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Abstract. We discuss the possibility of describing unstable systems, or dissipative 
systems in general, by vectors in a Hilbert space, evolving in time according to some non- 
unitary group or semigroup of translations. If the states of the unstable or dissipative 
system are embedded in a larger Hilbert space containing "decay products" as well, so that 
the time evolution of the system as a whole becomes unitary, we show that the infinitesimal 
generator necessarily has all energies from minus to plus infinity in its spectrum. This 
result supplements and extends the well-known fact that a positive energy spectrum is 
incompatible with a decay law bounded by a decreasing exponential. As an example of 
both facts, we discuss Zwanziger's irreducible, nonunitary representation of the Poincar6 
group; and we find its minimal, unitary extension (the Sz.-Nagy construction). The answer 
provides a mathematically canonical approach to the Matthews-Salam theory of wave 
functions for unstable, elementary particles, where the spectrum difficulty was already 
recognized. We speculate on the possibility that the Matthews-Salam-Zwanziger represen- 
tation might be a strong coupling approximation in the relativistic version of the Wigner- 
Weisskopf theory, but we have not shown the existence of a physically acceptable model 
where that is so. 

I. Discussion 

T h e r e  h a v e  b e e n  s o m e  c o n j e c t u r e s  in recen t  years  t ha t  s t r o n g  in te r -  

a c t i o n  r e s o n a n c e s  in re la t iv i s t i c  q u a n t u m  phys ics  m a y  h a v e  a k i n e m a t i c  

c h a r a c t e r i z a t i o n  as " u n s t a b l e  par t ic les , "  b e l o n g i n g  t o  c o m p l e x  rest  m a s s  

e igenva lues  o f  a n o n u n i t a r y  r e p r e s e n t a t i o n  of  the  P o i n c a r 6  g r o u p  [ 1 - 4 ] .  

T h a t  such  r e s o n a n c e s  m i g h t  h a v e  an  in t r ins ic  " i n t eg r i t y  ' ' I  [5]  is a n  

a p p e a l i n g  idea,  sugges t ed  by  the  c o n c e p t  of  " n u c l e a r  d e m o c r a c y "  [6] ,  

m o r e  p a r t i c u l a r l y  by the  ana ly t i c  S - m a t r i x  p h i l o s o p h y  tha t  r e s o n a n c e  

1 Our use of the word "integrity" is less precise than that of Lur~at [5]. We have in 
mind the same thing that we mean by the equally fuzzy "kinematic concept of unstable 
particles." We use it as a term whose potential meaning is to be realized by the success 
of some mathematical scheme such as that discussed here. Vaguely, it should mean that 
there are characteristic properties of unstable particles that can be isolated independently 
of any interaction and discussed without the aid of interaction dependent quantities like 
the S matrix, or the relation between free and total Hamiltonians. 
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and stable particle poles are to be treated on the same footing, although 
they lie on different sheets, and by the Regge phenomenology, which 
classifies stable and unstable particles alike by Regge trajectories. Indeed, 
practitioners of the latter philosophy sometimes assign some sort of 
integrity to entire Regge trajectories, which are to be exchanged just like 
particles, and which in some theories are to generate "Landau singu- 
larities" via iteration of unitarity, just as elementary particles do. 

Although analytic S-matrix theorists would not feel compelled to do 
so, if only because Hilbert space has a vestigial role in their concept, 
these ideas naturally suggest that one should try to associate unstable 
particles with representations of the Poincar6 group, by analog), with 
Wigner's classification of stable, elementary systems according to their 
masses and spins. Some ways of doing that have been proposed [1-4] 2. 

Although it does not explicitly push the correspondence between 
elementary systems and representations of tile Poincar6 group, the work 
of Matthews and Salam [1] epitomizes both the attractive features and 
the difficulties in physical interpretation of such an approach. They try 
to make sense out of the description of an elementary unstable particle 
by an ensemble of states decaying in proper time in the center of mo- 
mentum frame by exp(- imz-~,z) ,  for z>0 ,  where m > 0  and 7 > 0  
represent the mass and one-half the width. By Fourier transformation, 
they get a mass distribution density matrix that is the usual Lorentzian 
shape, but which includes all masses from plus to minus infinity. 

