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Abstract. We work in the space ~ = ~-~ of divergence-free measurable vector 
fields o n  R 3 complete in the norm II N', where 

( l[vll ' )2= Sup I vN(y)d3y 
B(x,  R) 

R<=I 

for some fixed e > 0. B(x, R) is the ball of radius R centered at x. Given an initial 
velocity distribution 3(0) in ~-, we find ~J(x, t) for 0 _< t _< T = T( ll v(0) it'), T > 0, 
such that g(x, t) is the unique strong solution of the Navier-Stokes equations, in 
a suitable sense. 

We expand g'(x, t) = g(x, t) - ~(x, 0) in terms of divergence-free vector wavelets 

e ' ( x ,  t) = Y~ c ~ ( t ) ~ ( x )  . 
r 

The Navier-Stokes equations become an infinite set o_f integral equations for the 
c~(t). In an appropriate space one realizes the c~(t) satisfying the equations as the 
fixed point of a contraction mapping. The thus unique solution is the strong 
solution mentioned above. 

Loosely Speaking. Given g(0) of finite II II' norm, there is one and only one g(t) of 
bounded [III' norm on [0, T]  with T -- T( [t v(0)I[') > 0, that satisfies both 

a) the Navier-Stokes equations 

and 

1 
b) lim ~ I [ g ( x , t ) - ~ ( x ,  0 ) ] = 0 ,  allt .  

R ~ o o  B(O,R) 
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Section O. Introduction 

We study the Navier-Stokes equations for an incompressible fluid filling all of R 3 

O e _  A6 = - ( 3 . V ) 3 -  Vp,  (0.1) 
Ot 

V" 3 = 0 .  (0.2) 

In fact we will never see the pressure term in (0.1), since the equations we will deal 
with ((1.i9)) will involve the expression (0.1) integrated against a divergence-free 
test function. We study the Cauchy problem for initial data 3o = 6(0) divergence- 
free and satisfying 

( l lvol l ' )  2 = Sup I 6~d3y < oo . (0.3) 
B(x, R ) 

R < I  

One should note that the data may have infinite energy, i.e. 

6~d3x = ~ (0.4) 

and still satisfy (0.3); Eq. (0.3) implies only that the energy density be bounded. (Our 
norm is somewhat similar to the Morrey norm used by Giga and Miyakawa in 
[7].) 

We will define a class of solutions of the Navier-Stokes equations (CO-solutions in 
Subsect. 1.5) within which there exists for some T = T( [I Vo II ') > 0 a solution 3(x, t) 
on the interval [0, T] satisfying 3(0) = 3o. Moreover the solution is unique (in the 
class of Cg-solutions). We follow the tradition of calling these strong solutions since 
they are unique. 

The theory of finite energy solutions of the Navier-Stokes equations is quite 
rich and reaches in many directions (see for example the book of Constantin and 
Foias [4]). Perhaps the main unsettled question is whether smooth solutions can 
"blow up." Bounds on the Hausdorff measure of the points in space-time where 
solutions blow up have been obtained in the beautiful work of Scheffer [8] and 
Caffarelli, Kohn, and Nirenberg [3]. Our present work does not (yet) impinge on 
the question of blow up. Strong solutions of the Navier-Stokes equations have 
been obtained for initial data in L 3 or H1/2 (see the paper of Foias and Temam [6]). 
Our norm, II II', and the norms in L 3 and Ht/2 a r e  not comparable, but the H I[' 
norm is - in our view - "usually weaker" even locally. It is close in spirit to the type 
of bound associated to studying blow up of the Navier-Stokes equations (see for 
example Theorem D of [3]). Much the same can be said for the results of [7]. In 
any case our existence theorem, Theorem 2, does add to one's knowledge also in 
the finite energy (or presumably finite volume) situation. (It would require over- 
coming some technical difficulties to adapt our technique for boundary value 
problems.) 

Divergence-free vector wavelets (defined in Subsect. 1.2 and developed in [1 and 
2]) were an evolutionary product from the incorporation of the renormalization 
group into constructive quantum field theory. (Some of the important contributors 
were K. Wilson, J. Glimm, A. Jaffe, G. Gallavotti, K. Gawedzki, A. Kupiainen, T. 
Balaban, Y. Meyer, G. Battle, and the author.) It is most natural to study the 
Navier-Stokes equations using these wavelets, and to see if any information is 
gained beyond that of the more traditional approaches. (The theory of turbulence, 
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and numerical studies of turbulence and the Navier-Stokes equations, should also 
benefit from the utilization of wavelets.) 

Basically, then, one expands the velocity field v'(x, t) = v(x, t) - v(x, 0) in terms 
of the wavelet basis {u,}, 

v ( x ,  t)  - v ( x ,  o)  = v ' ( x ,  t)  = y~ c , ( O u , ( x )  . 
Ct 

(0.5) 

(We require the right side to converge to the left side, in L~oc.) The Navier-Stokes 
equations become a coupled set of integral equations for the c,(t)  (Eq. (1.19)) - as 
usual it is more convenient to work with integral equations that the o.d.e, one 
directly obtains. Using a suitable norm, and a small enough time interval, the 
solution of the integral equations is realized as the fixed point of a contraction 
mapping. This is the source of uniqueness, and again is in tune with calling our 
solutions strong solutions. 

It is interesting to note that the solution of the Navier-Stokes equation inside 
the space f f  is not unique. If v(x, t) is such a solution of the Navier-Stokes 
equations, and c(t) any differentiable three dimensional vector function, then ~3(x, t) 
is also a solution of the Navier-Stokes equations inside the space i f ,  where 

t3(x, t) = v(x  + c(t), t) -- k(t). (0.6) 

One may view this non-uniqueness as arising from a time dependent uniform 
gravitational force applied to the system; such a force may be absorbed into the V p  
term in (0.1). 

Theorem C of Subsect. 1.5 provides one route to achieve uniqueness. Our 
Cg-solutions bound the long wavelength components of v(x, t) - v(x, 0) (through 
(1.14) and (0.5)) to achieve uniqueness. This is most natural to do in the context of 
a wavelet expansion for v' (Eqs. (0.5)) rather than for v. In fact the formal wavelet 
expansion for v (unlike that for v') may not converge to v! See the discussion in 
Subsect. 1.6. The points touched upon in this paragraph all relate to the infinite 
volume we are working in. As a physicist would say, the problem we are studying is 
interesting at the infra-red end as well as the ultraviolet. 

Section 1 contains all the basic definitions, and the statement of results. Section 
2 presents several properties of wavelets beyond those listed in Sect. 1. Section 
3 and Subsect. 4.3 contain the proofs of Theorem 1 and Theorem 3, respectively. 
Each of these theorems concerns questions of convergence of wavelet expansions 
and comparison of different norms used. Sections 4, 5 and 6 comprise the proof of 
Theorem 2, our existence and uniqueness theorem (via a contraction mapping, 
Theorem 4 of Subsect. 4.1). 

As a browsing route through the paper, to be traversed prior to studying 
details, we recommend reading: Sect. 1, Subsect. 4.1, the Exegesis and Her- 
meneutics portion at the end of Sect. 5, Subsects. 6.5 and 6.7. 

Many questions (that seem accessible) for further study are raised in the paper: 
the treatment of problems with boundaries, study of weak solutions (see Subsect. 
1.5), question of norm continuity of solution (see Subsect. 6.3). To these we add 
consideration of alternate norms - perhaps say 

1 v 2 ( x ) d 3 x  " (0.7) ( l lvl / ' )2=Sup I I x - y ~  
y B(y, i) 
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Section 1. Definitions, Formalism, Statement of Results 

In this section we define the spaces of  functions we work  with, and give definitions 
of several different types of solutions to the Nav ie r -S tokes  equations.  Theo rem 1 is 
a s ta tement  abou t  the relat ionship between norms  we work  with, and abou t  
convergence of the wavelet  expansions.  Theorem 2 is our  basic uniqueness and 
existence result. The paper  is devoted to a p roof  of these two theorems. We also 
state a number  of conjectures abou t  the relat ionship between different types of 
solutions of the Nav ie r -S tokes  equations.  These conjectures and some of the 
formal ism given in this section are mean t  as suggestions for future development .  

