyond
first-order perturbation theory.
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Atomic hyperfine interactions involving s-electrons are well accounted for by the
Fermi contact operator [1, 2]

H
A

= Anals-I8%(r)
Sggimsuy/a®, 83(r) = o(r)/4mr2. (1

Additionally, nuclear spin-spin coupling in NMR can be attributed predominantly
to a second-order mechanism involving the Fermi contact interaction [3]. An
unfortunate concomitant to this mechanism is the appearance of divergent nuclear
magnetic self-interactions [4]. These divergences are unphysical. The problem shows
up in fact even when (1) is applied to the second-order perturbation energy of a
hydrogen atom [5]. An extensive literature exists on attempts to circumvent this
difficulty in calculations of spin-spin coupling constants in molecules, notably HD

[6].

We should like to propose as an alternative, a model for the contact interaction
which leads to an exactly solvable atomic problem. Thereby, spin-spin coupling can
be treated as a first-order perturbation and divergences are avoided entirely. In
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physical terms, the point nuclear magnetic dipole implied by the Fermi Hamil-
tonian (1) is to be replaced by a uniformly magnetized spherical shell of radius r,.
This is effected simply by the substitution in Eq. (1):

8(r) — 8(r — ry). (2)
We designate the resultant operator as the modified Fermi potential [7].

A hydrogen-like system perturbed by a modified Fermi potential is represented by
the Schrédinger equation (for s-states):

{5 v =25+ S g 15 0) = B0t ©
We adopt the modified atomic units
h=c=p=1, p=m(l + m{M)~?1, a = hfue? = | (4)
and introduce the radial function P(r) such that
W(r) = P(r){(4nr2)t2 (%)
and the wavenumber k where
= k2%/2. (6)
The Schrédinger equation then reduces to the form
(k2 + ;—; + )P( )= P(ro)S(r ro) @)
where
Ar= (DA, (sDp=3FF+1)—-s(s +1)— I + D], F=1%1
®

For atomic hydrogen (Z = 1, I = }), using the experimental free-electron g-factor
g = 2.0023193134,

A= 21600 x 1077, Ay = 1A, Ao = ~3A

Now Eq. (7) is isomorphous with the defining equation for the S-wave Coulomb
Green’s function [8]

(k2 P 3?) 2t 70, K) = 8(r — ro) ©)
having defined

g(r, ro, k) = rroGolr, ro, k). (10)
The appropriate boundary conditions are

r-2g(r, ro, k) —>0,  r28glor—>0 asr—0 an
and

g(r,ro, k) —0, ogler -0 asr—>o (12)
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which are applicable as well to the Schrédinger equation (7). Thus the latter must
possess solutions of the form

Pr) = ZA— P(ro)g(r, 1o k) (13)

provided that k& does not lie in the unperturbed Coulomb eigenvalue spectrum. The
Green’s function is given by [8]

gr, ro, k) = (2ik) T — w)ME(=2ikr )WEA(— 2ikr ) (14

where v = Z/k, Im k > 0, M and W are Whittaker functions as defined by Buch-
holz [9]. Since we shall be concerned with bound states, it is expedient to make the
substitutions

v —v, —ik — k.
Accordingly
glryro k) = — k)01 — vY)M ,2kr YW ,(2kr ). (15)

We have in addition dropped the second index on the Whittaker functions since it
will have the value 4 throughout. In place of (6) we have now

E, = —k?2 = —Z2/2? (16)

which has the same form as for Coulomb eigenvalues but with non-integral values
of the quantum number ». For A « 1(A ~ 10~7 for hydrogen) it can be anticipated
that the bound state energies given by (16) will differ only minutely from the values

E, = —Z%2n% 1t is convenient to introduce a quantum defect such that
v=n+ 8, n=12,.... (17N
Then
zz 72

A consistency condition on the eigenfunctions (13), obtained by setting r = ry,
gives a transcendental equation determining the bound state eigenvalues, viz.,

A
Q",iogg("o;ro,k)= 1' (19)

Now the S-wave Coulomb Green’s function defined by (9) has the spectral rep-
resentation

g(rsr07€)= SM’

n & — &y

e= —Z2? 20

in terms of the unperturbed s-state radial functions P,(r). In the discrete spectrum,

P (r) = (Z|n)'? M, (2Zr[n), e, = —Z%[n. (21)
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For the perturbed state n = N, v = N + 3, the Green’s function expanded in
powers of the quantum defect takes the form

80,10, ) = (50yz5 + 333) PHOIPAC) + KC 7o 2) + 0) (22)

where k(r, ro, ey) is the reduced Coulomb Green’s function [10, 11]
P.(r)P,
K, rop o) = 2OP), 23)
n#EN EN T &
Putting (22) into (19), with neglect of contributions O(8), and solving for the quan-

tum defect, we obtain

AsN3
4—2—273 IPN(r0)|2

Sy.r X . (24)
’ Ar J3NZ
1~ 5% |35 IPMI? + Koo, 70 )
Explicitly for the 1s state, N = 1,
Pi(r) = 22332 ¢~ 7" (25)
and from formulas given by Hameka [10] and Hostler [11]
Ko o ) = 2203 €-25| 7+ 10 Q20) — 2210 = 221) + v - §]
Q
(26)
where
Pe* — 1 —x
o= | Ee— ax
0
e’ —1 - .
= —(—pz—”) +Ei()—Inp—y @7
The 1s quantum defect is thus given by
/\FZ e—ZZT0
S.p X ] .
I+ AZ e"2z'0[ —In(Q2Zry) + 2Zry + fQZry) — y + 1
27r,
(28)
Under the further approximation that r, < 1 (bohr)
~ M2 — 2Zr) (29)

O R W

In the more detailed derivation given elsewhere [7], it was shown that Eq. (29)
applies more generally to all bound hydrogen-like s-states.

For A; > 0, say the F = 1 state of hydrogen, the quantum defect (29) converges
uniformly to zero as ro— 0. Thus for a repulsive deltafunction potential, the
energy reverts to its unperturbed Coulomb value. For A; < 0, say the F = O state
of hydrogen, Eq. (29) remains valid so long as |Az|/2r, « 1. The quantum defect
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goes through “resonance’ near r, = |Az|/2. The condition |§] « 1 is violated so
that the entire derivation becomes invalid. The desired limit can however be ob-
tained by considering the asymptotic forms of Egs. (15) and (19) as k — oo (or
v — 0). From formulas given in Buchholz [9]

T — )M ,Qkro) W, (2kry) — 1 as k — . (30)
Thus
Ap
"2z S @31
or
k x |Ag|/4rd. 32)

The limit k¥ — oo does indeed correspond to r, — 0 for negative Ay. By virtue of
(16), E, — —oo as ry — 0, showing that all bound states are pulled down to —oo
by an attractive Fermi potential. Velenik ef al. [12], using variational arguments,
arrived at the same conclusions with regard to repulsive and attractive deltafunc-
tion potentials added to a Coulombic system.

By expanding the quantum defect (29) in powers of Ay and substituting into (18),
one obtains a perturbation expansion of the hyperfine interaction energy. As shown
in Ref, [7], in the limit r, — O, the first-order term approaches the Fermi formula

E® = X[, (0)2 (33)

while all higher-order perturbation contributions diverge.
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