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Abstract. We consider a class of nonlinear Schr6dinger equations (conservative 
and dispersive systems) with localized and dispersive solutions. We obtain a class of 
initial conditions, for which the asymptotic behavior (t ~ + oo) of solutions is given 
by a linear combination of nonlinear bound state (time periodic and spatially 
localized solution) of the equation and a purely dispersive part (decaying to zero 
with time at the free dispersion rate). We also obtain a result of asymptotic stability 
type: given data near a nonlinear bound state of the system, there is a nonlinear 
bound state of nearby energy and phase, such that the difference between the 
solution (adjusted by a phase) and the latter disperses to zero. It turns out that in 
general, the time-period (and energy) of the localized part is different for t ~ + ov 
from that+for t --. - or. Moreover the solution acquires an extra constant asymptotic 
phase e '~-. 

I. Introduction 

This paper deals with the scattering theory of a class of conservative nonlinear 
dispersive equations admitting more than one channel. By this we mean that the 
asymptotic behavior is given by a linear combination of a localized (in space), 
periodic (in time) wave (solitary or standing wave) and a dispersive part. For 
nonlinear flows which are completely integrable (e.g. one-dimensional cubic 
nonlinear Schr6dinger, Korteweg-de Vries equations), some analysis of the 
asymptotic system of, for example, localized part (solitons) plus dispersion can be 
carried out using the inverse scattering transform I - G - G - K - M ,  Z-S,  Lax, C-K] .  
The inverse scattering transform decouples the localized from the dispersive part. 

* This research was supported in part by grants from the National Science Foundation 
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*** A. Softer is a Sloan Foundation Fellow 
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The cases we consider are not integrable. The main new feature here is that 
the localized and dispersive parts are interacting at all times. The spatially localized 
part that emerges as t ~ + oo is identified with an exact solitary wave solution or 
nonlinear bound state of the full nonlinear equation. For  the above-mentioned 
integrable systems the analogue of the solitary wave is the one-soliton. The model 
we focus on is a class of two and three dimensional nonlinear Schrrdinger equations 
(NLS). The methods we present can however be adapted to other nonlinear 
dispersive systems. 

Our main results are (see also Sect. 4): 

(i) Asymptotic Stability (Theorem 4.2): Given initial conditions which lie in a 
neighborhood of a solitary wave of energy E 0 "and phase 70, the asymptotic state 
of the system ( t ~  _ oo) is given by a solitary wave of nearby energy E • and 
phase 7 • plus a remainder which disperses to zero, i.e. the solution converges 
asymptotically to a solitary wave, say in some L p norm with p > 2. 
(ii) Scattering (Theorem 4.1): There is a ball in a Banach space of initial conditions 
for which the asymptotic behavior (t-~ + ~ )  of the solution is given by a linear 
combination of a solitary wave of energy E • and phase 7 • plus a remainder which 
is dispersive. The remainder is purely dispersive in the sense that it satisfies local 
decay and L p decay estimates of linear theory. 

Previous results on the stability of solitary waves involves the use of energy 
norms, e.g. H 1 (see for example Ben, Ca-Li ,  Sh-Str,  We2, We3, Ro-We,  G-S-S) .  A 
typical result of this type states that if the solution begins in some neighborhood 
of the solitary wave orbit, then it remains in a neighborhood. Since energy norms 
are insensitive to dispersive behavior, one cannot conclude, as above, that solutions 
converge asymptotically to a solitary wave. 

Earlier work on nonlinear scattering has focused on the situation where there 
are no bound states. In the above terminology, these are problems with a single 
(dispersive) channel (see for example Strl, Str3, G-V). 

Cast into precise mathematical form, we prove that for a class of initial 
conditions for the nonlinear Schrrdinger equation (NLS), the solution ~(t) is 
given by 

~ ( t )  = e-i~')~b~{o + dpa(t), (1.1) 

=i o E(s)-  ~(t), (1.2) 
0 

where ~E is a spatially localized solution of the nonlinear bound state equation 
(with energy E) and ~bd(t ) is a purely dispersive wave. As t ~ ___ o% we have that 
E(t) ~ E • and ~,(t) ~ 7 5. In completely integrable problems, one has E(t) = E + = E -  
and 7(t)= 7 + =  7-. Their values are determined by the "scattering data." The 
decomposition of the phase O in (1.2) is reminiscent of Berry's dynamic and 
geometric phase components [Ber]. The part 7(0 cannot be fully accounted for by 
dynamical considerations. 

While there has been considerable progress in understanding linear multi- 
channel scattering theory (see [En, Sig-Sof] and those cited therein) in the past 
ten years, little is known about the corresponding nonlinear situations. Questions 
like when a bound state (temporally periodic, spatially localized solution) breaks 
down due to nonlinear (e.g. repulsive) interaction, and the scattering theory of 
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localized waves in the presence of impurities and inhomogeneous media are not 
understood beyond heuristic considerations or finite time approximations. 

Our approach to the problem begins with the simple physical observation that 
if one starts with the linear Schr6dinger equation which describes a bound 
state and a dispersive wave (corresponding to the continuous spectral part of 
the Hamiltonian), then the qualitative behavior should not change that much in 
response to a small nonlinear and Hamiltonian perturbation in the dynamics, i.e. 
we should still see a localized part which decouples after a long time from the 
dispersive part. We make an Ansatz which incorporates this observation, from 
which we derive equations governing the interaction of the two channels. 

One set of equations describes the motion of the localized part of the solution 
through a two-parameter family of bound states of our system. Visualized in terms 
of the energy (E) and phase (7), this is a slow evolution of the bound state parameters 
on a cylinder. The second is a nonlinear equation which describes a purely 
dispersive wave moving under the effect of the nonlinearity, as well as the effective 
potential coming from the presence of the localized part. We observe that, 
d d ~ l 
~E(t),~iT(t)~L (R)  if the remainder wave is dispersive (with a sufficient decay 

d d x l rate) and that the remainder is dispersive i f ~  E(t), ~ 7(t)~L (R). Therefore, solving 

the coupled equations gives the required results. The modulating energy and phase 
of the nonlinear bound state, E(t) and ~(t) (or O(t)), which govern the localized 
part of the nonlinear evolution are sometimes referred to by physicists as collective 
coordinates. Equations for collective coordinates have been derived using various 
formalisms (e.g. averaging of conservation taws, direct perturbation theory [K-A, 
K-M, Ne]). These equations are sometimes referred to as modulation equations. 
In [We2] their validity was studied in the linear approximation for certain systems 
which are conservative or small perturbations of conservative systems (e.g. weakly 
dissipative). We believe that our present results are the first rigorous justification 
of the collective coordinate description on an infinite time interval for nonintegrable 
systems. 

The system of equations describing the evolution of E and O has the form of 
a perturbation of an integrable Hamiltonian system with a single degree of freedom. 
Here E and {9 play the role of action and angle variables. In the large It] limit the 
coupling to the infinite dimensional radiation field tends to zero and the (E, 19) 
system reduces to/~(t) = 0, O(t)= E. 

A final remark is that the problem we consider can be viewed as a kind of 
restricted three body scattering, where the localized part corresponds to a bound 
pair and the dispersive part is the "third particle" moving away as ]tl ~ 0o. It is 
hoped that such an analogy can be developed further and may allow the application 
of some powerful methods of phase space analysis developed for the linear N-body 
case. 

Notation. All integrals are assumed to be taken over R" unless otherwise specified. 
91(z), ~(z)-respectively, real and imaginary parts of the complex number z, 

A = Laplacian on LZ(R*), 
( x )  = (1 + x.x) 1/2, where x~R", 
( f ,  g) = S f ' g ,  where f*  denotes the complex conjugate of f,  
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L p = LP(R"), 
H s = {f:( l  - A)s/2feL2}, 
B = { f : f e H  1, (x>  1 +afeL2}, 
IlflJB = IJfllw + II (x ) l+af l l2 ,  
C(I; X) = the space of functions, u(t, x), which are continuous in t, with values in X. 

2. The Initial Value Problem, Solitary Waves and Linear Propagator Estimates 

2.1. A Quick Review of NLS in H i 

We shall consider the initial value problem for the nonlinear Schr6dinger equation 
(NLS) with a potential term: 

i ~  = [ - AdP(t) + f ( x ,  I ~(t)l)] ~(t), 

�9 (0) = ~o .  (2.1) 

Here ~(t) is considered as an element of HI(Rn), where n is the spatial dimension. 
(In this paper we focus on dimensions n = 2 and n = 3.) Consequently, (2.1) is 
understood in the sense of the equivalent integral equation: 

t 

~(t) = eiat ~ o -- i ~ eiA(t-s) f ( ", I C~(s)l)~(s)ds. (2.1') 
0 

The theory of well-posedness for the initial value problem in H 1 and in spaces 
with specified spatial decay rates has been considered for general nonlinearities in 
[G-V, K, H - N - T ,  C-W].  

