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Abstract. We consider the large time behavior of monotone semigroups 
associated with degenerate parabolic equations and monotone difference 
schemes. For an appropriate class of initial data the solution is shown to 
converge to rarefaction waves at a determined asymptotic rate. 

1. Introduction 

Our main point of interest is the large time behavior of two solution operators, 
one continuous, the other discrete, when acting on a certain class of initial data. 

The continuous example is the solution to the class of degenerate parabolic 
equations of the type 

u~ + f (u)~ = A(u)xx, (1.1) 

where u is scalar, f is convex and A'(u) > O. When A(u) = l u It.u, 7 > 0, we have the 
convective porous medium equation. 

The discrete example is the class of monotone difference schemes for the scalar 
conservation law ((1.1) with A - 0). We write the scheme in the following way: 

u"+ l (x) = u"(x) - 2Aa(9(u"(x - po d) . . . . .  u"(x + qod) ), (1.2) 

where we chose xeR  rather than on a mesh 

A x  
2 = - A t ,  (Aau)(x) = u(x) - u(x  - d), Po > O, qo > O, d > O, 

and several conditions on the numerical flux 9 will be specified. The parameter d 
is not necessarily small. 
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The scalar conservation law 

u, + f(u)~ = 0 

is invariant under the transformation 

X : - - ,  t : - ,  V > 0 ,  
v Y 

and it has continuous, self-similar solutions of the form 

x - -<  a(u_) 
t 

U _  

u+ 

(1.3) 

(1.4) 

X 
a(u_ ) < T < a(u + ), (1.5) 

x 
a(u+)<--  

t 

where a(u )=i f (u )  and u_ < u+ are the values at Too; these solutions are called 
rarefactions. With respect to the variables ~, ~ defined in (1.4) Eq. (1.1) changes to 

u~ + f(u)e = vA(u)x~, 

and its solutions are close to solutions of (1.3) when v is small. 
For the monotone schemes in (1.2) this scaling procedure, in effect, changes d 

to vd, and the consistency with (1.3) is merely a consequence of the consistency of 
g with f.  

We will prove that for a fairly large class of initial data, the error 
between solutions in (1.1) and (1.2) and the appropriate rarefactions 
tends to zero in L", 1 < p  N oo. More specifically u = R + K and ]K[L,(dx)--<_ 
c(ln t)(1/2)+(1/2p)t-(1/2)+(1/2P), 1 < p < o% and the rate of decay for K, without the 
In t term, is the real rate for Burger's equation (when f (u )  = 1/2//2 and A(u) = u). 

In the next section we will prove a proposition which states the result in the 
more general framework of monotone semigroups that satisfy a consistency 
condition. 

In D, the example of Burger's equation shows that we stay at a positive distance 
from rarefactions. 

The complementary situation, when u_ > u+ and (1.1), (1.2) admit travelling 
waves, was treated in Ref. [3] and [1]. It was shown there that these travelling wave 
solutions attract in D a large class of initial data. 

In [4], there are results about the L ~ behavior of the equation u~ + f (u ) ,  = cu~,  
c > 0, without a rate. 

2. Monotone Semigroups 

For u_ < u + we define U c L ~ (R) by 

= ~u~L~ ,u_  < u ( x ) ~  u+, ~ I sup u ( z ) -  u_ dx < co, U 
( x<Ojz<_x 
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 nfulz -u+ < } 
As in [1] we consider a semigroup T(t), t e R +  or Z+, defined on U, and 

satisfying: 

(1) u < v a.e. =~ T(Ou < T(t)v  a.e. (monotone), 
(2) u - v e L  t ~ T(t)u - v e L  i (preserves D),  

+ oe + o o  

(3) u - r e D  ~ ~ T(t)u - T(t)v = ~ u - v (conservative), 
- o o  - o o  

(4) T(t)~ h = ~hT(t), ThU = U(X -- h) (translation invariant). 