1.1. Test Functions. Y is our  space of test functions, vector  fields on R 3 satisfying: 

a) They are divergence-free. 
b) They are (gN (for some fixed large N later specified). 
c) Each function, and all its derivatives, has exponent ia l  fall-off at infinity. 

The test functions are defined so as to include our  wavelets as examples.  

1.2. Wavelets. We work  with a set of divergence-free vector  wavelets as given in 
[1, 2]. We here summarize  some of the propert ies  we need of this set, further 
propert ies  will be given in Sect. 2. (Nota t ion  m a y  differ slightly from in [1 and 2].) 

Let  ~K be the set of  wavelets. There  are vector  functions Or, t e I, on R 3. Here  
I is a finite set. 

= {2(3/2)q/t,(2"x -- n) = ur.~,,(x)} tel ' (1.1) 
neZ 3 
fEZ 

= 2 - %  and thus is a point  on a lattice of edge size 2 -r. Thus the functions 
{ur,~,t(x)} as r = 0, + 1, _ 2 , . . . ,  y = 2-~n with n varying over  a unit 3-d lattice, 
and t varying over  I form our  wavelet  basis, u,,r,,(x) is "centered" abou t  7, and 
"lives on a length scale" ~ = 2 -~. We index the wavelets also by ct: 

~ ~--* (r, ~, t) = (r(c0, 7(~), t(~)) . (1.2) 

The set of u~ compris ing ~ satisfy the following properties: 

a) The  set of  u, forms an o r thono rma l  basis for the divergence-free vector  fields on 
R 3, where the inner p roduc t  is given as 

( 1 ) 1 '  1 )2)  = I d3x vl "/J2 �9 (1.3) 

b) Each u~ is (gN. (The N is as in Subsect. 1.1.) 
c) ~ x~ = 0 for all multi-indices p, Ipl _-< g .  (1.4) 
d) us and each of its derivatives has exponential  fall-off at infinity. 

1.3. Some Vector Fields and their Wavelet Expansions. 

Definition. q/ is the space of uniformly locally square intwrable divergence-free 
vector  fields on R 3. A locally square integrable vector  function of divergence zero is 
in q / i f  its II II" norm is finite, where 

( ] I1)] I")2=Sup ~ 1) 2 . (1.5) 
x B(x, 1) 
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Definition. o~ = o~ (for some fixed e > 0) is the set of functions in q / fo r  which the 
II II' norm is finite, where 

(11 v 11')2 _- Sup  I vs"  (1.6) 
B(x, R) 

R N I  

Definition. For  a function v in ~ we define its eth expansion coefficient, c~, to be 

c~(v) = c, = (u~, v )  . (1.7) 

It  is easy to see this is a well defined number .  (The "inner p roduc t"  is just  the 
integral  of (1.3).) 

Definitions. Let  c be a set of {c~} (not necessarily arising as expansion coefficients 
of  a function). We will define two norms  II II and [I Iio on such c. But we first must  
define two auxiliary objects (following (4) and (5) of [5]): 

I (x ,  R) = {elT(a) ~ B(x,  R),  2 -r(~) < R} , (1.8) 

2 2 (1.9) I ~ l x , ~ =  y~ c ~ .  
otel(x, R) 

We then define 

with 

and  

where 

1 )  P(R) 
= [ Ix, ll II~llo 2 Sup ~ 2  

R 

(1.10) 

II ~ II ~ = M a x  (S, L ) ,  (1.12) 

S S u p  J z7 2 = Ix, R,  (1.13) 
x 

R_-<I 

L = Sup c 2 . (1.14) 

r(a) < 0 

(Recall f~ -- 2-r(~).) 
We define cg as the set of c of finite Jlli norm,  a no rmed  space in this norm. We 

let Zo be the set of c of  finite [I I[o norm,  also a no rmed  space. 

F o rma l  Definitions. For a 9iven v we define c(v) = { c, = ( u,,  v)}.  For a 9iven c we 

define v(c) = ~ c ,u , .  

Theorem 1. a) Let  v be in ~ .  Then c(v) is in ego, and one has 

II v Iio _-< c II v I1'. (1.15) 

$1 + e R < 1 
P(R) (1.11) l 3 R > I  
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(Here and elsewhere we understand II v Iio = II ~(v)Iio, and likewise for the II II norm.) 
b) Let c be in % Then v(c) is in ~ ,  and one has 

II v(c)I1' _-< c II c II �9 (1.16) 

For z in r163 v(z) = ~, c,u, converges in L2or It  is this type of convergence that is 
always understood. 

c) Let c be in c~. Then 

c(v(c)) = c .  (1.17) 

1.4. Definitions of Continuity. We must define continuity of a path in each of our 
spaces, q/, ~ ,  and c~. We will use a definition much weaker than norm continuity. It 
will be trivial that norm continuity implies continuity in the sense we work with. 

Definition. A path v(t) in q/, 

v(t): [0, T] --* q/ 

is continuous if it is uniformly bounded, i.e. I1 v(t)II" < M, and for each test function 
r (~b, v(t))  is continuous. 

Definition. A path v(t) in ~-, 

v(t): [0, T] ~ ~- 

is continuous if it is uniformly bounded, and for each test function r ( r  v(t)) is 
continuous. 

Definition. A path c(t) in ~, 

~(t): [o, t] --, r 

is continuous if it is uniformly bounded, and with c(t) = {c~(t)}, each c~(t) is 
continuous. 

1.5. Solutions of the Navier-Stokes Equations. 

Definition. v(t), 0 < t < T, is a ~-solution of the Navier-Stokes equations if it 
represents a continuous map from [0, T] into ~,  

v(t): [0, T] ~ q / ,  

and for each test function r in J-,  one has 

t 

( r 1 6 2 1 6 2  vi(Dvj(t-)>, O<_t<_r .  (1.18) 
0 

In (1.18) it is understood i and j  are summed over, and the inner product represents 
the integral of the functions in it (previously inner products have been only for 
vector fields). 

Definition. v(t), 0 < t < T, is an ~-solution of the Navier-Stokes equations if it 
represents a continuous map from [0, T] into i f ,  

v(t): [0, T] ~ i f ,  

and for each r in 9-, v satisfies Eq. (1.18). 
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Definition. c(t), 0 < t < T, is a (g-solution of the Nav ie r -S tokes  equat ions if it 
represents a cont inuous  m a p  f rom [0, T ]  into (g, 

c(t): [0, T ]  ~ cg, 

and  for each a one has: 

c~(t) = ( ( e  a t  - 1)u~, v (0) )  - i d t ( O i e ' t ( t - f ) u , J  , v i ( t - ) v J ( ? ) )  , (1.19) 
0 

where 

v(t) = v(O) + ~c~(t)u~ . (1.20) 

Conjecture A. (This is certainly true.) 
Cg-solutions are ~ - so lu t ions .  

Conjecture B. Given a Vo �9 q/, there is a T = T(II Vo I1")> 0, such that  one has 
a ~ v(t), 0 < t < T, with v(0) = Vo. 

Theorem 2. Given Vo �9 ~ ,  there is a T = T( II Vo I1') > 0 such that one has a (g- 
solution, v(t), 0 < t < T, with v(O) = Vo. Moreover such a solution is unique. 

Note. ~ - s o l u t i o n s  are certainly not  unique as pointed out  in the introduction.  
Consider  in par t icular  

~(x, t) = f ( t )~c .  (1.21) 

(re is the unit vector  in the z-direction.) Fo r  a n y f ( t )  these are ~ - so lu t ions .  