In the following f ( x ,  u) will be chosen so that the global existence of solutions 
to (2.1), perhaps under some restrictions on ~o, is known. We specialize here to 
the case where 

n + 2  
f ( x ,  u) = V(x) + 21ul =- 1, 1 < m < 2' (2.2) 

l l -  

although the analysis holds for more general nonlinearities. 
For the choice (2.2), the existence theory implies: 

(i) 2 > 0 (repulsive nonlinearity) global solutions for all ~o ell1, i.e. �9 e C(R1;H 1). 
(ii) 2 < 0 (attractive nonlinearity) 

(a) m < 1 + 4/n, global solutions for all ~oel-I 1. 
(b) m > 1 + 4/n, global solutions for all ~o such that IL ~o I1.1 is sufficiently small. 

Furthermore, solutions of class C([0,T);H 1) leave the following functionals 
constant in time: 

2 
~ [ ~ o ]  - ~�89 2 + �89 2 + ~ I ~0(x)l m+ Xdx, 

./r = jl~(x)lZdx. 

We shall require the following of the linear potential V(x). 
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Hypotheses V. Let  V:R"~ R 1 be a smooth function satisfyin9: 

(V1) ( X ) 3 + k + ~I O" V(x)[ < C k for  all multi-indices ~ Z  + with I~l-- k < 3. 
(V2) - A + V has exactly one bound state (isolated eigenvalue) on L2(R ") with strictly 
neoative eigenvalue, E , .  
(V3) V is a function of I xJ. 

As we shall see later the restriction (V3) appears to be a technical convenience 
which is a consequence of the available linear local decay estimates. Also, it is 
clear from our proofs that we can work with considerably milder smoothness and 
decay assumptions than in (V1). 

Our approach will be to reduce the study of (2.1) to essentially two independent 
problems. The first is the study of existence and certain decay properties of the 
nonlinear bound states (solitary waves) of (2.1). Then, one has to study the evolution 
equation for the dispersive part of the solution which one gets by linearizing around 
a certain time-independent nonlinear bound state. In the small data case, this 
involves linear spectral analysis of a time independent reference Schr6dinger 
Hamiltonian. 

2.2. The Solitary Wave  and I ts  Properties 

We seek a time periodic, and spatially localized solution of (2.1) of the form 

dp(x, t) = e -iE'd/E(x ). 

$E then satisfies the equation: 

- A~k~.(x) + f ( x ,  ICdx)l)r -- ECdx), ~bE~H2(R"). (2.3) 

We call an I-I 2 solution of (2.3) a nonlinear bound state or solitary wave profile. 
The solutions of (2.3) have be~n studied by many authors (see for example 
[Str2, Be-Li, Ro-We] and those cited therein). We will concentrate on the case 
(2.2), with a radial potential V ( x ) =  V(Ixl). The result we now state follows from 
variational and bifurcation methods. 

Theorem 2.1. For 2 > O, let E ~ ( E , ,  O), and for  2 < O, let E < E , .  Then there exists 
a solution ~kE > 0 such that 

(a) ~kEEH 2. 
(b) The function E~--~ ]1 ~k E Jill2 is smooth for  E ~ E , ,  and 

lim H ~br []r12 = 0, 
E ~ E ,  

i.e. (E, ~ke) bifurcates f rom the zero solution at (E , ,  O) in H 2 (and therefore, for  n = 2, 3 
in L p, where 2 <= p < ~ ) .  
(c) For all e > O, 

ICe(x)l < Ce,~exp ( -  f i E [ -  ~]lxl), 

and 
(d) As E ~ E , ,  

~1 E = (E -- E , )  1/(m- 1}(,~ ~/~+ 1)- 1/(m- 1)[r -I- (_9(E -- E,)] ,  
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the expansion being valid in H 2. Here, ~, , is the normalized (11 ~b, l[ 2 = 1) ground state 
of - A  + V with corresponding eigenvalue E,.  

Proof. Parts of (a),(b), and (d) follow from standard theory of bifurcation from 
simple eigenvalues (see for example [Nir]). To prove part (c) we observe, 
by the weighted estimates proved below (Theorem 2.3), that I~,~(x)l < C ( x )  -2. 
It follows that ~,~ satisfies an equation of the form [ - ,4 + Q(x) - E]O E = 0, where 
Q(x) = o(Ixl- 1) as  Ixl  ~ o0. Part (c) now follows from linear theory (see for example 
[Ag]). 

A consequence of Theorem 2.1 which will be used is 

Corollary 2.2. 
(a) Let ). > O. Then, for all E~I2, any compact subinterval of (E,,0), we have 
II ~'E [IH2 ----< Ca II ~'E 112. 
(b) Let ~, < O. Then there is a Ec, - ~ < E c < E, ,  such that for E~O, any compact 
subinterval of (E~, E,), II ~E lIH2 < Ca II ~E II 2- 

In our analysis of the dynamics of bound states, we will require various weighted 
estimates of ~kE and ~3e~b E. We summarize this in 

Theorem 2.3. Let for 2 > 0 ,  Ee(E,,0),  and for 2 < 0 , E < E , .  Also, let E lie in a 
sufficiently small neighborhood of E, .  Then, for keZ+ and s > 0: 

I[(x)k~llu,<---- Ck . . . .  I ICEI I . , ,  ' (2.4) 

II ( x )k~e r  II H, < C~, .... I E - E ,  l- 111 ~bE II,s- (2.5) 

Theorems 2.1 and 2.3 summarize our requirements on solutions of the time 
independent nonlinear bound state problem. These conditions are not optimal; they 
are dictated by the known local decay estimates for the Schrrdinger propagator 
associated with - d + 1/(restricted to its continuous spectral part) which at present, 
are far from optimal. These technical questions are currently under investigation. 
Their resolution would enable us to relax restrictions on f (x ,  4) considerably (e.g. 
removal of the assumption of spherical symmetry and certain limitations on the 
growth rate of the nonlinearity). 

The proof of Theorem 2.3 has the following key ingredients: 

1. commuting powers of ( x )  through the Laplacian to derive equations for 
wj = (x)J~E, 
2. the observation that 

LEOEqJE = ~b E, (2.6) 

where 

L~ = - A + V + 2m~,~- 1 _ E (2.7) 

acting on L2(R"). (Equation (2.6) follows from differentiation of (2.3) with respect 
to E.) 
3. derivation of equations for vj = (x)JaeOE, and 
4. obtaining energy estimates for the control of the I-12 norms of w~ and vj. The 
proofs are carried out in Appendix B. 

Here we wish to remark as well that since LE, > 0, we have in the repulsive 
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case (2 > 0) that Le > 0 and that L{ 1 is a positivity improving operator  [R-S] .  
Therefore, the positivity of ~b E implies that Oe~b > 0 and that 

d-~SlO~[ 2 > 0  for 2 > 0 ,  
E=Eo 

i.e. the ground state bifurcation curve is monotonically increasing. This simplifies 
certain analysis in the case 2 > 0 and leads to arguments which are more global 
in E. These details are presented as well in Appendix B. 

2.3. Linear Propagator Estimates 

Let L = - d + V on L2(R *) and assume V satisfies hypotheses (V) of Sect. 2.1. We 
denote by Pc(L) the projection on the continuous spectral part  of L (Xto,o~(L)). We 
assume that V satisfies a nonresonance condition [ J -K ,  Mu]. To explain this 
condition we state the following expansion obtained in these references for the free 
resolvent. 

Let e (n )=0  for n odd and e(n)=l  for n even. Also, let a > - 1 / 2  and 
s > max (a + 1, 2a + 2 - n/2). Then one has the following expansion as z ~ 0 with 
3(Z), 3(Z1/2), 3(log z) => 0: 

[(~r + 1 - n)/2] [a] 
( - - A - - z ) - 1 =  Z F~ztn/2)-l-J(logz)'t")+ ~ Gjzi+o(z'),  (2.8) 

j = 0  j=O 

where Fj, Gj map H ~ to H 2,-s, where for s, a e R  1, 

H,,~ =_ { f  ~9~ - A)' /ef  ~L2}. 