They attempt to associate a local field with the unstable particle, 
whose Umezawa-K~ill6n-Lehmann spectral function is of the Lorentzian 
shape, cut off sharply below the physical threshold for the stable decay 
products. In their model, the field for an unstable elementary particle is 
conceived as a function of the free fields of the decay products. 

Unfortunately, the modern development of rigorous field theory 
makes it clear that their model is unrealizable, if taken too literally, in 
which case the unstable particle field would have to be in the Borchers 
class of the free fields; and up to now no realization exists. Their remarks 
on the sense in which an elementary unstable particle can be described 
by a mass wave function in the Hilbert space of free decay products still 
have a point; and we aim to discuss that below; but without the field 
theoretical underpinning, their own criterion by which a theory of 
elementary unstable particles is to be considered successful is not satis- 

2 We do not  a t tempt  to review all of the fairly substantial literature on unstable 
particles. Much of it can be traced from the references we cite. The paper of Lurgat [5] 
and the book of Newton [7] are especially useful for that  purpose. Lest there be some 
misunderstanding,  let us emphasize that it is not  our purpose to criticize the orthodox 
ways of understanding resonances and unstable particles; but  rather it is to explore how 
far a group theoretical description might  reasonably be pushed. 
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fled; namely, that it should be clear in what sense the kinematic descrip- 
tion is or can be an approximation to dynamics. 

We accept that as a sensible criterion; but the best we can do in this 
paper is to formalize some of the reasons why it is difficult to satisfy, and 
has not been satisfied even up to now, if one insists too strongly on 
a kinematic concept. We do propose a speculation on how the Matthews- 
Salam approach might conceivably be justified as a strong-coupling 
version of the Wigner-Weisskopf model. 

Zwanziger's work [2], although done independently, is related to the 
wave-function aspect of the Matthews-Salam theory. He considers a 
nonunitary, irreducible representation of the Poincar6 group, defined on 
the space of four-velocity wave functions 

q) ~ Jd~v = L 2 ( d a u / 2  l /1 + u2) @ (E2s+~, 

& d3u  (1) 
((0,(p) = 2_., I 2 1 ~  ~o(u);~qffu);., 

with four-momentum operators 

u 0 = ] / l + u  2, P u = ( m - i T ) u  u ,  m > 0 ,  2 > 0 ,  

which are normal  3, but not self-adjoint. The translations are represented 
by the nonunitary operators T ( b ) =  exp( iP-b) ,  while the Lorentz trans- 
formations have the usual, unitary representation for half-integer spin S. 
The squared mass operator  is a complex, Poincar6 invariant, P .  P 
= (m - i7) 2. 

Zwanziger showed that the vectors in a f  v evolve and decay expo- 
nentially for positive times a 

q;  = V( t )  ~p - e x p ( -  i P o t  ) 

in the way characteristic of an unstable particle of rest mass m and 
invariant lifetime ~ = 1/2 y. His representation is thus a candidate to 
realize in an economical way the concept of an unstable particle as an 
elementary system, transforming according to an irreducible, nonunitary 
representation of the Poincar6 group. This representation was also 
studied by Kawai  and Gotg  [4], who discussed its second quantization 
in a way different from that of Matthews and Salam. 

Beltrametti and Luzzato [3] considered a more  general class of non- 
unitary, irreducible representations, of which Zwanziger's becomes a 
special case. 

a A normal operator commutes with its adjoint. 
4 For negative t, the evolution operators are unbounded, and q~' will be defined only 

for vectors in a dense domain. For positive t, V(O is bounded and no domain questions 
arise; furthermore it is a contraction, i.e., its bound is not bigger than one, so it does not 
increase the norm of any vector on which it operates. 
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None of these authors included a criterion of acceptability like that 
of Matthews and Salam in the scope of their discussions. 

One can imagine variations on this approach to allow reducible 
representations of the group, especially if he wants to include several 
spins [8], or a Regge trajectory, in one representation having some 
properties of integrity whose precise formulation is to be discovered. 