Theorem C. (Proof  outl ined in Subsect. 6.6). I f  an ~-so lu t ion  satisfies 

1 
lim ~ S [ ~ ( x , t ) - b ( x ,  0 ) ] = 0 ,  a l l t ,  (1.22) 

R ~  B(0,R) 

then it equals the corresponding (unique) Cg-solution. 

1.6. Lon9 Wavelength Residues, A Subtlety of  the Infinite Volume. Let w be in q/. 
(All we will state will obviously hold with ~ and [I I[' replacing ~ and II II".) We 
define its r (level Ion9 wavelength) Residue, w', by 

where 

w ' = w -  Y', c~u~, (1.23) 
ot 

r(~) >= r 

c, = ( u , ,  w ) .  (1.24) 

This is a somewhat  subtle idea. Consider  9o = ~: then w~ = Wo for all r, c, = 0, all 
~. (In fact by Theorem 3, par t  b) below, the only v in q / w i t h  all c, = 0 are constant  
vectors.) F r o m  this example  we see the residues do not  necessarily go to zero as 
r approaches  - c~. (For  w = v(c), c in (g, lim,_~ _ ~ w' = 0 by Theorem 1.) But in all 
cases the wr should get smoother  and smoother  as r ~ - ~ .  This is made  precise 
by the following theorem. 
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Theorem 3. Residue Bounds. For w in ~ and r < 0 we have 

a) Iw'l~o _-< cl lwll",  
1 

b) IDPw'l~ <__ c ~  I l w l l ' ,  

1 
C) I((e A t -  1)w) r Iv _-< c t - ~  II w I1". 

This theorem is treated in Subsect. 4.3. 

P. Federbush 

(1.25) 

(1.26) 

(1.27) 

Section 2. Some Properties of Wavelets 

We continue our discussion of the wavelets introduced in Subsect. 1.2. For  their 
construction see [1 and 2]. The following properties are either explicitly or 
implicitly from [1 and 2]. (One should note the minor point that N as we use it, 
beginning in Subsect. 1.2, may differ from the N in [1 and 2].) 

Estimate 2.1. 

(Recall f~ = #, = 2-L) 

Estimate 2.2. 

1 a I x - 7 [  

[ur.,.,(x)l <c,~,_~2e e, (2.1) 
t~rY'- 

1 1 - a  Ix 71 
IDPu~l < e (f,)3/2 t, I f l l < g .  

Representation 2.3. For 0 _< s < N there are vector functions G~,p such that 

(2.2) 

u~(x) = ~ ( r  pG~,p(x). (2.3) 
I~l=s 

Here fl is a multi-index. Moreover the G~,p may be chosen satisfying Estimates 2.1 
and 2.2. 

It is important to note that a and c in (2.1) and (2.2) may be picked independent 
of ~. 

Section 3. Proof of Theorem 1 

In this section we prove Theorem 1. We prove the different parts with varying 
degrees of thoroughness-but  as in the rest of the paper, we are guided largely by 
the desire to display the different techniques of proof, and arguments, intrinsic to 
analysis with wavelets. 

3.1. Proof  of  Theorem 1, part a). Let v be in ~//, then we define two norms on v, 
Ivl',R and [vlx, R, 

(IriS, R) 2 =  I v 2, 
B(x, R) 

I v l x ,  R = [ 4 V ) l x ,  R . (3.1) 
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(See (1.9) for le(v)Ix, R.) It is sufficient for a proof of Theorem 1, part a) to prove the 
following lemma, interesting in its own right. 

Lemma. Let v be in qi. Then 

]vlx, g < cSup ]VI'r,R (3.2) 
Y 

(c an absolute constant). 

We proceed to prove this lemma working with a fixed x and R. 
Step 1. We now define a decomposition 

/) = /)1 "1- /)2 (3.3) 

(where vl and v2 are not required to be divergence-free) 

vl (Y)= { v ~  ) otherwiselX-yl<100R' (3.4) 

;/)(y) I x -  yl > 100 R 
v2(Y) (3.5) 

otherwise 

(We note that the choice, 100, is wasteful; we will be wasteful in estimates.) We have 
a parallel decomposition of c~, 

c~ = c~1 + c~2 , (3.6) 

where 

c,i = (u , ,  vi>, i = 1, 2 .  (3.7) 

We then have 

Ivl2,R = Z (C~l + c~2) 2 (3.8) 
at~I 

< 2 ~ (c~1 + c22) (3.9) 

2 (3.10) _-< 21VI~100R + 2 ~ C~2 �9 

We are abbreviating I(x, R) as I, and have used the basic inequality 

S/)~ ~ Z c ~ l .  (3.11) 

The first term in (3.10) is < c (Supy [Vl'y,R) 2, and we turn to the second term. 

Step 2. We consider a rectangular lattice of edge size (�89 i.e. (�89 a. We label 
points of the lattice by i = 7. We now decompose the integral for C~z on the right 
side of (3.7) into contributions from balls of radius R centered at lattice sides, and 
apply the Schwartz Inequality to each term in sum getting from (2.1), 

I c=2l < c Y' /)2 ~ e  5 r , (3.12) 
i \ B(i, R) 

d(x,i)> lOR 
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where ro is such that  R and 2 - '~  are as close as possible and r -- r(e). It follows that 

( !  \1]2~o3/2 ag,o 
I c,,2l < c Sup v 2 ~o - - -  = i ) f~75e 4d,. (3.13) 

�9 B ( R )  

Then one has 

a 

2 c22 < c Sup v 2 23(r-r~176 -~2 .... (3.14) 
�9 r  " B ( R )  r o 

(the second exponential of 2 arises from the sum over ~ ~ I, for fixed r), yielding 

c ~ 2 < c S u p  5 v a .  (3.15) 
r i B(i,R) 

This estimate together with (3.10) completes the proof of the lemma. 

3.2. Proof of Theroem 1, part b). We are given c in (~. We must  show v(c) is in 
~- and 

[I v(c)[l' N c II c[I (3.16) 

(for an absolute constant c). This is equivalent to showing, for each x and R < 1, 
l + e  

( 1 )  2 'V(C'[ 'R--<C][c']. (3.17' 

We restrict ourself to a fixed x, R, and v. 

Step 1. We now define a decomposit ion 

v = vl + v2 , (3.18) 

where 

We get 

vl(y) = ~ e~u,(y) . (3.19) 
~eI(x, 100R) 

(1;+ (1;+ 
j" v 2 < 2  ~ j" v ~ + 2  j" v22 (3.20) 

B(x, R) B(x, R) B(x, R) (1),+ 
< 2  2 c 2 + 2  ~ v2 

�9 el(x, 100R) B(x, R) 

<cl lv l l  2 + 2  I v2.  (3.21) 
B(x,R) 

Step 2. It is enough to show 

B(x, R) 

to complete the proof. 

v~ ~ c II v II 2 (3.22) 
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We define 

V2r(y)= ~ C=U=(y) (3.23) 
0 ~ I  c 

r ( ~ )  = r 

(where I c = I(x, 100R) c) and have 

v2 = ~ v2,. (3.24) r 
We now use a "sums to sups" procedure common in constructive quantum field 
theory. We will define numerical quantities f~ > 0, and note 

= ~f, < f~ S u p z [ v 2 , l ,  (3.25) 

and so 
+g (1)1 !(r~ )2 (1)1+e/" "~2 )2 

v2,. ~ f , . ) ,  ( S u p ~  Iv2,(y)l . (3.26) 

Define again ro as in (3.12) (2 - '~  ~ R), and now define the f,: 

( ( : , Y ,  => ,o 
f ,  = ) ~ \ : r o J  (3.27) 