We next introduce the generalized null space 

M =- {~oeH2'"/2-z-~ + GoV)q~ = 0} for n > 3, 

M -  {cp~H2'"/2-2-~ + GoV)q~ERange(Fo),FoV= 0} for n < 2, 

where Go = ( - A)- 1. The nonresonance condition is then 

(NR) M = {0}. 

Under these conditions we have the following local decay estimate [ J - K ,  M]: 

Theorem 2.4. For n > 2, 

[l(x)-~e-iLtpc(L)gl[e < C ( V ) ( t ) - l - ~ [ l ( x ) l + a p c ( t ) g l l e ,  (2.9) 

where c(V) is a constant which depends continuously on ] [ (x)e+av[[ ,  a > 0  is 
arbitrary, a >_ 1 + a, and 6 = 6(n, a, ~) > 0. For n = 2, ( t )  1 + ~ is replaced by ( t In 2 t ) .  

Furthermore, we can use Theorem 2.2 to establish the following L p estimates: 

2n 
Theorem 2.5. Let 2 < p < ~ -  for n >= 3 and p > 2 for n = 2. Then, 

II e- iL 'P~(L)9 lip < C(V)l tl ("/1'-'/2)( II Pc(L)9 IIq 
+ l[ <x) 1 +aPc(L)g IIz), (2.10) 
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II e-iL'Pc(L)9 lip < C(V)<t>("lP-"12)( II P<(L)9 IIq + [I 9 I]n, 

+ II <X>l+apc(L)ol]2) (2.11) 

for some a with 1 >> a > 0. Here, p -  1 + q -  1 = 1. 

To prove (2.10) we write the propagator e - i L t  a s  a perturbation of ei~*: 

t 

e -  iLtpc(L)g = eiatPr - i ~ e ia(t- s) Ve-  iLsp~(L)gds. (2.12) 
0 

By the free propagator estimate [R-S],  

]le-ia,h]l~_~ Cltfflp-,12)llhjl~ ' p-1 + q - i  = 1, 

we have 

II e- 'U Pr lip < C [tl ("/p-"/2) II P,(L)q II. 

+ C i It - s] ("/~-"/2) II Ve-iL'p~(L)g lifts. (2.13) 
0 

Now applying the local decay estimate (2.9) we have 

II e - iUpAL)g  lip < C)tl ("/p-"/z) tl e~(L)g Ilq 

+ C' (V)  i it - sl ("lt'-"lz) II - "  <x> e-*L 'P<(L)o I I#s  
0 

C it i ("ip-"i2) II P<(L)g II. 
t 

+ C ' ( V )  ~ it - s I ("Iv- hi2) ( S >  - 1 - ,f [I < X >  1 + : P < ( L ) g  II 2 ds, 
0 

from which (2.10) follows. It is straightforward to show that if 9 is more regular, 
then It[ can be replace by <t> to obtain estimate (2.11). 

3. The Equations for the Localized and Dispersive Parts 

Equation (2.1) together with our special choice of nonlinearity f(.) can be written as 

aq~(t) 
i - T i -  = [ -  A + V(x) + ,G @(t) t " - ' ]  r 

�9 (0) = ~o~H 1, n > 2. (3.1) 

To distinguish between localized and dispersive parts of q), we use the following 
Ansatz: 

(~) Decomposition: 

�9 (t) ~ e-i~(~,~(o + ~(t)), 

r = e ' ~ o ( ~  o + @(o)), 

t 

o =- ~ ~(s)ds - ~(t), 
0 

E(O) = Eo, v(o) = Vo. (3.2) 
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Here, fie denotes the ground state of (2.3): 

H(E)~k E = ( - a + V + 2[~kEI m- ')@E = E~kE, 
~breH 2, ~b > 0 (3.3) 

for Ee(E, ,0)  if 2 > 0 and Ee( - ~ , E , )  if 2 < 0, where 

E ,  = infa( - A + V) < 0. 

(fl) Orthogonality condition: 

d 
(~kEo,r  and ~ - ( ~ e o , r  (3.4) 

The orthogonality condition ensures that r lies in Range P~(H(Eo)), where H(E) 
is defined in (3.3). Furthermore, the above use of a reference Hamihonian, H(Eo), 
is not really a restriction on the initial data r as we shall see in Sect. 5. 

Using the above Ansatz, we derive the following equation for r 

. ~  
t ~ -  = [ - -  A + V(x) - E(t) + ~(t)]r 

+ ,~1 r + r I m- x (r + r - '~r 

+ ~(t)~bE~,,- ic3e~ker (3.5) 

We now rewrite (3.5) making H(Eo), the reference Hamiltonian, explicit. 

i~wr r = ( n ( E o )  - Eo)r  + (Eo - E(t) + ~(t))~ + F(t). (3.6) 

Here, 
F = F t + F z ,  

F 1 - ~b r -- ilE~e~be, 
and 

F 2 = F2.1i n + F2,nt. 
F2ai, is a term which is linear in r 

2 f m + I  ,, t ) m - 1  
F2,,,o(r ~ - - T - ~ , e - - ~ % - '  r 1 6 2  *, (3.7) 

and Fz,,t is a term that is nonlinear in r such that: 

IF2.n/(r ~')1 < I,~1c[A(r162 + [Olin'l, (3.8) 

where [a(s)J is bounded for s bounded, I A(s)J-~ 0 as s ~ 0, and c is independent of 
r and r 

To impose (fl) we multiply (3.5) by Ceo and integrate over all space, equate the 
real and imaginary parts to zero (condition (fl)) to get a coupled system for E and y: 

/~(t) = - (c~E~k~, ~bEo ) - ~3 (F2, Oeo), (3.9a) 

~(t)= (t~e, Ceo)-  t ~ (F2, tp~o). (3.9b) 
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Equations (3.5) and (3.9) comprise a coupled system for the dispersive channel, 
described by 4~(t), and the bound state channel, described by E(t), y(t). The function 
q~(t) and the collective coordinates E(t), y(t) are used via (3.2) to construct the solution 
of the full system (3.1). In the next section we state our main results concerning 
this decomposition. 

In studying the localized and dispersive parts of q~(t), we shall work with the 
equivalent integral formulation of (3.6). To derive an integral equation for the 
dispersive part, q~(t), we introduce U(t,s), the propagator associated with the 
homogeneous linear problem: 

iOu(t) - ~ -  = (H(Eo) - Eo)u(t ) + (E o -- E(t) - ~(t))u(t), (3.10) 

that is 

Let 

Then, 

and therefore 

u(s) = L 

u(t) = U(t, s)f, U(s, s) = ld. 

u ( t ) = e x p ( - i i [ E o - E ( s ) ] d s - i ( 7 ( t ) - y ( s ) ) ) v ( t ) .  

v(t) = exp ( -- i(H(Eo) - Eo)(t -- s))f, 

U ( t , s ) = e x p ( - i !  ( E o - E ( s ) ) d s - - i ( y ( t ) - 7 ( s ) ) ) e x p ( - - i ( H ( E o ) - - E o ) ( t - s ) ) .  

(3.11) 

Equation (3.6) can now be rewritten as 

t 

4)(t) = U(t, 0)0o - i I U(t, s)F(s)ds. (3.12) 
0 

For purposes of estimation in L p or in a weighted L 2 space (see Sect. 5), we observe 
that 

l[ U(t, s)o [Ix = II exp( -- i(H(Eo) - Eo)(t -- s))9 Ilx, (3.13) 

where X denotes any of these spaces. 

4. Scattering and Asymptotic Stability Theorems 

We assume, as before, that n = 2 or n = 3. V(x) satisfies hypotheses (V) and we let 
f ( ]x l ,  q~) = V(Ixl) + 2l �9 ]"-  1. We define the B-norm of a function 0 by 

II o II. = II o IIw + II < x )  a +"g lie, 
where a can be chosen arbitrarily small. 
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Theorem 4.1 (Scattering). For n = 2 and n = 3 let 

2 2 
m > l + - + - -  

n n - 1  

and for n = 3 we require, in addition that m < 3. There exists a number 6o such that if 

(i) ~(0) -- ~o(IX]), 
(ii) [1 ~o II. _-< 60, 
(iii) There exists E o v ~ E . ,  and 19o such that 

(iv) 

then 

with 

(eie~ ~o -- ei~176162 = 0, 

V satisfies the (NR) condition of Sect. 2.3, 

~ ( t ) = e x p ( - i i E ( s ) d s + i y ( t ) ) ( ~ r ,  to+dP(t)) 

d~t)eLa(R1) ( so that  ,-.•174177 

dy(t) " x ' - l '  ( ) 
-~ EL tK ) so that ~• y(t)= 7 • exist , 

and r is purely dispersive in the sense that 

II ( x ) -  ~r 2 = r  - 1 - ~) 

for a > 2 and some 6 > 0 if n = 3 and 

[I (x)-~ = 0( (  tIn2 t )  -1) for 

Moreover, 

II r 2.~ = e ( ( t )  ~"/2~"-"/2)). 