A Lemma of Crandall and Tartar  [9] shows that, given (2) and (3), the property 
(1) is equivalent to 

(5) I T(t)u - T(t)Vfcl <= ]U -- rILl, if U -- veL i (D - contractive). 

With this we form T~ = 61/h T(a)6h, where 0 < a < 1, 6hu = u(hx) and note that T~ 
is also an D-contraction. If t eZ+ ,  then ~ is by definition equal to 1. 

The next condition makes T(t)  consistent with a self-similar solution. Suppose 
there exists p ( x ) e  U which is Lipschitz continuous, p' > 0, t P' IL ® < 0% and such that 

(6) I ThP -- 61/(i +~h)PllJ <2 Ch 2. 

Then, 

Proposition. I T( t )u  - 61/ ,p  ILp < C(ln t) (~/2) + (~/2p)t-(1/2)+ (l/2p) t ~ 1, 1 < p < 0% 
u e U .  

Remark .  The constants C are not the same and they don't  depend on h or t etc. 
Before proving the proposition, a few remarks about (6): We note that an equation 
which is invariant under (1.4) has a solution operator T(t)  which satisfies 
6i /hT(a)6 h = T(ah), and therefore the left-hand side of (6) is identically zero if 
T( t )p  = 61t(1 +h)P- For  Eq. (1.1), (6) represents the following local condition: 

Let v satisfy 

Then 

Here p(x)  = R(x).  

v, + f (v)~  = hA(v)x~, 

v(O, x) = R(x )  = r(x, 1) (see 1.5). 

l v(c~h, x) - r(1 + c~h, x)tL1 ~ Ch z. 

(2.1) 

For  (1.2), to be consistent, we take 

Condition (6) now amounts to the requirement that the local truncation error 
for consistent monotone schemes is of O(h 2) in D ,  where h is the mesh-size. Since 
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rarefactions are Lipschitz cont inuous with bounded  derivatives, we will be able to 
prove this in Sect. 4. 

Proof  o f  Proposition. First, let p = 1 and define: 

ut(x) = ( T(t)u)(tx) = 6, T(Ou. (2.3) 

We then have the identity: 

[ u t -  PIL~ = ~1T(t)u - 61ltPl, 

and what  we need to show is: 

In t 
]u' - PlL, _-< C - -  (2.4) 

t 

It suffices to consider t = n e Z  +, since, with t = n + ~, for some 0 < ~ < 1, 

I T(n + ~)u - 6I/(.+~)PTL~ < T(n)u - fill.PILl + [T(oOfl/.P - 61/(.+~)PtL~ 

= T(n)u - 61/.plzl + n16.T(a)Ol/.p--fi./(.+~)p]L~ 

C 
< T ( n ) u - f x / . p l r l  + - - .  

n 

Next,  dropping the D subscript, and by (2.3), 

lu " + l - p ]  = 1 6 . + i T ( n +  1 ) u - p l  

n 

- n + 1 16nT(1) f l /" f"T(n)u - ~n/~n+I)Pl 

n n 
< - ~ T  ] T~/.u" - T~/.pl + ~ t  T~/ .p - 6./(.+1)p] 

n n 1 
< [u" - P l + C by (6). 
= n + l  n + l  n 2 

Assume that  [u j - p[ < C(ln j ) / j  for 2 < j < n with C independent  of  u o, where 
lUo -p] / ,1  < M .  This is true for n = 2 ,  

[u.+ 1 lnn  1 
- P l < C - n + - ( + C n ( n +  1) 

c ( l n ( n  + 1 ) n T l ( ~  ( ~ ) ) )  ln(n + 1) 
= \ n - + ]  + - I n  1 +  =<C n + l  ' 

and the induction step is complete. 
To  prove the case p = c~, we first observe that  we can restrict our  at tent ion to 

u~ U, u increasing, since for any u~ U, our  definition of U allows for two functions 
qh. ~p.~U, increasing, such that  (& __< u < ~Pu- The  monotonic i ty  of T(t) then yields 