)(:roy r<ro 
t , \  ~ r , !  = 

with t > 0 but sufficiently small. Use the estimate (trivial from (1.8)-(1.14) with 
D(r) = �89 + e) if r->_ O, and D(r) = 1(3 - e) if r < O: 

= :o(~(,,)) (3.28) tc~l < IIv ~ 

to estimate V2r from (3.23) as 

I v2r(y)[ ~ II v II : f~ ' )  
c t ~ l  c 

r(~)  = r  

One has the easy estimates (for y in B(x, R)) 

lu~(y)l. (3.29) 

r>ro ( )' lu~(y)l 
c t ~ l  c 

* > ,  ~,~ r <__ ro 

(3.30) 

for any So > 0 (c depending on So). Putt ing (3.27), (3.29), and (3.30) into (3.26) and 
choosing conditions on the parameters 

So > 2 t ,  (3.31) 

t > 0 ,  (3.32) 

2 -  ~ -  2t > 0 ,  (3.33) 

e > 2 t ,  (3.34) 
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one deduces (3.22) and completes  the p roof  of Theorem 1, par t  b). One  must  
scribble a few lines on paper,  using (3.32) to control  the sum ~f~, using (3.31) to 
control  the sup for r > ro, and using (3.33) and (3.34) to control  the sup for r < ro. 

3.3. P r o o f  o f  Theorem 1, Par t  c). Given c = {c,} s cg, we mus t  show with 

that  one has 

Let 

Let 

(where do = gro) and 

v, is in L 2 and so 

and thus 

We now split U~o 

v = v ( c )  = y ,  c~u~, (3.35) 
o~ 

(u~ o, v )  = Go �9 (3.36) 

~o ~ (ro, 70, to) �9 (3.37) 

IN = I~o,,lo , (3.38) 

v .  = y ,  c , u , ,  (3.39) 

v', = ~ c~u , .  (3.40) 
acid,  

( u ,  o, v , )  = C,o, (3.41) 

(U,o,V) = C~o + (u,o,v',). (3.42) 

u, o = Z,U,o + (1 - X,,)U~o = u,1 + u,2 , (3.43) 

where Z. is the characterist ic function of B 7o, ~ do �9 We note that  

II v', II < II v II , (3.44) 

and so by (2.1) and Theorem 1, par t  b) one has 

( u.2, v',) , o .  (3.45) 
n ---~ oo 

,0  (3.46) 
n - - +  oo 

So we will be through if we can show 

( u , 1 ,  v; ,)  

(by (3.42), (3.43), and (3.45)) 

( u,1, v" ) = ( U,o, Z,v', ) �9 (3.47) 
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But )~,v',, supported on B 70, ~ fo goes to zero uniformly with n (from which one 

can deduce (3.46). The estimate of Z,v', is quite the same as the estimate of v2 in 
Subsect. 3.2. Bounds (3,26)-(3.30) are sufficient to show this. 

Section 4. The Contraction Mapping and (Long Wavelength) Residues 

4.1. The Contraction Mapping. We view Eq. (1.19), with (1.20) substituted into it, as 
of the form 

{c~(t)} = Fr({C,(t)}, v(0)). (4.1) 

We let Sr be the space of continuous functions c(t) = {c~(t)}, 0 < t < T, with 
c,(0) = 0 and of finite Ill Ill norm: 

IIl(c~(t)}l[I = Sup  (c~(t)} II �9 ( 4 . 2 )  
O<~t<_ T 

(The c(t) in Sr  are continuous paths in the sense of Subsect. 1.4.) F r  is then 
naturally viewed as a mapping of Sr  into itself. Let Sr,~t be the subspace of 
Sr  satisfying 

Ill {c~(t)} III _-< m .  (4.3) 

Theorem 4. The Contraction Mapping Theorem. There is an absolute constant Co, 
and a function F( II v(0)I1', c) > 0, such that/f l l  v(0)If' < ~ ,  and M = c II v(0)I1', with 
c > Co, then, with T = F( II v(O)I1', c), FT is a contraction mapping on ST.U. Note that 
by Theorem 1 and Theorem 2, II v(t)If' is bounded. 

We will construct our proof of Theorem 2 by proving Theorem 4. 

4.2. Introduction of the (Long Wavelength) Residues. We now set v~ to be the 
r-residue of v(0) (see Subsect. 1.6). And define 

b~ = (u~, v(0)) (4.4) 

so that 

v(O) = V~o + ~ b,u~ . (4.5) 

r(~_-> r 

We now write the expression (1.19) for c,(t) with (1.20) substituted and v(0) replaced 
by (4.5) with r = Min(0, r(c~)) (c~ as on the left side of (4.6)) 

c~(t) = ( (e  ~t -- 1)u,, v(0)) -- [Ta + T2 + T3 + 7'4] (4.6) 

with 

T1 = i df ( ~ie~(t-~ V~oiV~oj ) , (4.7) 
0 

t 

TE = ~ S df ( Oie~"-~)u,J, V~oiU,'J) (b,, + c, , (f)) ,  (4.8) 
~' 0 
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t 

T3 = 2 ~ df  ( c3ie~(t-~ , uat'i, V~oj ) (b~ ' + c a t , ( f ) ) ,  ( 4 . 9 )  
at" 0 

t 

T,  = ~ ~, ~. d~(c~ie~r176 uat,iu~,,j) (bat, + cat,(t-)) "(bat,, + cat,,(f)). (4.10) 
at '  at" 0 

It is unders tood that  in (4.7)-(4.10) the sums include only bat with r(a) > r. Inter- 
changing order  of summat ion  and integration is not  hard  to justify. 

4.3. Study of  the Residues. We turn to considerat ion of Theorem 3 of Subsect. 1.6. 
We will work in ~" rather  than 0//in tune with the rest of this paper. 

Let Z(x) be C ~~ satisfying 

a) 0 < X <  1, 

{~ I x , < l  
b) Z = Ixl > 2 " 

We fix Xo and r < 0 and study wr(x) for x near Xo. We study Theorem 3, part  a) 

w (x) = Wx (x) + w2 (x) = Z (2 + ' -  7 (x - Xo)) w(x) 

+ (1 - • (2+'-7(x - Xo)))w(x), (4.11) 

w r = w] + w~. (4.12) 

(We define w~ by the same formula as if wi were divergence-free.) Near  x = Xo we 
have 

where 

w ~ = -  ~ ez,uat, (4.13) 
at 

r(at) _--> r 

clat = (uat, wl), 

We might be tempted to write 

i = 1, 2 .  (4.14) 

w] = w l -  ~ clatuat, (4.15) 
at 

r(at) _--> r 

= ~ el,uat (nicht wahr ! ) ,  (4.16) 
at 

r(at) < r 

but wl is not  divergence-free, so (4.16) does not  follow from (4.15) even though wl is 
in L 2. 

The method  we have chosen to handle this problem is to utilize an additional 
construct.  Namely  we expand the {uat} to a basis for vector fields (without imposing 
the divergence-free condition) by expanding the index set I of (1.1). (See Notes  
below.) We indicate this basis by 

{uat} • {u~ ~ (4.17) 
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(g for gradient). Then 

W ~  ~ W 1 - -  0 g Z ClaUa ~ 2 ( CI~uat '~ ClaUat) 
ct cr 

r(a) > r r(ot) < r 

+ ~ c~176 (4.18) 

r(a)  ~ r 

One has the easy estimate, from (2.1), for r(c 0 < r, 

f l3 "~ 
I c1~1 _-< c ~ - ~ / I I  w I1' (4.19) 

\ ~r(a) / 

and the same estimate for IG~I. For the sum in (4.13) one can develop estimates 
similar to those in (3.29) and (3.30) (this requires a little work). Estimate (4.19) for 
cl ,  and c~, handles the first term on the right side of (4.18). For  the last term in 
(4.18) one notes 

c~, = (u~ o, Xw) = - (u~, (1 - Z)w) (4.20) 

and can analyze this term, thus, as was (4.13). We leave the proof of parts b) and c) 
of Theorem 3 to the reader. 