(4.1) 

(4.2a) 

n = 2. (4.2b) 

(4.3) 

Remarks 
1. In Sect. 5.4 it is shown that hypotheses (ii)-(iii) holds at least for all ~o in an 
open cone-like region with vertex at the origin. 
2. Hypothesis (NR) is satisfied by oV(x) for all but a discrete set of 0-values [Ra]. 
This hypothesis is a way of ensuring that the optimal local decay rates of Sect 2.3 
apply to the dispersive part of the solution. 
3, The use of the L TM norm is dictated by the dependence of the linear local decay 
estimates on the weighted norm Jf (x )  1 +~ 112 (see Sect. 2). This is the source of the 
restriction to the spherically symmetric case. Namely, we use the uniform spatial 
decay rate of H 1 radial functions (see Appendix A) to estimate the weighted L 2 
norm of the nonlinear term. The restriction m < 3 for n = 3 is required in order to 
preclude local (in time) singularities in the estimate for [I r (See also the 
discussion following the proof of Lemma 5,6.) It is believed that a variant of these 
estimates for the linear propagator holds with L v norms instead of weighted norms. 
Such estimates would lead to extensions of our results to the non-spherically 
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n + 2  
symmetric case and the more natural upper bound on the nonlinearity m < - -  
for n >  3. n - 2 '  

The following is a related stability result which says that if the initial data for 
(2.1) lies near a particular nonlinear bound state of energy Eo, and phase Vo, then 
the solution O(t) converges, as t--, + ~ ,  to a nearby nonlinear bound state of 
energy E +- and phase V-+. 

Theorem 4.2 (Asymptotic Stability). Let m and n be as in Theorem 4.1. Let 
O, = (E,, E ,  + r/sgn (2)), where rl is positive and sufficiently small. Then for all EoeO ~ 
and Voe[0, 2~), there is a positive number e(rl, Eo) such that if 

0(0) = ($So + (k(O)) dr~ 

where 

II 4,(0)118 _-< ~, 
dE(t) d~(t) 

then tl)(t) decomposes into localized and dispersive parts as in (4.1), where dt ' d t  

are in L 1 (R 1) and dp(t) obeys the linear dispersive and local decay estimates (4.2), (4.3). 

5. The Coupled Channel Equations 

5.1. Local Existence 

It is straightforward to prove, by a contraction mapping argument, that (3.5)-(3.6), 
(3.9) together with initial conditions ~b(0)= ~boeH 1, V(0)= ~o, and E(0)= Eo has, 
for some T > 0 a unique local solution ~beC([0, T); I-I1), E(t), V(t)eC ~ [0, T), with 
E(t)e(E,,O) for 2 > 0 and E(t)e(Eo E,)  for 2 < 0. Thus, O(t) given by (3.2) solves 
(3.1) and agrees with the unique H t solution discussed in our summary of the 
existence theory in Sect. 2.1. In particular, the functionals ~,~[O] and X [ O ]  
(Sect. 2.1) are invariant on I-0, T). It follows by Sobelev-Nirenberg-Gagliardo type 
estimates that 

II O(t)I1., _-_ C( II Oo lira,) (5.1) 

for 0 < t < T, where the upper bound in (5.1) is independent of T. If2 < 0 (attractive 
4 

nonlinearity) and m > 1 + - ,  we require, in addition that II ~o lira, be small for (5.1) 
n 

to hold with C, independent of T. For otherwise, solutions can become unbounded 
in H 1 in finite time (blow up). See, for example I-GI, Well .  

It follows from our Ansatz (3.2) that 

II ~(t)Iln, < C'( l[ Oo IIH,, I1 ~ . ~  IIH,) (5.2) 

for te[0, T). 

5.2. A Priori Estimates 

In this section we obtain h priori estimates on $(t), E(t), and ~(t), which arise in 
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the decomposition of O(t), (3.2), and show that the decomposition persists for all 
time, t, with the desired properties. 

Since 49(0, the solution of (3.5) is an H 1 function, we interpret (3.5) in the sense 
of the equivalent integral equation: 

t 

49(t) = U(t, 0)49 0 - i ~ U(t, s)Pc(H(Eo))F(s)ds. 
0 

(5.3) 

Here, U(t, s) denotes the propagator displayed in (3.1 1) and F(s) = F(49(s), fiE(s)) 
is displayed in (3.6)-(3.8). 

The first step is to use the local decay and L p decay estimates of the linear 
theory (in Sect. 2.3) to derive decay estimates for 49(t). Let 

L = -- A + V(x) + 2]~keo ira- x _ Eo 

= H ( E o )  - E o. 

We will apply the propagator estimates of Sect. 2.3 to the associated unitary group 
e -iLt. These estimates require that the potential of the operator L, V(x) + 21 qJeo f"- 1, 
satisfy (NR). We claim this is not a restriction. This is seen as follows. 

Suppose V(x) + 21 qJeo[ m- 1 does not satisfy (NR). Then, we solve the initial value 
problem (3.1) for some small time interval [0, To], with the decomposition (3.2) 
augmented with the modified orthogonality condition 

d 
(~bEo,49o)=0 and ~(~bE,),49(t))=0 (3.4') 

in place of (3.4). Now consider the one-parameter family of potentials 

Q(x;E(t)) = V(x) + 21OE.)I m-x, teE0, To]. 

Proposition. For generic 490, we have that Q(x; E(t) ) satisfies (NR)for some t e [0, To]. 

Proof. The implicit function theorem for analytic mappings can be used to show 
that Oe is equal to ( E -  E . )  1/(m- 1) times an absolutely convergent power series in 
E -- E. ,  for E sufficiently near E. .  (See part (d) of Theorem 2.1.) Thus, the mapping 
E~-~O~'-1 has a holomorphic extension to a complex E -  neighborhood of E. .  By 
an argument of J. Rauch [Ra, pp. 164-165], V ( x ) +  2lqJ~ol"-a satisfies (NR) at all 
but a discrete set of E -  values. Thus, if E(t) is not identically Eo, there will be 
some toe[0, To] for which Q(x; E(to) ) is nonresonant. The case where E(t) - E o is 

d 
nongeneric, as this would require ~ E ( t  = 0)= 0, which by (3.9a) leads to a 
codimension condition. �9 

Having found a t o at which V+  21~ke(to)l - -x  satisfies (NR), we continue the 
solution for t > t o using the decomposition (3.2), (3.4). By uniqueness of solutions 
to the Cauchy problem, the solution obtained in this way corresponds to the 
solution O(t) of (2.1) with data at t = 0, O(0), as in (3.2). 

Due to the presence of weighted L 2 norms in our linear decay estimates, 
estimation of the integral term in (5.3) will lead to weighted L 2 estimates of the 
nonlinear term ~(1491"). It is therefore natural, to seek estimates for 49(t) in L 2m. 
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Proposition 5.1. 
t 

II ~(t)II ~m ----< II e- tL'~o II ~m + ~l t  -- S I ~ 1(C~ (~, 4)II ~ II ~ + C2(~, 4')II 4' II ~ '~  
0 

+ c3(~, 4)II r 11~2~, + c4(0, 4')II ( x ) -  ~(s)II 2 

+ Co~ I/~(s)l + Co2 I~(s)l)ds, (5.4) 

II (x)-r < II ( x )  -'e-tLtC~o 112 
t 

+ j" ( t  - s>-~-~(dx(~, ~)114' II 2. + d2(~, ~)II 4' II ~'r; 1 
0 

4- dz(ff, 4')II ~ IIP2~ + d,~(~, 4')II ( x )  -~(s)112 

+ do11/~(s)l + do21 :(s)[)ds. (5.5) 

2(1 + a) 
Here, fir = m(1 -/~),  where # = (m - 1)(n - 1)" (See Proposition 5.4 below.) 