We want to discuss the physical interpretation of the general type of 
theory with a group law of time evolution, but first let us mention the 
rather different proposal of Lurgat [5]. He describes unstable particles 
by a multiplicity-free representation of the Poincar6 group on a space 
of density matrices belonging to characteristic mass distributions such 
as one observes in the decay products. So far this is just an abstraction 
of some key elements of the Matthews-Salam theory, as he points out. 
But in addition he requires that the density matrices correspond to 
intrinsically impure statistical mixtures, due to the operation of a con- 
tinuous superselection rule in the mass. He appears to rule out the 
possibility of discussing the time evolution or decay law of such states, 
making a sharp distinction between his concept and that of a metastable 
state, for which such things make sense. The major criticism of his theory 
is the same as that of the others; a clearer picture of how the kinematic 
description can be fitted into some dynamical scheme needs to be 
developed. 

Let us return now to the type of theory where unstable particles 
correspond to a representation of the Poincar6 group with nonunitary 
time evolution. It seems natural to interpret the nonunitarity of the time 
evolution, or the decay of the unstable particle vectors in J(C'v for positive 
times, as being due to a loss of probability from ~ v  into the Hilbert 
space of states of the decay products, ~D. Unfortunately, the most 
obvious way of formulating this interpretation leads inevitably to the 
appearance of unbounded energies, both above and below, in the space 
of decay products. 

This phenomenon has been known for some time, in case the decay 
law for positive time is exponential [9]. We review that situation in the 
Appendix. If the time evolution in ~ v  obeys a group law for positive 
times (or a semigroup law), and if it is represented by nonunitary contrac- 
tions that are also normal operators, having a normal infinitesimal gen- 
erator such that the imaginary part is strictly less than a negative number, 
as in Zwanziger's theory, that can be shown to enforce a decay law 
bounded by an exponential. Our main technical result in this paper is 
a precise statement and proof of the fact that the phenomenon of un- 
bounded negative energies in the spectrum occurs whenever the semi- 
group law is obeyed, whether or not the exponential bound is valid. 
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We formalize the above approach as follows. We assume that an 
elementary unstable particle has enough integrity to deserve a (separable) 
Hilbert space of states of its own, 24°v; and we assume that the evolution 
of these states for positive times is described by a weakly continuous, 
one-parameter family of contractions V(t), which form an Abelian 
semigroup: 

V(t) V(t') = V(t + t') for t, t' => 0,  V(0) = I .  

We assume that V(t) is not unitary for any t > 0. We have in mind that 
q~'= V(t)q~ decays strongly, but we don't need detailed properties of 
V(t) for our argument. It need not be defined at all for negative t. It is 
a standard theorem that every continuous, contraction semigroup of the 
above type has as infinitesimal generator a dissipative operatorS; and 
our remarks apply not only to unstable particles but to a certain class 
of dissipative systems in general. It goes without saying that the time 
evolution typically does not obey a semigroup law in dissipative situa- 
tions that arise by considering non-isolated subsystems of a larger, 
isolated system. 

To interpret the nonunitarity of V(t) as being due to the fact that we 
are restricting ourselves to the space of unstable particle states, we say 
that if we included the space of the decay products as well, and described 
the evolution of the system "unstable particle" plus "decay products" as 
a whole, there would be no loss of probability; the time evolution would 
be unitary. 

Our framework is thus the following: there is a larger Hilbert space 
in which ~t~v is embedded, oUgv C ,~, and there is a continuous, unitary 

representation U(t) of the time evolution group on x/g which becomes 
V(t) when restricted to positive times and to the subspace JC'v. Namely, 
for t > 0 ,  

V(t) = pr U(t) = Ev U(t) Ev , 

where Ev is the projection operator for ~ v  in ~ .  
We are always free to decompose ~ f  into a direct sum of ~fv and the 

rest, and if V(t) actually has the property of causing the vectors in ~c, 
to decay strongly, it is natural to call the orthogonat complement of 
~ v  in ~ the space of decay products ~D : ~¢t° = 24°vO~ o. In any case 
we can use ~4~o as a notation for the orthogonal complement. 