Note. The additional wavelets are each gradients, and automatically orthogonal to 
the divergence-free wavelets. Construction of a wavelet basis for gradient vector 
fields is much simpler than construction of the divergence-free vector fields. They 
can be constructed with the same properties a)-d) (of (1.3) and (1.4)) and (2.1)-(2.3) 
with divergence-free replaced by gradient. 

Note. An alternate line of proof of Theorem 3 not employing these additional 
wavelets runs as follows: 

w] = wl - ~', e l ,u ,  (4.21) 
~t 

r(~) _-> r 

= W 1 -}- ~ C l ~ t U a - - P w  1 

r ( a~<  r 

= (1 - P)wl + ~ c l , u , ,  (4.22) 
r (a)  < r 

KuKv . 
where (1 - P) - K :  is projection onto gradient fields, P projection onto diver- 

gence-free fields. Working with the explicit form for (1 - P) (in x-space) one easily 
gets the same estimates as using the gradient wavelets. 

Section 5. Estimation of the Three u~ Interaction 

In this section we estimate the "matrix elements" 

( u~, e~'(u~," V)u~,,) 

that appear in (4.10) part of (4.6) the basic equation for c,(t). 

(5.1) 
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We first note some propert ies  of the "heat  kernel" e Jz, for t > 0, an integral 

C Ix - y[= 
e~'(x, y) : y e 4t  , (5.2) 

f d3y e~t( x, Y) = 1 , (5.3) 

~d3y [D~eAt( x, Y)I < c(/~) (5.4) 
=- tl#l/2 �9 

We next develop some useful definitions in an obvious abbrevia ted  notat ion.  

M(1, 2, 3, t) = M(1, 2, 3) = I ( u t ,  eAtu2 "Vu3 )l  �9 (5.5) 

We order  the r's 

{r l , r2 ,  r3} = {r, > rb > re},  (5.6) 

re = min{ r t ,  r3 } , (5.7) 

re = max  {r2, r3 } , (5.8) 

r• = rain {r2, r3 } , (5.9) 

r o = min{re,  ra } . (5.10) 

Three u interaction estimate table: 

m ( 1 , 2 ,  3) < c A B C D E ,  (5.11) 
where: 

1 
A (Yt ~2 g~3 )3/2 , (5 .12)  

1 
8 ~d' (5.13) 

C = ( ~ )  s, a n y s < N / 2 ,  (5.14) 

~]' 3 D=ts~5~~  , a n y s ' < N / 2 ,  (5.15) 

61~2 731 6171-701 6[~1-7~12 
E = e -  -~7--, . M a x { e  t, , e  , } " (5.16) 

for some small 6. 
To  explain how the table arises we detail a single case - the derivat ion of the 

table will be seen to be trivial. 

Illustrative Case. We set 

r~ = < re = < r3 (5.17) 
and 

s = s ' ,  (5.18) 

M(1, 2, 3) = I ( V u l ,  et~u2u3)l,  (5.19) 

operator .  
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where we have integrated by parts on V and used V" fi2 = 0. We now use Eq. (2.3), 

< cl(DS+lGa,etAu2DSG3)lg]Es3 , (5.20) 

and integrate by parts again 

< c[ (O~+ t +~G1, e '~(D~u2)G3)] f ] f~  , (5.21) 

where Is~l + Is21 = Isl and we do not  indicate the sums over s's. Another  integra- 
tion by parts: 

< c](D~'+~Ga, (D~etA)(D~:u2)G3)lf]f~3 (5.22) 

1 1 
c[ ( G'I, (D Set'J )G2 G3 )[f~ fl~f]~ + 1 ~ 2  ' (5.23) 

where G'~ and G2 are implicitly defined, all G's satisfy (2.1). We let m be the matrix 
element in (5.23). 

M < clml (W3"]s~ 1 (5.24) = 

It now follows from (5.4) and (2.1): 

a 
1 .Sup(e_~l~_~,l/e,e_~lz_~l/e~ ) 

Iml < c (go1~2~3)3/2 z 

�9 Su e_~l~_~,le~e I~ ,I ~ -~ly-,~le~) p ( ~ e  
X , y  

Ix yl ~ le ~ly-','3l/f3 �9 ~ d3x ~ d3yle~U-D~e'A(x,  y) . (5.25) 

Equat ions (5.24) and (5.25) yield the table's estimates using the following simple 
bounds: 

a a a 
Sup (e -41z-~l/~Se -4 Iz v21/~2) ~ e -~lr2-r31e2 

Z 

a 2 a Sup(e-~lX-rll/e,e-lX yl/St e ~ly y s l / g s )  

x , y  

a 

__<Max{e ~1~ y~l/t~,e-IYt-','312/32t } 

(5.26) 

(5.27) 

a 

d3ye-71Y-~l/~ = c f  3 (5.28) 

C 
j d3xle + ix - yl2/StDSee~(x ' Y) I < ts/2 �9 (5.29) 

Equat ion  (5.29) (similar to (5.4)) can be obtained by a dimensional (or scaling) 
argument.  Likewise with (5.28). Equat ion  (5.26) follows from the fact that  either 
[z - 73 ] or ]z - 71 ] must  be greater than ]72 - 73 ]/2. Equat ion  (5.27) follows from 
the fact that either I x - y ]  or ( ] x - 7 1 1 + l Y - 7 3 ] )  must  be greater than 
(71 - 73)/2. 
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The most interesting idea to glean from this section is how (2.3) may be used to 
study dependence of integrals on levels (r values). 

Exegesis and Hermeneutics. 
To work effectively with wavelets it is more than useful to have rules of thumb: 
which matrix elements are large, how large are they, how small are the small matrix 
elements, etc. In this subsection we attempt to explain some of the wisdom of 
experience, in a hand waving w a y - n o t  claiming to present every insight one can 
possess, but the major ones. We will discuss the three u matrix elements of this 
section, and the two u matrix element analyzed in Sect. 6.1. Everything we say is of 
course contained in the two tables of estimates; we are trying to "understand" the 
tables. 

We first consider the two u matrix element 

M(1, 2) = I (u l ,  eatu2)[, (5.30) 

an integral of two u's 

I I d3X  Ul ea' u21 �9 (5.31) 

The question of which matrix elements are large is the analogue of momentum 
conservation for Fourier transforms (Plancherel's theorem being a special case). 
For  wavelets one does not have so sharp a criterion. We note that M(1, 2) is "large" 
for 

/'1 "~ = r 2 = r  ~ 

ly ,  - ~21 -_-< c ' 2  -~ 

and has "size" in this case 

M(1, 2) \ \ g } } .#..e-flea,3 

(5.32) 

(5.33) 

(5.34) 

where the first factors of ~r arise from estimate (2.1) (the "normalization" of the u,), 
the second factor o f f  3 from the integral over x (u~ "lives" on a cube of side fr), and 

X tA �9 the e ponential from e . (Equation (5.32) arises from (6.10), (5.33) from (6.12).) Note 
that our estimate e -'fir is a very approximate estimate - but it is more than 
suggestive. 

We find it helpful to represent M(1, 2) by a graph (Fig. 1) 

I 

I 2 
Fig. 1. 

where the figure is drawn in the case f2 < ~1. The u's are the horizontal lines, the 
vertical line represents their interaction. We place smaller length scales lower; the 
three u matrix elements have similar figures. Note that the smaller scale u2 must 
"live" inside the larger scale Ul above it. 

We turn to the three u matrix element 

M(1, 2, 3) I ( u l ,  e a t u 2 V u 3  ~ �9 (5.35) 
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If we order the r's as in (5.6), 

{ r l , r2 ,  ra} = {r, >__ rb >= rc} . (5.36) 

Then parallel to (5.32) one has for "large" matrix elements 

r,  ~ rb _-> r~. (5.37) 

This follows from (5.14). Thus the figure representing a large matrix will look like 
Fig. 2. 