Here, ci(~,, 4) and di(~b, ~), 1 < i < 4, are constants which depend on weighted 
norms of ~b~,~ and the H 1 norm of ~b(t) for t~E0, T). Such weighted norms are all 
controlled by the weighted estimates of Sect. 2.2. Also, ci(a, b) and di(a, b) tend to 
zero as a tends to zero while b lies in a bounded  set. The precise form of Cot and 
dot is worth giving in detail for the purpose of understanding the behavior  of the 
product  with E and ~ (see Proposi t ion 5.5 below) as E-4  E . .  We have 

Cox = (9(11 ~kE il2m), Co2 = (9( II t~bE II 2m), 

dol = 0(11 (x)-~ do2 = (9(11 (X)--~ 
n n 

Furthermore,  1 -  ep = - - - ,  and 6 > 0 is the number  appearing in the linear 
2 p 

estimate (2.9). Fo r  n = 2, ( r  +6 is replaced by ( r  2 r  

Proof of Proposition 5.1. We begin by estimating (5.3) in L p. Using (2.10)-(2.11), 
we have 

t 

II ~(t)lip < II e-iL'q~o lip + S It e-iL<t-s>ec(L)F(s)Ilpds 
0 

< C(V) ( t )~ -  1(114'o 114 + II 4'0 IIw + II ( x )  1 +ate0 I[) 
t 

+C(V)Sl t-s l~-l( l lPc(Z)F(s) l l~+ II(x>X+aec(L)F(s)ll2)ds. (5.6) 
0 

The projection operators,  Pc = Pc(L) can be removed at the expense of ~b 
dependent  constants: 

Lemma 5.2. 

I l e c o l l ~  (1 + II~llpll~ Ilqllr 

II <x> 1 +apcg [I 2 ~ (1 4- II <x> 1 +a~//II 2 II ~' II 21) I1 (X> 1 +ag ]l 2" 
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Therefore, we have 

If q~(t)dlp < Cl(V)(t)~'-l([I 4~o tlq + Itq~o Ilw + II ( x ) l  +'4~o II2) 
t 

+ C 2 ( V , ~ b ) S l t - s l ' p - l ( l l F ( s ) l l q +  I I (x ) l+aF(s) l l z )ds .  (5.7a) 
o 

Similarly, we can estimate the weighted norm of ~b(t): 

11 < x > - ' r  112 < C'~(V)<t>- 1 -~ 11 <x> 1 +~ 112 
t 

+ C2(V, ~) ~ ( t  - s )  -1 - ~ II ( x )  1 § II 2 ds. (5.7b) 
0 

To proceed, we require estimates on II F IIq and [I ( x )  1 +"F 112, where F = F1 + F2 
(see (3.6)-(3.8)). For the terms IIF2 IIq and II (x)l+aF2112, with A(O) as in (3.8) we 
have: 

Proposition 5.3. Le t  p = 2m, m > 2, and p -  1 + q -  1 = 1. Then,  

IIF2[l~ < I I ( x ) ' O * - l l l , , l l ( x ) - ' ~ l l 2  + IlaX/2(@)[I,2~l[~ll~.+ 11~1121[~11~'s (5.8) 
where r-Z 1 = q -  x _ 2 - 1  and r 21 = (2q)- 1 _ p-  2. 

Proposition 5.4. Le t  p = 2m, m > 2, and p -  1 + q - 1 = 1. Then,  

II ( x )  1 +aF2 [I 2 ~ II (X)  1 +a +,@m- 1 II oo I1 (X)  - ' 4  II 2 
+ 11 (X)  a + Oh(@)11,3 II 4' II 2 
+ c( [I ~b lIT. + II ~b II~' II ~b ll2~ 1 + a)/("- x) II ~b ll#2~,), (5.9) 

fl=m(1 2(1 +a)  2(1 +a)  where r~ I = 2 - 1  _ m -  1, ct = ~-, - It_______)) r = m and It = 
r r " n-- 1 ' (m-- 1)(n-  1)" 

The proofs of Propositions 5.3 and 5.4 are presented in Appendix A. Here, we 
only wish to remark that it is in handling the weighted norm of the nonlinear term 
d~([ ~b [m) that the restriction to radial solutions is used to derive (5.8) and (5.9). 

The inhomogeneous term in the ~b equation, Fx, can be easily bounded as 
follows: 

II F1 Ilq ~ II 4/I1~1:1 + II OE~/E Ilql~;I, (5.10) 

]l ( x ) a+avx  112_---II (x)X+a~O[lel~l + II(x)X+"OE~OElhlEI. (5.11) 

Propositions 5.3 and 5.4 together with estimates (5.10)-(5.11) imply Propo- 
sition 5.1. 

Our next step is to estimate ~ and/~, which appear in (5.10) and (5.11), in terms 
of norms of q~ and ~k. 

Proposition 5.$. Le t  [0, T) denote the time interval o f  local exis tence f o r  the system 
(3.5), (3.9). Then,  fo r  0 <- t <_ T, 

I/~(t)l < CE(OtCE,~JEo)I;~I[II <x>-'C~(t)llz + II ~b(t)l122, + II 4'(t)l[~',], (5.12) 

/~(t)l =< C~,(~be, ~ro)[2l[ II <x>-'~b(t) 112 + [1 q~(t)Ilgm + I1 ep(t)[l'~,.], (5.13) 

where C r and C r depend on II ~g(o IIH~ and II ~ o  IIn~ and tend to zero as these norms 
approach zero. 
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Proof of Proposition 5.5. F r o m  (3.9) we have that  

t/~(t)t < (@eo, 0e~kg)l-  11 (F2,  I~Eo ) l ,  (5.14) 

[~(t)[ _-< (~keo, ~bg) 1-11 (Fz ,  ~bEo )[  �9 (5.15) 

To  est imate the term [ (F2,  ~kg o) [, we use our  est imates on F2 in Sect. 3. First, by (3.6), 

m - - 1  m 
[ ( l~Eo ,  F2,1in > [ __-< 121~ I<~o,~E-l~>l 

1 2  ~ m- _-<12 II<x> 0~o@~ 1<x>-~'111 

< C(~b e, ~keo, m)II <x>- '~b  112- (5.16) 

By (3.8), 

I<~Eo, F2,.,)I ~ CI21(11 ~Eoa(~E)llm' 11 ~b 112m + II ~Eo 112 II ~b I1~',~), (5.17) 
where m ' -  1 = 1 - m -  1. 

Use of (5.16)-(5.17) in (5.14)-(5.15), and noting the behavior  of  ~bE for E near  
E . ,  given in Sect. 2.2 yields the result. 

Remarks 
1. O u r  goal is to obta in  a set of  inequalities for no rms  that  control  the dispersion 
of  q~(t). The  above  est imates suggest the use of  the no rms  

MI(T ) = sup ( t )  1 -~p II r (5.18) 
[tl<T 

M 2 ( T ) =  sup (t)l+all(x)-'c~(t)[[2, (5.19) 
Itl<=T 

where ( t )  1 +~ is replaced by ( t i n  2 t )  when n = 2. 
2. It  turns out  that  with the linear local decay est imates we use, it is natural  to 
choose p = 2m. Better local decay est imates would permit  using p = m + 1 for large 
nonlinearities. This would improve  the upper  bound  on range of nonlinearities for 
which the above  results are valid. 
3. To  show that  the limits lim E(t) and lim Y(0 exist, we prove  tha t /~  and  

t ~  :[: oo t - ,  + Qo 

are in Ll(R1;dt) .  Linear  theory suggests that  the correct  L p decay rate is 
( t )~p-  1 = ( t) t"/P- ~/2~. Therefore,  the est imates (5.12)-(5.13) suggest that  m be chosen 

n n /I n 
so that  2(1 - ep) > 1, and m(1 - ep) > 1, where 1 - el, = 2 p = 2 - ~mm" These reduce 

n 
to the constraint  m > . We shall see further constra ints  on m imposed  in the 
following section, n - 1 

5.3. Global Existence and Large Time Asymptotics 

In  this subsection we derive dosed  coupled inequalities for M I ( T  ) and M2(T)  (see 
(5.18)-(5.19)) which yield bounds  on M1 and Mz,  independent  of  T. This implies 
a rate of  dispersion of ~b(t) which in turn  implies that  E(t) and ?(t) have asympto t ic  
values as t ~ + oo. 
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We first apply the estimates (2.9)-(2.11) to the initial data terms in (5.4)-(5.5). 
We then multiply (5.4) by ( t )  1 - ~ ,  (5.5) by ( t )  1§ ( ( t l n2 t )  for n = 2) and take 
the supremum over all Itl < T to obtain: 

MI(T) < C(V)( II r IIq + II r I1., + II ( x )  1 +=r 112) 
+ C4(r + CI(~)M~(T) 
+ C2(~k)M~- I(T) + C3( II r 
+ Cs(~k,~r~) sup (t)1+~[l~(0I + [/~(t)[]. (5.20) 

Itl~_T 

In the above estimate q-1 = 1 - (2m)-1 .  Similarly, we have 

M2(T ) < C(V)II (x )  1 +"C?o 112 + D4(@)M2(T) 
+ Ol(d/)M2(T) + D3( II r 
+ Og(~k, Fe~b) sup ( t )  1 +~[l?(0l + l/~(t)l]. (5.21) 

Itl~_T 

In the constants C s and Dj are contained terms of the form 
t 

(t)" ! tt - sl-=(s)-ads. 