] T(t)u - rjL~ < [ T(t)~o L -- rlL~ + [ T(t)u -- T(t)~ot[L® 
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F T(t)cPl -- rlL~ + [ T(t)q~,- T(t)eP~lL~, by Condition (1) 

< 2t T(t)qh -- rlL® + t T(t)%, -- rlL~- (2.5) 

To continue the proof for p = 0% we fix x 1 and let 1 = p(x~) - ur(xl)  and without 
loss of generality let 1~ 0. We also let M = [p'lL~ and x o = x~ - I / M .  Then, 

p(x)  > u t (x l )  + M ( x  - Xo), Xo < x < x l ,  

since they are equal at x = xl and the derivative of the function on the right side 
of the equality is always bigger. 

Since u'(x)  is increasing (T(t)  preserves monotonicity), 

u ' ( x l )  + m ( x  - Xo) > u t (x l )  > u~(x), x o < x < x l ,  

and therefore, 

x~ x~ 1 12 
lu'-plL, >= ~ (p-ut)dx>= ~ M(x-xo)dx=~-M. 

xO XO 

And now, since the L °° norm is invariant under 6t, 

I T ( t ) u - 6 , l ,  p l L - = l u ' - p l L - < ~ 2 M l u ' - p , ~  < C ( ~ )  '/2 

Finally, in L p 

[ T(t)u --  (~lltP 1t. ~ <= l T( t )u  - 61/,p [[g 1/"1T(t)u - 61/tp 1[/~ p 
~ COn  t)(l12v)+(1/2)t-(l12)+(1/2p). 

3. Quasilinear Parabolic Equations 

We consider (1.1) when A(u) is smooth in (u_, u+ ), and it is differentiable with A' 
nonnegative and Lipschitz continuous in [u_,u÷] .  We have thus included the 
porous medium equation when u_ = 0. The results in Ref. [2], and the extensions 
in Ref. [ t ]  show that there exists a unique solution operator satisfying (1)-(5) 
of Sect. 2. 

Volpert and Hudjaev regularize the equation by adding artificial viscosity and 
they obtain estimates independent of the viscosity parameter. In the statement of 
their theorem they need more smoothness on A(u). Osher and Ralston overcome 
this difficulty by modifying the initial data. 

We let fi satisfy the following equation which incorporates both regularizations: 

ut + f(~7)x = (A(~) + v~),,x, 

a(O,x)eU~ = {q~eU:u_  + e < q~ =< u+ - e}. (3.1) 

Standard results on parabolic equations yield smooth classical solutions to 
(3.1) [5]. 

Our claim is that it suffices to verify property (6), i.e. Eq. (2.1) for smooth 
solutions ~ with a constant independent of ~ and v. To show this we use the 
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estimates in Ref. [2] together with the arguments in Ref. [1] which yield 

+ o o  

lu(x , t )  - fi(x, t ) lw ~(x)dx < eK~t S [u(x, O ) - fi(x, O)lw z(x)dx,  
- - o o  

where 

and 

wa(x) = exp( - 2(1 + xZ) I/z) 

Ka = )o sup (]f '(u)l  + (1 + 2)A'(u)).  
[u_.u+] 

NOW take f i ( O , x ) = R , ( x ) = r , ( t , x ) ,  the rarefaction which connects u_ + e  to 
u+ - e. Then  

]u(ah, x) - r(1 + o~h, X)lLX(wadx) < ]u(~h, x) -- ~(ah, x)]L~(waax) 

+ 1~7(~h, x) - r,(1 + cth, x)ILl(w~ax~ 

+ It,(1 + ~h,x)  - r(1 + ~h,x)lLl(w~d~) 

< e~:~hlr(1, x) -- r,(1, x)[Ll(wadx)+ Ch 2 

+ Ir~(1 + ~h, x) - r(1 + ah, X)lL~(~xd~)- 

Now let e-4 0 and then 2 ~ 0. 
It remains, therefore, to show Eq. (2.1) when A(u) is smooth  and A'(u) > ao > 0 

in [ u _ , u + ]  and that the constant  C doesn' t  depend on %.  This last par t  will 
become evident from the proof. 