Now there is a construction due to Sz.-Nagy [10] that gives, for any 
weakly continuous representation V(t) of a one-parameter, Abelian 
semigroup by contractions on a separable Hilbert space ~ut~ v, an extension 
to a larger space ~ D ;gfv, and a unitary group representation U(t) which 

s If V(t)= e x p ( - i A t ) ,  the infinitesimal generator A is dissipative when it satisfies 
I m A  < 0. Of course the exponential has to be defined when A is not  normal. 
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extends the semigroup V(t) in the way described above. This construc- 
tion gives the smallest extension possible, up to an isometric iso- 
morphism. Any other unitary extension of V(t) contains Sz.-Nagy's 
minimal extension in some subspace. Actually, it is only the minimal 
extension that is directly relevant for the physical interpretation, because 
it is characterized by the property that U(t)2/fv generates the extension 
space ~f. That is, the set of vectors of the form U(t) ~0, with q~ in ~4,~v, 
spans 9f'. Thus, vectors in Wv cannot evolve into vectors with com- 
ponents outside the minimal extension space; and Sz.-Nagy's extension 
is the only one that has a right to be associated with decay products of 
states in Jgv- 

In Section II we use the Sz.-Nagy construction to show that the 
spectrum of the infinitesimal generator of any unitary extension U(t) 
= e x p ( -  lEt) of a nonunitary, continuous semigroup has all points from 
minus to plus infinity in its spectrum. We do that by exhibiting nonzero 
vectors ~p in ~'(¢~o which are sharply localized in time; that is, there exists 
a number B such that 0P, U(t) ~p) = 0 for all It] > B. That the spectrum 
of E is the whole real line is then an easy consequence of the Paley- 
Wiener theorem. 

Thus our scheme seems to be unphysical; as soon as we discuss the 
system as a whole, we find that the energy is unbounded from below. 

Nevertheless, Zwanziger's proposal of a group representation for 
elementary unstable particles is appealing, and the fact that we find it 
difficult to interpret does not mean that we have to abandon it as mean- 
ingless. Thus, we have thought it worthwhile in Section III to look at 
the Sz.-Nagy extension of Zwanziger's representation. The Sz.-Nagy 
theory is not restricted to one-parameter semigroups, but covers a wide 
class of several-parameter group structures, and other structures as well. 
For  Zwanziger's representation, it is quite straightforward to reduce the 
extension problem to a one-parameter problem for the proper-time 
evolution, and to write down the answer explicitly. The result is a mathe- 
matically canonical derivation of the Matthews-Salam wave function 
(the Lorentzian distribution mentioned earlier), which describes the 
initially undecayed state in the center-of-momentum energy representa- 
tion. We call this explicit, unitary extension of Zwanziger's nonunitary 
representation the MSZ representation. 

The interpretation suggested by the Sz.-Nagy extension theorem 
seems to us a step removed, however, from that of Matthews and Salam. 
They appear to interpret the Breit-Wigner wave function (cut off below 
the physical threshold) as the mass distribution of the unstable particle 
considered as a superposition of decay products; i.e., the unstable particle 
is just a special vector in the Hilbert space of free decay products. A more 
orthodox view, and we believe a more natural one, would be that of the 



320 D.N.  Williams: 

relativistic version of the Wigner-Weisskopf theory [11, 12], where the 
undecayed, unstable particle state would lie orthogonal to the space of 
free decay products and would have, neglecting the negative energy 
difficulty, an approximately Breit-Wigner distribution in total, inter- 
acting mass. The asymptotic states of the unstable particle for large 
positive time would then lie in the orthogonal space of free decay pro- 
ducts; and they would have the same distribution in free mass as the 
undecayed states in total mass, because the wave operator would map 
the total mass operator into the continuous part of the free mass 
operator 6. For the same reason, the decay law of the asymptotic state 
according to the free mass operator would be the same as that of the 
initially undecayed state according to the total mass operator, and many 
of the statements of Matthews and Salam on time evolution would be 
recovered, if reworded a bit. 7 

We have already admitted that we cannot say such a scheme works 
unless we understand how the MSZ representation, with its negative 
energies and exponential decay law, can be a natural, first approximation 
to the "true" dynamical situation. This entails a dilution of any kinematic 
aspect in the MSZ concept of an unstable particle, but that fact of life 
is well recognized in the literature. In the simple, exactly soluble version 
of the Wigner-Weisskopf model, [11, 12, 14-17] where the interaction 
has nonvanishing matrix elements only between the undecayed, discrete 
energy state and continuum energy states of the free decay products 
(weak coupling approximation), it is well understood in what sense the 
exponential decay is a first approximation, arising from the presence of 
a pole on the second sheet of the appropriate matrix element of the 
resolvent of the full Hamiltonian. By making the exponential decay 
approximation to the weak coupling model, one would recover Zwanzi- 
ger's representation in the subspace Jfv. The Sz.-Nagy extension of that 
approximation would then have no obvious relevance to the weak- 
coupling mass operator from which one started, nor indeed to the 
original Hilbert space. 