These terms are required to be bounded independently of t. The range of 
nonlinearities (powers of m) for which this occurs is determined with the aid of: 

Lemma 5.6. For ct < 1, 

i lt - sl-=(s) -ads < C(ot, fl)(t) - r a in ( a t , a t  + , 8 -  1). 
0 

Proof. 

S I t - s l -~ ( s ) -ads=  + = A + B .  
0 0 t/2 

Estimating A and B individually, we get 
t/2 

a<(2/t)~ ~ ( s)-ads, B<(2/t) a i I t - s l  -~ds, 
0 t/2 

from which (5.21) follows. 
The most problematic term, regarding decay is the term II r II a,2m in (5.9). This 

leads to the restriction 

m > l + 2 . t _  2 ( l + a )  
n n - l '  

where a is arbitrarily small and positive. Furthermore, the restriction ~ < 1 in 
Lemma 5.6 implies 

n n 
- - - - - < 1 .  
2 2m 

The latter leads to the constraint m < 3 in dimension n = 3, as in the statements 
of Theorems 4.1 and 4.2. 
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5.6. This gives 

sup IE(t)l < Cr(ffr, ~beo)121[M2(T ) + M2(T) + M~'(T)], 
Itl_-<T 

sup I ~(t) l < Cr(~be, ~kto)121 [-M 2 (T) + M2(T) + M'~(T) ]. 
Itl<_T 

We then use (5.22) in (5.20)-(5.21). The results are summarized in 

Proposition 5.7. Let (~b(t), E(t), ~(t)) be the unique solution of (3.5), (3.9) of class 

C([O,T);H t) x C l [ O , T )  • Ct[O,T). 

Then, 
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To close the inequalities (5.20)-(5.21) we use (5.12)-(5.13) together with Lemma 

(5.22a) 

(5.22b) 

and the data term 

where 
M~(T)f(MI(T)) < Do, 

f(~) = 1 r',, r,,,,,m- 
- -  ~ I ~ Z  - -  , ~ . ~ 2 ~  

Do = C~l-[I ~bo IIq + II ~bo I1., + II <x> ~ +"~bo [12J- 

Let % f ( % )  = max ~tf(~). Let I E o - E.I = 2t/, where ~/will be chosen sufficiently 
a t > O  

small. We first require that r /be such that ~Jt and de,be dependent constants in 
(5.22) are less than t/~/2. This is possible by the local analysis of ~b e presented in 
Sect. 2.2. 

MI(T) <= C(V)(II ~bo I1~ + II ~bo Ilw + I[ ( x )  x +a~o 112) + C~(~, c~e~)M2(T ) 

+ C~(~b, atr + C~(II 4,(0 IIw)M~(T), (5.23) 

M2(T) < C(V)II (x> 1 +a4,o 112 + D~(~, dt~k)Mz(T) 
+ D~(ff, t3t~J) [M~ (T) + D~( II ~(t)II.,)M~'(T)]. (5.24) 

Here, C'i and D~ are controlled by the maximum over I tl -_< T of the H 2 norm 
of ~J and dt~k. 

To obtain closed inequalities for M~(T) and M2(T), we observe that as E 
approaches E. ,  the coefficients C'~(r and D'~(~,~t~) tend to zero and are 
uniformly bounded on any compact subinterval of (E., 0) for 2 > 0 and ( -  oo, E.)  
for 2 < 0. These properties of C'i(r deC') and D~(r ~t~) follow from the bifurcation 
analysis of the continuum of solutions (E, ~Jt) in a neighborhood of E .  (Sect. 2.2). 

To prove global existence for the system (3.5), (3.9) with the desired asymptotic 
behavior, we first choose initial conditions Eo, 7o and ~b o so that on the interval 
of local existence, C~ and D'~ are less than �89 in magnitude. Then, by (5.24) we have 

M2(T) < 2C(V)II <x>X +a~o II 2 
+ D~(~k, c~e~k)l-M~(T ) + D~( II 4,(t)II.,)M~'(T)]. (5.25) 

Substitution of (5.25) into (5.23) yields, after some manipulation, 

M,(T) < Cg(ll 4,o I1~ + II 4~o II., + II (x)1+"4~o 112) + C'~M2(T) + C~M~(T)), (5.26) 
v/ v/ t ! ! tv t v v p ! where Co = C(V)(1 + 2C'0, C~ = C2 + C~D2 and C2 = C2C3 + CID2D3. 

We now rewrite (5.26) as 
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Now choose 4'0, so that 

Do < r/f (r/) < =,f(~,) /2,  

137 

and so that 

MI(0) = II r 112~ < '1. 

Then by the continuity of M 1, we have M , ( T ) <  rl, and therefore by (5.22) via 
(5.25) that 

I/~(t)l < CErl 3/2 <t>- 1-6, (5.27a) 

I~(t)l _--< C~rl 3/2 <t>-x-~. (5.27b) 

For n = 2, <t>- ~ -a is replaced by <tin 2 t>- ~ 
Integration of (5.27) yields 

T 
S [E(t)ldt < C'rl  3/2, (5.28a) 

- T  
T 

[~(t)ldt < C"rl 3/2, (5.28b) 
- T  

where C" is independent of T and r/. 
Thus if 

Tm- sup {t:lE(t) - Eol < r/}, 

it follows that for r/sufficiently small T,  = ~ .  For the right-hand side of (5.28) is 
independent of T, and this ensures that 

[E(t)-- Eo[ < r/, I tl < T 

provided ~/is sufficiently small. It follows that all constants C(~b, dry) and D(~b, ~r~k) 
maintain their assumed bounds and we can take T ~  oo to obtain 

MI(<X3 ) _< r] (5.29a) 
and 

M2(oo) _--- C~/ (5.29b) 

for some C > 0. 

5.4. Decomposition of  the Initial Data cI) o 

Here we return to the Ansatz (3.2)-(3.4). L e t / ~ ( E , ,  0) for 2 > 0 a n d / ~ ( -  ~ ,  E,)  
for 2 < 0. Consider the initial data which is nearby a nonlinear bound state: 

~o = e'~k~ + 64'. (5.30) 

In general <6~, ~bg> # 0, so we write 

~ 0  = eir~ -t- [eiYl~s --  eir~ o W 6~-] 

--= eir~ + (~o 

with a view towards finding Eo and 7o such that 

<eir~ , ~ 0 >  = O. 
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We shall then take ~b o to be the initial data for the dispersive channel evolution. 
Let 

F[Eo,  70, 6 0 ]  = (ei~ '~ , ~b 0 ) 
= (eir~ eir~kg -- eir~ d- 6(rp). (5.31) 

Then, F[/~, ~, 0] = 0. We want to solve F = 0 in a neighborhood of (/~, ~7, 0). Since 
F is complex-valued, the equation F = 0 can be viewed as two real equations: 

F x [ E o , 7 o , 6 0 ] = O ,  F2[Eo, 7o, t~O] = 0. 

The Jacobian of this mapping at (E o, )'o, 0) is given by 

dE I[~kE[2 E 4o (5.32) 

By the results of Sect. 2.2 and Appendix B, we have that i f / ~ ( E . ,  0), for (2 > 0), 
a n d / ~ ( E .  - e, E,), for (2 < 0), the curve E~ ,  H 4/4 Hz z has no critical points. It follows 
from the implicit function theorem that in some L 2 neighborhood of ~g, the 
decomposition 

~0 = ei~'~ "k dp 0 

with condition (5.30) holds. Furthermore, since on any compact subinterval of 
d 

(E,, 0), for 2 > 0, and (E, -~, E,), for 2 < 0 , ~  II ~bE 112 stays uniformly away from 

zero, the B-neighborhood of r can be chosen uniformly in/~, where/~ varies over 
such a compact subinterval. This resolves the question of initial decomposition for 
Stability Asymptotic Theorem 4.2. 