We let q~ = v - r. Then  q~ is a Lipschitz cont inuous function which satisfies 

~, + ( f ( r  + cp) -- ( f (r ) )~  = hA(v)x~, 

~b(0,x)=0, see (2.1)). (3.2) 

We multiply (3.2) by a regularized sign function of q~, which is the derivative 
of a regularized absolute value function denoted by L~ and defined as follows: 

l:f- 2, Izl>~ 
L,(z)  = 

l z  ~, Lzl<~ 

Then the regularized sign function is given by 

L;(z)= 
sgnz, I z l > e  

-az, IzI<~ 

1 We thank the referee for suggesting the use of a regularized sign function. This replaces the original 
less elegant argument 
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and, from (3.2) we obtain: 

h + ~  h + ~  h +c~ 

I f L,((°)t+I ~ L' , ((o)[f(r+¢)-f(r)]x=hl I L',((o)A(¢+r)~. (3.3) 
0 - o o  0 - o o  0 - c e  

+ o o  

The first term on the left, in (3.3), is I L~(~)(h) which tends to I4~lr,ta~)(h) as 
--cO 

~ 0 by Lebesgue's Dominated Convergence Theorem. 
The second term on the left, in (3.3), after integrating by parts, is equal to: 

h+~o i+~ l  - ! -~of L~(49)49~[f(r + 49) - f ( r ) ]  = - o -~f ~Zlet<~[/(q 5 + r) - f(r)]~b,~. 

The integrand above tends to zero pointwise and is dominated by sup f'(u)'[4~:,t. 
u~[u_,u+ ] 

Therefore, by the Dominated Convergence Theorem the integral tends to zero as 
e-o0. 

Finally, we consider the term on the right in (3.3). After integrating by parts 
and differentiating, we obtain: 

h + c o  h + o o  

- h i  I L~'(~)c~A'(r +Cp)(dp~+r~)~-h I I L~((o)c~A'(r +(o)r~, 
0 - o o  0 - c o  

since L~(~)qb~A'(r+ qS)> O. (We note that this is the only place where we used 
A' > 0 and that we didn't need A' strictly positive.) 

We now have 

h + c ~  h + ~  

-- h ! f L'~(~I~A(r)~ - h I f U~'(q~l(A'(r + ~p)- A'(r)))q~rx. 
- c o  0 - ~  

The second term tends to zero as ~ 0  by virtue of the same Dominated 
Convergence Theorem, and the first term is estimated by 

h 

h I IA(r)~Jl~V(d~(~)d~ ~ h e sup TA(r)~lBv~d~, 
0 0_<~_<h 

where the BV(dx) norm is defined by 

l + ~  
1glnv~d~) = supz  ~ Tg(x + h)-- g(x)ldx. 

h > O  t t  - ~  

In conclusion, after letting ~--* 0, (3.3) yields I~b tL~(ax)(h) <= Ch 2, which is the desired 
estimate. 

We close this section with the example mentioned in the introduction which 
uses Burger's equation: 

u, + (½uZ)~ = u~x, 

u(O,x)=H(x)={~ x < 0  
x>O" 
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Here one can solve explicitly, using the Cole-Hopf transformation, and obtain 

~ e t~x/t)- a]y/2 e -  y 2/4t dy 

u ( t , x ) -  o 
+Qo 

f eyx/2t_y+/2e_y2/4tdy 
--cO 

where 

Here the rarefaction is given by 

{~ y>O 
Y+ = y<O" 

I o X_<o 
t - -  

r ( x , t ) =  x o<_X<<_l. 
t - - t - -  

1 X~>l  
t -  

To obtain the asymptotic expansion of u(x, t) for x < 0 we let s = x / t  and integrate 
by parts in the numerator to obtain 

S e(s- 1)y/2e-y2/4tdy . . . .  1 + 0 
o s 

where O(1/t) is uniform in s < 0. 
In the denominator the dominant term is: 

i f 1 x y2 '~. = 2",//~e(~/2"/t? -x/2,/t 
_ ~ o e x p [ , 2 t Y - ~ )  ay ;[ e- '2dY.  