That is perhaps the correct attitude, and we lean towards it ourselves, 
but in Section IV we speculate on another possibility that assigns a basic 
role to the MSZ representation. We propose a more complicated Wigner- 
Weisskopf model, where the interaction part only of the time evolution 
is given by the Sz.-Nagy extension of Zwanziger's representation. In 
other words, maybe the MSZ representation can be understood as the 

6 Coester I13] has emphasized that the relativistic theory of wave operators in the 
center of mass closely parallels the non-relativistic theory, for a physically nontrivial class 
of models. 

7 Unless the above is possibly the interpretation they intend. Their discussion is not 
very detailed on this point. 
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strong-coupling approximation to a relativistic, "two-level" theory, one 
level being the undecayed, unstable state and the other the continuum 
of free decay products. The negative energy problem is thereby avoided, 
because there is no physical reason why the spectrum of the interaction 
mass should not go to minus infinity. 

It is of course not intuitive nonsense to think that the exponential 
decay law, in the case of strongly decaying elementary particles, might 
be a strong-coupling approximation; but we want to emphasize that this 
hypothesis applied to the MSZ theory is highly speculative, and perhaps 
even impossible. In Section IV we discuss the mathematical formulation 
of such a theory, and we point out that it is nontrivial to prove the 
existence of a total mass operator that is setfadjoint and positive. At least 
we have been unable to do so up to now. 

We do remark that if such a total mass operator exists, its kinetic 
part cannot dominate its interaction part in the Kato  sense [18]. In 
particular, the kinetic part always has vectors in its domain that are not 
in the domain of the interaction part, so that if the total mass can be 
defined at all in the Kato sense (which of course is not the only possibility), 
it has to be the interaction part which dominates the kinetic part. Thus 
we use the speculative language: if the theory is defined at all, it may be 
an intrinsically strong coupling theory 8. From this one can see why the 
positivity condition might be delicate; the spectrum of the interaction 
part must still be perturbed strongly enough to remove the negative 
energies. 

In any case, the physical content of the Wigner-Weisskopf model is 
stable against a wide range of modifications that affect the dynamical 
details but not those features that make us willing to say it describes an 
unstable system, and we think it reasonable to expect that a physically 
meaningful interpretation of Zwanziger's representation and its extension 
should fit into that framework. 

II. Trouble with a Semigroup Law 

We aim to prove the following theorem: 

Theorem. Let V (t) be a weakly continuous, one-parameter semigroup of 
contractions on a separable HiIbert space ~ v ,  satisfying V(t) V(t') 
= V(t + t') for t, t' >--_ O, and V(O) = I. Let V(t) be nonunitary for all t > O. 
Let U(t) be any extension of V(t) to a weakly continuous, unitary represen- 
tation of the one-dimensional translation group on a larger Hilbert space 

D 3fv, such that V(t) = pr U(t) for t >= O. 
Then the spectrum of the infinitesimal generator E of U (t) = exp ( -  lEt) 

is the whole real line. 

8 This mathematical statement is not a priori related to the shortness of the lifetime. 
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We have already indicated that it is sufficient to prove this theorem 
for Sz.-Nagy's minimal construction. His construction is minimal in the 
sense that ~ is spanned by vectors of the form U(t) q~ where ~0 • ~tg v. He 
showed that all such minimal extensions are isomorphic and isometric. 
Since any unitary extension contains an invariant subspace of that form, 
on which the restriction of U(t) is clearly unitary, the theorem is reduced 
to the case of Sz.-Nagy's construction. 

Now let us review his construction 9, because we have to use its 
detailed properties. 

First, we define V ( -  t) = V(t)* for t > 0. 