The proof of Theorem 4.1 follows the above lines. The constraint 

(ei~176 ~o - e i~176 = 0 (5.33) 

(see the statement of Theorem 4.1) prescribes a choice of E o and 7o, and therefore 
an initial decomposition, (3.2). By Theorem 4.2, for each E in a sufficiently small 
interval with E ,  as endpoint, there is an open ball about fie such that for all data 
in this ball, the solution decomposes as in (4.1). The radius of this open ball may 
shrink to zero, in general as E tends to E, .  Thus, the set of data �9 o, on which the 
constraint (5.33) can be realized contains the union of these open balls over E near 
E, ,  or a cone-like region. 

Furthermore, if E and ~ are such that the constraint (5.33) holds, then 
II Oo II = > II Ce  II 2. 

Finally, if 11" IIx denotes any norm used to measure ~ke (see Sect. 2.2), then we have 

II r  It x < c II ~,E II 2 _-< c II q~o fl 2, 

II 4~[Ix < II Oollx + IIr e l l  Ool lx  �9 

Therefore, the smallness required of certain constants in the h priori estimates 
of Sect. 5.3, is ensured by a smallness condition on the initial data �9 o. 
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6. Scattering Theory 

The S matrix is constructed from the wave operator, .2+ and 12_ by the formula 

s = .~*  o _ .  

In our case, for each value of phase 7 and energy E near E ,  we construct wave 
operators 

12~'r(q~) = s - lim Vt,~(O,t)*e-'n(E• 
t ~  :i: ao 

where Ve,~(t, s) is the nonlinear evolution (the dispersive q~ evolution) from time s 
to time t which is coupled to the bound state channel (see (6.3) below). 

To conclude that the S matrix is unitary, we need to show that there is a 6, 
such that for all initial conditions, (E • 7 • q~ • ) satisfying 

IE • - E . I  <6 ,  

I~,• 

limb+ IIH, < 6, 
Pc(n(E• • = 4• (6.1) 

there exists states ~• ~B with its asymptotic behavior given by 

( '  ) �9 • ~ e-iX(E•177 + exp -- i !  E(s)ds-  iV(t) O(E• (6.2a) 

with 

E(t)--.E • and 7( t )~7 • as t--* + oo. (6.2b) 

The existence of such 4) follows from the global existence of solutions of the 
following system of nonlinear integral equations: 

E ( t ) = E - +  i Oe(s) ds, 
- -  O D  

7( t )=7-+  i O,(s)ds, 
- -  OD 

t 

q~_(t) = e-in(e-)tdp_ + ~ e-'n(e-)(t-~)P(~_(s))as. (6.3) 
- o o  

Here, ge, gr, and ff are expressions like the source terms in (3.9a), (3.9b) and 
(3.5), respectively. 

Remark. They are not exactly the source terms appearing in Sect. 3 for the following 
reason. Since E(t) - E • ~L ~(R~;dt) for the construction of ~b 2, it is convenient to 
work with the equations resulting, not from the Ansatz (3.2) but from the following 
Ansatz: 

r = e-ia~e + e-'E~ c~(t). 

The proof of existence of global solutions runs along analogous lines to the 
one-channel case (cf. [R-S]).  We view the system (6.3) as a mapping of a space M 
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of vector valued functions to itself and seek a fixed point. We consider only the 
case t ~ - ~ .  The case t ~ oo is similar. 

Let 

1VI, = { v -  (E('). ?('). ~b_):v~Gl(R) x CI(R) • C~ HX). Ill viii < ~}, 

where 

IIIvlll = sup ( ( t51 +~[I/~(t)l + I~(t)l + II <x>- '4~-( t ) l [23 + II~P-HH1) �9 (6.4) 
R 1 

We then define 

M.={felf'l.:c~_(',lxl)=Pc(U(E-))c~_, ,-.-oolim E(t)=E-, ,--| ?(t) = ? -  }. 

For  each (E('), ?(.), ~b_)zM, we set 

~(t) = exp ( i?(t) - i i E(u)du )~k(E(t) ) + 4)-(t) 

and a mapping K on M,:  

/r ~(.), 4,_) = (e,  ~, 4,). 

One can check that  the estimates used to prove Theorem 4.1 apply in this context 
to establish that  K maps M ,  to itself and for r/sufficiently small, it has a fixed 
point, the solution of (6.3). We then take this solution at t = 0 as 4'_. ~+ is 
constructed similarly. 

Appendix A: Some Estimates of  Nonlinear Terms 

In this section we prove Propositions 5.3 and 5.4. To prove these estimates we 
recall that  F 2 is given by (3.6)-(3.8). We have that 

IF2l < cl21(••-11 ~bl + A(~b)l~bl 2 + 14~lm). (A.1) 

Proof of Proposition 5.3. We start by noting that 

[I F2 II q <= c lAI I-II ~ / m - 1  ~ IIq + [I A(~k)q ~2 [Iq + II tk I1,'~]. (A.2) 

We now estimate the three terms on the right-hand side of (A.2) individually. First, 

l[ ~ kin- 1~ b Ilq = II (x>~ kin- l (x>-%b 114 
< II <x)'d/m - x l[ rx II <x)  -'q~ II 2, (h.3) 

where q -  1 = 2 - 1 + ri- 1. 
For  the next term in (A.2)we have 

[Ia(I//)~b21l~ = [Ihl/Z(~k)(all2q < II 1/2 2 2 A (~)[I,~ H ~b lip, (A.4) 

if (2q)- 1 = p -  1 + r21. 
Finally, for the last term in (A.2) we have 

II q~ [Immq < 11 q~ 112 II ~b I[~'m a. (m.5) 
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Recall q - l =  1 -  ( 2 m ) - 1 =  1 -  p-1 .  We have also used the simple interpolation 
result: 

Lemma A.1. I f  0 < 0 < 1, and r = Oa + (1 - O)b, then 

Ilfll, < Il f ll~176 ll f llL 1-~ 

Proposi t ion 5.3 follows from (A.3)-(A.5). 

Proof  o f  Proposition 5.4. The quanti ty to be estimated is 

II ( x )  1 +"F2 112 < Cl~l [ II ( x )  1 §  4,112 

+ II(x)X+~a(q/)4,2112 + [I (x>l+a4, ' l12].  (A.6) 

As in the previous proof, we estimate these three terms individually. First, 

II ( x )  1 + a ~ , -  1 4, II 2 = 11 ( x )  1 +a + 0 r  (x> - '4 ,  II m 

--< II (x> 1 +~+o~/m- 111~o II ( x > - ' 4 ,  lira. (A.7) 

For  the second term in (A.6) we have 

II ( x )  1 +"a(@)4, 2 112 --< II ( x )  1 +"a(o)11,3 I[ 4, l122m, (A.8) 

where 2-1  = r3 1 + m-  1. 
The estimate of the last term in (A.6), II (x> x +o4,m 112, is more involved due to 

the absence of a spatially localizing factor. It is here that the assumption that the 
potential V = V(Ixl), and the initial condit ions be spherically symmetric (thus, 
giving rise to spherically symmetric solutions) is used. Namely,  we have the 
following [Str2]. 