C 

a 

Fig. 2. 

where, again, u, must live inside the bigger uc above it. Note that there are 

c(tC) 3 (5.38) 
~ E a J  

such choices o f  Ua, if r, and uc are fixed. Sums over such choices of u, are 
characteristic of wavelet estimates (such as in deriving (3.14) or (6.29) below). 

We first analyze the "size" of the large elements in the case most important to 
us. (It corresponds to the most delicate situation encountered in analogous situ- 
ations in quantum field theory.) This proto-type case, Proto-Case 1, is specified by 

r = rl < r 2  = r 3  = r ' ,  (5.39) 

3)2 = 3)3, (5.40) 

13)1 - 3)21 < 2 - ' ,  (5.41) 

and then 

x 3 / 2  

. . . .  e -  / r (5.42) 1 2 )  .~3 1 ct2 M(1, 2, 3) ~ Yr 

with the factors on the right arising in order as: the normalization of the u~, the 
integral over x, the V acting on ul (after integration by parts), and the exponential. 

There is one other proto-type, Proto-Case 2, a situation also where M(1, 2, 3) is 
"large," 

r t = r 3 = r > r 2 = r ' ,  (5.43) 

71 = 73 , (5.44) 

13)1 - -  721 ~ 2 - r '  , (5.45) 

and then 

/ /  1 "x 3/2 1 e_t /~  (5.46) 

M(1, 2, 3) we must bound will be analyzed as relating to these two proto-cases, or 
as being irrelevantly small. It is the property of wavelets to allow such localization 
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of estimates. One comes to believe: l f  crude estimates involvin9 only the proto-cases 
imply convergence, then there is convergence. 

Section 6. The Nitty-Gritty 

6.1. Estimation of  the Two u~ Interaction. In the first few subsections of this section 
we study the first term on the right side of(1.19). We make several definitions, and 
collect some relations: 

Vo(t) = (e a t -  1)v(0), (6.1) 

Vo(t) = e~*v(O) , (6.2) 

go~ = (u~, ~o(t)>,  (6.3) 

Co~ = (u~, Vo(t)> . (6.4) 

In this subsection we study, in analogy with Sect. 5: 

M(1, 2, t) = M(1,2)  = I ( u l , e a t u 2 ) l .  (6.5) 
We define 

r,  = max{r1,  r2} , (6.6) 

rb = min{r l ,  r2 } (6.7) 
and obtain 

m(1,  2) < c A B C D ,  (6,8) 
where 

1 
A - (11 ga2)3/2 ' (6.9) 

B = ( f"~s any s < N / 2  (6.10) \ /~) 
~>s' 

C =  ~2 f3  anys '  t s ' /2  a ,  < N / 2 ,  (6.11) 

6171 -721 ,5171 -7212 
D = M a x { e -  ~ , e  ~ } .  (6.12) 

This follows as in Sect. 5. 

6.2. Bound on ~o (t). In this subsection we prove the lemma 

Lemma. 

II go(t)II < c2 [I v(0)II' (6.13) 

We will later pick Co of Theorem 4 (the Contrac t ion  Mapping  Theorem) to satisfy 

Co > c2 . (6.14) 

Now  we turn to a p roof  of (6.13). Referring to (1.12)-(1.14) we see we must  show 

s =< c2 II v(0)ll', t =< c2 II v(0)I[' 

We first treat S. 
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It is sufficient to show 

Ix, R ~ Ca( II V(0)II 3 2 (6.15) 

using Theorem 1, Part a). We fix x and R through our discussion. We pick ro as 
small as possible satisfying 

2 - '~ < R .  (6.16) 

We consider a rectangular lattice of edge size R/2, with lattice sites labelled by i. 
Recall 

Coat(t) = ~ M(a, a')cat,(0). (6.17) 
at' 

We split up the sum in (6.17) 

= ~ ~ M~(~, ~')cat,(O) + ~ ~ M'(~, ~')cat,(O). (6.18) 
i at' r < r  o at' 

M}(c~, ~') is zero unless c( ~ I(i, R). M~'(c~, ~') is zero unless r(~') = r. To study M~ we 
use the fact that if A is an operator with matrix elements A~ in an o.n. basis, then 

IAIo < Sup ~ (IAii[ + IAjil), (6.19) 
i j 

where [ 1o indicates operator norm. To study the second term in (6.18) we use the 
easy bound 

{~/ ( i  +e)/2 
Icat(O)l < ~'(at~ IIv(o) N' r __> 0 (6.20) 

= c g,}2] II v(0)I1' r < 0 

We now have 
l + e  

where 

From (6.19): 

Ivo(t)lx, R <= c Z IM~lo II v(O)ll' 
i 

+ C ~ ~ M;(o:,C() R(I+e)/2 II v(0) tl', 
r < ro  at' 

(6.21) 

Q(r)= {1 + e  r > 0  
3 r < 0 "  

I Milo < c  Sup ~ M(c~,cf). 
a t ~ l ( x ,  R )  ~ ' E I ( i ,  R )  

We use (6.8) to estimate the expressions in (6.21) and (6.23). 
We split the bound in (6.8) as follows: 

] 
\ t , )  L\, , /7) �9 

- - N ' L .  

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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The two brackets in (6.24) define N and L. Estimates are expressed with 1 and 2 of 
(6.5) replaced by c( and ~ respectively. We let 

r(~) = ro, r(ct') = r ,  (6.26) 

ra = max(r,  ro ) ,  (6.27) 

rb = rain(r, ro ) ,  (6.28) 

We claim the following two key estimates: 

r ro 
N(~, ~') < (6.29) 

~' r<ro 

Sup L(~, a') < c .  (6.30) 
i o~l (x ,  R) 

at' ~ l ( i , g )  

In (6.29) the sum is over all ct' of fixed level r. We have picked s = 3, and if t > 
picked s' = 6. This requires N > 12 (we are certainly wasteful however). 

Estimates (6.29) and (6.30) used in analyzing (6.21) and (6.23) yield the bound on 
S. We leave to the reader verifying that  (6.8) yields (6.29) and (6.30). 

We turn to a t reatment  of L (from (1.14)). We need show, for r(ct) < 0, 

I<u~, (e ~' - 1) v(0)) I _-< c t ~ ]  -~/2 II v(0)I1'. (6.31) 

We use the fundamental  theorem of calculus, often a good idea, 

( u , ,  (e ~' - 1) v(O)) = _[ d? (e~fu,,  v(O)) 

t 

= ~ df(Au~, e~;v(O)) 
0 

t 

= ~ ~ d f ( A u , ,  e~eu,, ) (u, , ,  v (0 ) ) .  (6.32) 
~' 0 

We use the trivial bound  (6.20) for the second factor. The first factor may be treated 
1 

as in Subsect. 6.1, with the extra A factor yielding d2(, ) in the bound,  the sum over ~' 

is as in the t reatment  of S. We get for the matr ix element on the left side of (6.32) 

1 3'2  
�9 I(u~,(e ~ ' -  1)v(0)) l  < c ' t  f~( IIv(0)ll (6.33) 

This easily yields (6.31). 
We implicitly will use that ~3(t) is equal to its formal wavelet expansion. This is 

the statement of Theorem 3, part  c). 