Therefore, one obtains 

1 
u(t ,x)  = "~/-{etx/2v')2 _x/f,/te_Y2dyj + K,  

where t K ta'CR -) <= c t -  1 + i /2v, R - = ( -- ~ ,  0), 1 <= p <= oo. One can therefore verify that 

lu--r]L,~)(t)>lu--r[c~m-)(t)>Cot(1-v)/2v= , l<p<o%= = Co>0 .  

4. Monotone Difference Schemes 

We consider (1.2) and impose the following conditions on the numerical flux 
g = g(U_po,. . . ,  U+qo), a function of Po + qo + 1 variables: 

(a) g(u . . . .  , u) = f (u) .  
(b) g is Lipschitz continuous everywhere and Og/Oul are Lipschitz continuous 

in the domain u_po < U_po+ 1 < . . - <  Uqo. 
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(c) The function Uo - 2(9(U-po . . . . .  Uqo) - g(u-(po + 1) . . . .  , U~o- 1)) is nondecreas- 
ing in each of its arguments u_ po- 1, . . . ,  Uqo. 

For  example, the Engquist-Osher (upwind) and Lax=Friedricks (dissipative) 
schemes, all satisfy these conditions which imply properties (1) through (5) of Sect. 
2 for the solution operator. Unfortunately, Godunov's  upwind scheme does not 
satisfy the second part of (6) 2 . 

For  simplicity of notation take 2d = 1 so in (2.2) p ( x ) =  R(x).  Then, condition 
(6) is equivalent to 

tr(l + h , x ) -  r(1, x) - Adg(r(1,x  -- po h) . . . . .  r (1 ,x  ÷ qoh))lL , <= Ch 2, 

with r(t, x)  --- R(x / t )  from (1.5). 
First, one easily verifies that 

tr(1 + h,x)  - r(1, x) - hr,(1,x)[L1 < Ch 2, 

since the expression inside the L 1 norm is compactly supported, always bounded 
by Ch and bounded by Ch 2 in the smooth regions which are outside some 
neighborhoods of a(u_ ), a(u+ ) of measure less than Ch. 

Next, by the mean value theorem 

Adg(R(x  - poh) . . . . .  R ( x  + qoh)) 

qo 1 (~,,~ 
= h *=~-po ! ~ui ( ' '"  On(x  - ih) + (1 - O)R(x - (i + 1)h)... )dOU'(x - (i + th)h), 

for some 0 < q~ < 1, 

= h ~  ~ 9 ( R ( x ) , . . . ,  R ( x ) ) . n ' ( x )  
i ou i  

+h~i~ui('"OR(x-ih)÷(1-O)R(x-(i÷o 1)h)...) 

ui(R(x), . . . , R(x)  )dO R'  (x - (i + rli)h ) 

+ h ~ u i ( n ( x  ) . . . .  , R(x ) ) (R ' (x  - (i + th)h ) - R ' (x))  = h f ( R ) x  + K o. 

Because of our assumptions on g and since [R'[Bv <= C, we get IKo]LI =<_ Ch 2 and 
the result follows. 

In closing, we wish to mention that the result of the Proposition yields the 
following L p rate of convergence to rarefactions for monotone schemes: 

[U h - -  R[Lp  ~ Ch(1/2)+°/2P)(ln l / h )  (1/2)÷(1/2p), 1 < p < o% 

where h is the mesh size (which is related to the number of iterations in time), and 
uh(O, X) = q~(x/h), q ~  U. 

2 We thank the referee for pointing this out 
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The well-known results on convergence of monotone schemes [6-8] hold for 
general L 1 n B V n L  °~ initial data. Our rate of convergence, h l n ( t / h )  in L t, is an 
improvement over the previous rate, h ~/2, given in Refs. [6, 8]. This is because, for 
our special case, it was possible to adopt a more direct type of proof of convergence. 
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