Lemma A.2. Let  f r H t ( R  ") and f = f( lxl) .  Then, 

If(Ixl)l  _-< Cnlxl"-n)/2 It f Ila,. (g.9) 

N o w  for the last term in (A.6) we have 

[I ( x )  1 +a4,m Ih _-< C(ll 4, I1~',~ + II Ixl 1 § 112), (m.10) 

so it remains to estimate II IXtX+~4,mll2 �9 Writing 

Ix12<1+~)14,12m =(Ixl~"-IJ/214,1)4" +a)/~"-1)14,12m-*" +~ 

and using Lemma A.2, we have 

Ixl 2r +a)l 4,12m < II 4, I1~ 1 +~ X)l 4,12m- 4(1 +a)/(n-1) (A.11) 

It follows that 

IIIxl ~ +~ tl 2 = < II 4, tl 2~ +~/~o- 1)11 ~-'~ ,,~ m 2~r, - 2 ,  _ 2 ,  + ~)/~" +a~/~ - " - ~," (A. 12) 

Finally, we interpolate the last factor on the right-hand side of (A.12) between L 2 
and L2": 

114,112, < II 4, tl~ II 4,11#2,, 

2(1 + a) 2(1 + a) 
r = m  n - 1  ' ~=/~/r  /~=m(1-1~) / r ,  and # = ( m _ l ) ( n _ l ) .  
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Appendix B: Weighted Estimates of Nonlinear Bound States 

In this section we prove the weighted estimates stated in Sect. 2.2. We shall derive 
equations for weighted nonlinear bound states and their derivatives with respect 
to the energy parameter, E: 

wj = (x)J~b~, v i =  (x)JOE~,e. (B.1) 

To obtain such equations, we must commute powers of ( x )  through the 
Laplacian. For this we use the following simple observation: 

x n + ( n -  1)[xl 2 
[ ( x ) , z l ] f  = - 2 - ~ x ~ ' V f  -~ ( x ) 3  f ,  (B.2) 

where [A, B] = A B  - BA  denotes the commuta tor  of the operators A and B. We 
shall restrict ourselves to spatial dimensions n = 2, 3, the weights j = 0, 1, 2, and 
the spaces H s with s = 0, 1, 2. This is what is required in the present paper. Our  
proofs carry over in a straightforward manner  to the general case of n > 3, j > 2, 
and H s with s > 2, though with a bit of calculation and induction. 

We begin with the equation of a nonlinear bound state u, and H 2 solution of 

- Au + Vu -- Eu + 2]ulm- lu = 0, (B.3) 

which bifurcates from an eigenvalue, E . ,  in H 2, i.e. IluEIIH2--'0 as E ~ E . .  
Multiplication of (B.3) by ( x )  and application of (B.2) yields 

- - A w  1 + Vwl - E w  1 + 2]ulm-Xwl 

= I - ( x ) , z U u  

x n + ( n - -  1)Ix[ 2 
= - 2 ~ - ' V u  4 (x )3  u. 

Similarly, we can obtain an inhomogeneous equation for any wj. For  w2 we obtain 

-- AW 2 4- V W  2 - -  EW 2 + Alul m- lW 2 

n + ( n -  1)Ix[ 2 
= [ ( x ) ,  A]wl  - 2x 'Vu  + (x )2  u 

X n + ( n - -  1)Ix[ 2 
= - -  2 ~ - ' V w  I -I- ( x ) 3  w 1 

n + ( n -  1)Ix[ 2 
- 2x 'Vu  -t (x )2  u. (B.4) 

(a) H 1 estimate of Wl: 
The next step is to derive energy estimates which, for E near E . ,  will give 

control of the H I norm of wj. Multiplication of (B.3) by w~ and integration over 
all space gives: 

S(IVwI 12 + VlWl 12 + 21ul m- ~lwl 12 - Elw112)dx 

= n f l u l 2 d x  + f n + ( n -  1)Ix[ 2 ~ ) ~  [u[2 dx. (n.5) 
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F rom  (B.5) we obtain 

~(IVwl 12 - Elwx 12)dx 

= nS lul2dx + s ( n  + (n-(x) 21)txl 2 lul2 - ( x )2V lu l2_  21ul,,,_llwll2)d x 

__< C( II u 1122 + I,~1 II u II ~'t~, ~_ x)II wx I1~1 + II ( x )  2 VII ~o II u 11,2. (8.6) 

F rom (B.6) it follows that by choosing E sufficiently near  E . ,  that  

Ilwx IIw --< C II uell2. (8.7) 

(b) H 2 estimate of wl: 
To estimate wl in H 2 we differentiate (B.3) with respect to Xk, k = 1, 2 . . . . .  n, to 

obtain an equat ion for dkW~: 

-- AdkW 1 .-1- Vt~kW 1 -- Et~kW 1 + 21ul"-ld~,wx 

= --OkVW1--2OkU'~-lWl--Ok 2~--~ 'Vu n + ( n - -  1)lxl e 
<x>3 u . (B.8) 

The H 2 estimate for w 1 is now derived from an energy estimate of the kind 
used above, now for tgkW 1, the solution of  (B.8). Thus multiplication of (B.8) by 
akW 1 and integration over all space yields: 

~(1 V~kW112 + VlgkWl 12 + ~']Ul m- 11CTkWl 12 -- El <~kwx[2)dx 

= -- ~ (~kWldkVWl  -- 2dkW1Wldk ura- 1 

--OkWlOk 2 ~ - ' V u  (x)a u dx. (8.9) 

Estimates of the type used to establish (B.7) can now be applied to conclude, 
for E sufficiently near E , ,  that  

II wl rl.~ _-< c(g)II uE 11.2. (8.10) 

A similar analysis can be applied to w2 and tTkW 2 to conclude, using the H 2 
estimates on Wl, that for I E -  E.I  sufficiently small, 

IIw2 11.5 < C II u~llx~. (B.11) 

We shall next outline the derivation of  estimates for (X)J~kdEUE ( j  = 0, 1, 2 and 
k = 0, 1,2) in H 2. First, we recall from Theorem 2.1, that  there is a bifurcation 
curve (u(e), E(e)), where 

u(e) = e 1/~,- 11t7(~) (B. 1 2) 

where 

t2 f,l," + 1~1/t,~- 11 (B.13) E(e) = E .  + ale  + (9(e2), al  = ,  j~- .  , 

and t7 satisfies the following equation: 

( - A + V + 2et7 '~- ~ - E)~7 = 0. (B.14) 
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Now, since ~ ~ axt3 E, differentiation of (B.12) with respect to ~ yields 

dzur  ,,~ a ;  1/~l/(m- 1)~e~ ..[_ (m --  1 ) -  1 a t  1 el/(,n- 1)- 1 ~. 

From the estimates for ( x ) J U E  it follows that II ( x )  j~ I[a~ is uniformly bounded 
for I E -  E,I sufficiently small. We therefore focus on II ( x ) J d ~  IIH~" Differentiation 
of (B.14) with respect to e yields 

( -- A + V + 2emt~ m- 1 _ E)t~,t~ = - ),t7 m + d, Eti. (8.15) 

As with wj, we can now study the equation for oj = (x)it3rt~ by commuting 
powers of (x )  through the Laplacian in (B. 15) and using the commutator relation 
(B.2). We then derive energy estimates implying uniform control of the H 1 
norm of vj and dkVs, using that I E - E , I  is sufficiently small and the Sobelev 
inequality: 

2n 
IIf[Ip <llfl[H,, 2 ~ p < - -  

n - - 2 "  

In this way the proof of the weighted estimates of nonlinear bound states in 
Sect. 2.2 is completed. 

Finally, in the repulsive case (2 > 0) we observe that certain arguments can be 
made more globally in E so we give the details. 

Proposition 13.1, Let 2 > O. Then for all k, l > O, 

lim sup ( x ) k ~ ( X )  = 0. (B.16) 
E~E, x 

Proof. Suppose not. That is, there are sequences Ej~E,  and x j ~  oo, such that 

( x j ) k q % ( x j )  t >= x > 0 

for all j > 1. (If xj forms a bounded sequence we have an immediate contradiction.) 
Since t~r@ > 0, we have that 

(Xs)~CJE,(X~) t >= X > O. 

This contradicts the exponential decay of ~'e(x). 

Proposition B.2. Let n < 3 and 2 > O. Then, for any k > 0 and p > 1 

lim 1[ <x>k~bE(") lie = 0. (8.17) 
E,~E, 

Proof. 

I[ ( x )  k~E(') 11 ~ = ~ <x)kpl~n(')lPdx 

< sup ((x)kP +" I r (x )  -"1 r f -~dx  
x 

< C, sup ( (x )  kv + "[ ~br(')I ~) II @~(') )1 ~ ; '  ~ 0 

as E ~ E,.  Here, we take t />  n. 
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Note added in proof. The authors have proved Scattering Theorem 4.1 and Asymptotic Stability 
Theorem 4.2 for a large class of potentials V(x) and data ~o(x),  which are not necessarily isotropic. 
The results hold for spatial dimensions n >_-3 and in the case of power nonlinearity, I~ l  m-  l a), 

n + 2 A paper with the details is in preparation. A key ingredient is an L p -  L �9 for m,(n)  < m < n - 2" 

estimate for e x p ( - i H t )  obtained in the recent paper of Journr, J-L., Softer, A. and Sogge, C.: 
"Decay estimates for Schrrdinger operators", to appear in Commun. Pure Appl. Math. 