6.3. Norm Continuity ofvo( t ) for  t > 0. We consider 0 < tl < t2 and study 

(e ~'2 - e ~'1) v(O) = ~ dt d e~ , v(O) , (6.34) 
t l  t4~ 
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using the fundamenta l  theorem of calculus again as in (6.32). We evaluate the 
derivative 

~ I 3 1 e a t + ~ l l x - y l 2  1 
t, dt - 2 t  t t e a' v(O), (6.35) 

where we unders tand  Ix yl______~ z -  ea t to be the integral opera to r  with kernel 
t 

IX -- Yl2 eat(x, y) . (6.36) 
t 

We view (1.12)-(1.14) as realizing I1 II as the m a x i m u m  of two norms  

II v II = Max(  II v IIs, II v l i D ,  (6.37) 

and write first for II v IIs. Thus  we obta in  

- [ I x -  
I[(e a ' '  - ea')v(O)lls < t2 t~ S u p  c II eatv(O) lls + c 

t l  tz <t  <t2 

t2 -- tl 
_--< - -  c II v ( 0 ) I I ' .  

t l  

eatv(O) s (6.38) 

(6.39) 

This yields the continuity in S norm,  for t > 0. The l emma  of Eq. (6.13) controls  the 
first term in brackets  in (6.38); the second te rm in brackets  is dealt  with the same 
way - by trivial modif icat ion on Subsect. 6.2. We turn to the L norm. Here  the same 
a rgument  as surrounding (6.32) works. We do not  investigate whether  our  solution 
v(t) is no rm cont inuous  for t > 0. 

6.4. Continuity of Vo(t) at t = 0. We need show Co,(t) is cont inuous at t = 0 for 
each a. Tha t  is, we must  show 

lim (u , ,  ( e  a t  - -  1)v(0)) = 0 .  (6.40) 

But given 5' > 0, we can find a bounded  set U such that,  with X, its characteristic 
function, 

] ( (e  at - 1)u,, (1 - X,)v(0)) [ < e' (6.41) 

by the exponential  fall off of u, and e at. Fur ther  considering that  now X,V(0) is in L 2 

one has 

( (e  a' - 1)u~, X,v(0) ) , 0  (6.42) 

(easily seen in Four ier  t ransform space), and our  result. 

6.5. Heart of  the Proof We turn to the second term on the right side of (1.19) or  
(4.6) as expanded out in (4.6)-(4.10). We will not  p rove  that  the m a p  FT of (4.1) 
carries cont inuous paths  into cont inuous paths,  but  concentra te  on showing FT is 
a contract ion if T is small enough. 

An Important Reduction (an Application of  the Residue Bounds). We make  a critical 
observation:  

The contr ibut ions  of the v~ in (4.6)-(4.10) m a y  be est imated as though they were 
contr ibut ions  of r-level expansion coefficients! 
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Specifically, the term 

I ( OieA(t-i-)U~j, V'oiU~,j ) ] (6.43) 

from (4.8) may  be bounded,  using the Residue Bounds of Theorem 3 a) and b) 
((1.25)-(1.26)) and the techniques of Sect. 5 as being 

with 

Z B ,, M (e, e , ~')[c~,,J (6.44) 

r(z") =r 

I c~,, 1 5 c 13/2 II Vo I1'. (6.45) 

Here the {c~,,} are the "pseudo-coefficients" and M B the bound  in (5.11), i.e. 

M(1, 2, 3) < c A B C D E  = M B = Mn(1, 2, 3) .  (6.46) 

The other  terms in v~ are treated similarly. Basically the Residue Bounds give the 
same estimates, as (2.1)-(2.2) give for the u,, to v~ (localized to regions of size ,-, E 3 
by a part i t ion of unity) normalized by the c~ to have the right I1 Vo If' dependence. 
Because of (6.45) we modify M 8 to M 8 as follows: 

t 
E~Mn(~, ~', ~"), i f r  < 0 and either r(~') 

)~B(~, ~, or r(cJ') equals r ' ~ " )  = . (6.47) 

Ms(~, ~', ~") otherwise 

Here r = r(~). 

In which Subsubsection the Ultimate Lemma is Introduced. Let { Y,} and {Z~} be 
vectors in cg, and define {X,(t)} by 

Mn(~, ~', ~", t) Y~,Z,,,, 0 < t < 1 . (6.48) x , ( t )  = 

We plan to prove: 

The Ultimate Lemma. 

with 

and 

11 g(t)II ~ c,(t) II YH II z [I (6.49) 

i Cu(f)dt < re(t) (6.50) 
0 

m(t) , 0 ,  (6.51) 
t ~ O  

where cu(t) and m(t) have no dependence on Y or Z. 

It is not  difficult to see that  a complete p roof  of Theorem 2 now follows from the 
Ultimate Lemma and the contract ion mapping argument  of Sect. 4. The right side 
of (6.49) can be unders tood as bounding all terms in (4.7)-(4.10), with 

II YII, 11Z II ~ cllll c(t)III + II v(0)I['] �9 (6.52) 
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6.6. Theorem C. In Eq. (1.18) written for the ~-solut ion one lets q$ = u~. One thus 
gets Eq. (1.19) for c~(t), the formal expansion coefficient of v'(t). One writes 
equations analogous to (4.7)-(4.10), but obtained by substituting instead of (1.20), 
(4.5) the following: 

v(t) = v'(t) + ~, (b~, + e~,(t))u~ (6.53) 

r(o~' ) >_ r 

(b~ as in (4.4)) r = Min(0, r(~)). By the same estimates we are pursuing, one gets c~(t) 
actually in ~ (or ST). Thus if the formal expansion for v', (0.5), converges to v' in 
L2oc, we would actually have the unique Cg-solution. The formal expansion con- 
verges (in L2oc) to something, 13'(t), and the condition (1.22) ensures 

v'(t) = F( t ) .  (6.54) 

One should note that if v = v(e) for e in cg, then 

1 
l i m ~ 5  ~ v d 3 x = O .  (6.55) 

R ~ o o  B ( R )  

6.7. A Model Computation. In this subsection we analyze the contribution of 
Proto-Case 1, (5.39)-(5.42), to the right side of (6.49). More particularly we bound 
IX(t)I~,R for R < 1, and thus verify these proto-case terms' contribution to X(t)  
satisfy the S portion, see (1.13), of the ])X(t) U bound in the Ultimate Lemma. (If one 
splits Y and Z into a finite number of pieces, and verifies each piece satisfies the 
Ultimate Lemma, for both S and L, one has verified the Ultimate Lemma.) This is 
the central ultra-violet aspect of the problem. Before we continue we would like to 
emphasize two points. First, it was consideration of this model estimate that 
initially convinced us to try to prove the theorems of this paper, that they should 
hold. Experience with quantum field theory led to our belief in the pivotal nature of 
this estimate. Secondly, it is not difficult in retrospect to see from the proof of the 
full theorem why the model computation is so reliable. We continue with our 
model computation, recalling the proto-estimate for the proto-terms (from (5.42): 

(1"]5/2 1 
m ,-~ \ ~ j  e-t~ t . (6.56) 

We pick r0 as in (6.16). Using the definition of )~n(1, 2, 3, t) from (6.47) and a simple 
application of the sums to sups procedure (see discussion surrounding (3.27)), what 
one must show is that (for some small s) 

Sup Z Z 7~fB( c~' ~" 
,~,ot,  4 )  ,~,~ , , , , , ,  

< II :rll II z II (6.57) = d ( t )  ~ 

(and of course it is understood that (6.50) and (6.51) hold). Here ~ ~ Ir abbreviates 
a S I(x, R), r(~) = r. In (6.57) we are only keeping terms satisfying (5.39)-(5.41), and 
M B = m is given by (6.56) for these. Equation (6.57) is now 
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We denote the first expression in parenthesis by A(~) and the second by B(~). 
Equation (6.58) becomes 

( 1 ) l  +~ ( f '~  ~ ~ A(00 B(~) . (6.59) \ r , )  
In estimating k (~) we view Y and Z in terms of the I Ix, R norm and deduce 

(__, , 
~, A(~) < c e-~, ~ Y,,Z:, 

( 1 "~5/z t 
_ - < c ~ )  e - ~ l  Yl~.,IZlx.,  

< c ~ )  e-~R~+~ll YII IlZll.  (6.60) 

In estimating B(~) we view Y and Z in terms of the I 1~,2-, norm (~ = V(~)), 

(1  ~i~ , 
= e t, ~, II rll II Z II �9 (6.61) < ct z, ) 

Putting (6.60) and (6.61) into (6.59) we get 

c(d,o~'t~+, 1 II YII2IIZII 2e-2ue~" (6.62) 

o r  

Pick s = e/2 

l + e  

( 1 ) 2  (~,oyIZE~12111YI I iiZlle_U~ IX(t)Ix, R _-< c \ ~ - j  ~, (6.63) 

6.8. Other Proto-Case Estimates. 
A) Proto-case 1 contributions to 11X(t)IlL. See (6.37) for introduction of 11 Ils and 
tl JIL norms. Let ao label coefficient with r(~o) = r0 < 0. We want a bound on the 
~o component of X(t), X ,  o. We proceed as follows, with sums all understood 

1 

c II YII II z II ~ (/,o" <,)./4 e-Ue~ (6.64) 

1 
1 ~/4 (6.65) _-<cll YII IlZll-,o 7a-./s �9 

In going from (6.64) to (6.65) one has maximized (6.64) over values of f, (by setting 
a derivative equal zero). We have proved for this model calculation, the Ultimate 
Lemma, (6.49), with 

c 
c,(t) - tl_,/8 �9 (6.66) 

Note how delicate, or marginal, even this model computation is. One needs e > 0 
to make things work. The different treatment of A(e) and B(a) is a slightly clever 
idea. 
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respecting (5.39)-(5.41), 

IS=ol _-< ~ rfinY,,Z,,,, (6.67) 
O~',ct'" 

1 - t/t,~ e~ (6.68) 
rfiB <= c T ~  e ~ o  , 

~ r  o 

Y,,Z,,< ~ ~ ,  Z~,, __</~3o II Y{Io IlZllo �9 (6.69) 

See (1.10) and (1.11) for definition of II Iio. Thus we get (using Theorem 1), parts a) 
and b)) 

IS~ol < C~o ~/2~§ II YII II z II �9 (6.70) 

So 

Thus 

1 1 
t3/2-~/2 IX~ol ~ c ~  II YII II z II �9 (6.71) 

r o  ~ r o  

II x IlL ~ c II YII II Z II (6.72) 

consistent with the same c,(t) as in (6.66). 

B) Proto-case 2 contributions to II x(t)I1,~.  Proceeding similarly as in A), 

1 1 
rfin < C ~ 7-- f~,o, (6.73) 

~ r '  ~ ro  

IX~ol _-__ Y, r~, Y~,Z~o .  (6.74) 

(There is an analogous protocase with the roles of Y and Z interchanged.) 

_~1_~ ~ 1 ~te3/2_~/2 __< c c ~ (~3/2-,/2 II Y II,,vro II z II) (6.75) 
V r o  r '  ~ ro  ~ r '  

< , ,el /2+~/2 II YII IIZ II (6.76) ~v r  o 

which as in A) yields the same c,(t), of  (6.66). Note  that one needs the e in (1.14) to 
ensure convergence of the sum over r' in (6.75). 

C) Proto-case 2 contributions to IlX(t)lls. We have in similar steps, towards 
computing [X(t)l~,g, R ,-~ 2-r~ 

X,  < c ~ e -t/e~ Z , r  ~~ [[ Y 1[ , (6.77) 
v r ' 

where 

r' 0 
D(r') = = . (6.78) 

1 3 / 2 - e / 2  r ' < 0  
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Thus 

< ! e-'/t~l z ,  I 1 IX= I = ~, ~ II Y II, (6.79) 

where in going from (6.77) to (6.79) we have performed the sum over r' (r' < r). Note  
again the necessity of both  e's in (6.78). F rom (6.79), using a sums to sups argument,  
we get 

1 + ~  l + e  

IS(t)lx, R < S u p c  IZlx, R ~ e  YII (6.80) 
,__>to \ ~ ' , )  - ,  

This leads to the same estimate as in (6.63). 

6.9. Completion of the Proof We may distinguish three cases for the sum in (6.48) 

Case 1. 

Case 2. 

Case 3. 

r(~) < r(c() < r(~") .  (6.81) 

r(~) > r(~") > r(c() . (6.82) 

r(~") > r(~) > r(~') . (6.83) 

There are actually six cases, involving interchange of the conditions on ~' and c(' in 
cases 1, 2, 3; but  it is easy to see that  the estimates for the other  three cases are either 
the same, or more  favorable, than for the cases we are considering. 

All essential ideas for a p roof  of the Ult imate Lemma  appear  in our  model  
computa t ions  of the previous two subsections. We consider the contr ibut ion of 
Case 1 of (6.81) to tl X I1~. We consider parallel to (6.58) (with M = ~rB) 

\ l , J  ~ r ( , ~ , , M Y ~ ' Z ' " ) ( ~ , , M Y ~ ' Z ~ " )  ' (6.84) 

where the arguments of M are omit ted and (~', c(') and (fi', c~") satisfy (6.81) (as 
hidden restrictions in the sums). As in Subsect. 6.7 we let A and B denote the two 
expressions in parentheses in (6.84). 

We first study A. We consider a lattice of edge size R/2, vertices labelled b y  i, 
and denote Y~, Z ~ as Y and Z restricted to I(i, R) (only components  in this 
I retained). 

A(c~) <_ e 2 Z i, ~,, M Y,, Z,,, (6.85) 

Again agruments in M are suppressed, as are restrictions, (6.81), on sums. For  fixed 
i', i" we will estimate contr ibut ions to (6.85) in terms of the I I~,,R or I li,,,R norms of 
Y and Z respectively. We find a decomposi t ion of M 

M(c~, ~',c(') < S(~, ~', ~")L(c~, c(, ~") (6.86) 
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such that 

Sup L(e, ct', c~") < c .  (6.87) 
i', i" at'~l(i', R) 

at"EI(i",R) 
at~Ir(x, R) 

For  definition of It, see after (6.57). 
Then we have 

A(e)<= cR~+~ I[ YII I[Z II'Sup Sup ~ S(~, c(,~") + Sym. (6.88) 
ate[ i', i" at' at" at 

We understand in the sums and sups: c~ 6 I , (x ,  R) ,  c~' ~ I(i', R),  ~" e I(i", R).  We have 
used (6.19) and the + Sym indicates a term with the roles ofa '  and c(' interchanged 
(from (6.19)). 

We seek a similar decomposition to (6.86) for M in B(ct), 

M < S L .  (6.89) 

In this case we work with a lattice of edge size ~,/2, and measure norms of yi, Z i in 
terms of l li,<~, 

Sup /2(~, ~', ct") < c .  (6.90) 
i ' , i" a ' e l ( i ' , f r )  

at" El(i",g~) 

In this expression e is fixed, in I , (x ,  R).  

B (o : )<c~r  +~ II YI] I lZl l 'Sup Sup~S(c~,~',c4') + Sym. (6.91) 
i', i" at' at" 

Again we understand in (6.91), e e I(x,_R), o~' ~ I(i', f,), c(' ~ I(i", f~). 
With reasonable choice of S and S we get the same estimate (6.65) as in the 

model situation. One has used the simple inequality: with 

f ~ / 4  ~ r  2 t ~  ~2 

f ( t )  = c 2 2 (6.92) 

C" # t , t )  t__># 
one has 

C 
f ( t )  < tl_~/s �9 (6.93) 

The expression fo r f ( t )  arises in using (5.15). (N must be sufficiently large for our 
estimate to hold.) As messy as (6.88) and (6.91) may seem, as one pursues the factors 
necessary to yield (6.65), it is almost impossible to see how the deviations from the 
proto-cases could change the form of the est imate-  and they don't. The other cases 
are essentially similar. 
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