Consider the vector space of all functions of s with values in 24~v, 
where -Go  < s < 0% and where the operations of vector addition and 
scalar multiplication are defined in the obvious way. In this space, 
Sz.-Nagy identifies two linear submanifolds, F and G. The manifold G 
consists of those functions 9(s) that vanish for all but a finite number of 
values of s. The manifold F consists of those functions of the form 

f ( s )  = ~ V(u - s) g(u), (2) 
U 

where g • G and the sum is over the values of u for which g(u) + O. 
It is the manifold F that is going to correspond to the extension 

space X.  We make F into a pre-Hilbert space by introducing the bilinear 
form 

[ f ' , f ]  = ~ ( f ' ( s ) ,  g(s)) = ~ (g'(u), f ( u ) )  
$ U 

(3) 
= Z (g'(u), V(s - u) g(s)).  

S,U 

This form is unchanged if the same f and f '  are represented by different 
functions g and g'. It satisfies all the axioms for a scalar product on 
a Hilbert space, including positivity. In particular, E f,  f ]  = 0 if and only 
if the function f ( s )  is zero for all s. The extension space ~ is the com- 
pletion of the manifold F in the norm induced by the above scalar product. 

The space ~,ug v is embedded in ~ by the sequence of linear maps: 

q~ ~ g~(s) = ~O6o.s 

--, L ( s )  = v ( -  s) q~ , 

where 6o,s is a Kronecker 6. The embedding is isometric: Efo, f~o] = (~o, q~). 
The projection of any element of H represented by a function f ( s )  

in F onto ~4~v turns out to be f(0), represented by 

[E U f ]  (s) = V ( -  s) f (O).  (4) 

9 The relevant theorem is Theorem IV of [-10]. Our summary  follows §§ 6 and 9 of 
that  work. 
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The unitary extension U(t) is defined by 

[U(t) f ]  (s) = f (s - t) = ~ V (t + u - s) g(u) 
It 

= Z V ( u -  s) g'(u) ; (s) 
It 

gt(u) - g(u - t) . 

It is clear from the definition that U(t) leaves the manifold F invariant 
and that it is a representation of the translation group. It is not hard to 
show that it is unitary in the scalar product (3), and that it is weakly 
continuous if V(t) is. 

That V(t) = Ev  U(t) Ev  follows from the calculation: 

[E U U(t) Ev  f ] (s) = V ( -  s) [V( t ) f (0) ] .  

For  later use, we need the matrix element 

I f ' ,  U(t) f ]  = ~, (gj, V(sl + t - s~) gi) , (6) 
i , j  

where we have introduced the notation 

gi = g(si), g~ = g'(s}) for the nonvanishing values of g and g'.  

Our proof of the theorem goes by two lemmas. 

Lemma 1. There are nonvanishing vectors ~p in Jt~D =- (I -- Eu) ~-f which 
are localized in time in the sense that 

(~ ,  U(t) ~ )  = 0 

for [t[ large enough. 

Proof. Consider those vectors in W represented by a finite sum 

f (s) = ~ V ( -  s + si) gi , 
i 

where g~ e fffv and where all si have the same sign (zero is allowed). Let 
F+ be the linear submanifold of F where all s~ > 0; and let F_ be that 
where all s~ < 0. 

We claim that the matrix element of U(t), projected onto WD, 
between any two vectors in F+ or between any two vectors in F_, 

M(t)  = [ f ' ,  (I - Ev) U(t) (I - Ev) f ] ,  

vanishes for It] > max [sup ]si], sup [s~]]. 
i j 

Let's look at F+; the argument is the same for F_. Substituting the 
formula 

[E v f ]  (s) = V ( -  s) ~ V(si) gi 
i 
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into (6), we get for M(t): 

M(t) = ~, {<g}, V(s~ + t - s}) gi) 
i , j  

- (gj, V ( -  sj + t) V(si) g,)  

- v ( -  V(s, + t) g,> 

+ (g}, V ( - s } )  V(+ t) V(si)gi)} .  

We have used the fact that V(s)* = V ( -  s). Next, we look at a fixed value 
of i and j in the sum, and we distinguish two cases: 

(i) Choose - t>s i>O,  so we can use the semigroup property to write 
V(s i + t - sj) = V ( -  s}) V(s i + t) and V ( -  s~ + t) = V ( -  s}) V(+ t). The four 
terms add to zero by inspection. 

(ii) Choose t __> s) >_- 0, so we can write V(s i + t - s)) = V ( -  s)+ t) V(si) 
and V(si + t) = V( + t) V(sl). Again we get zero. 

Clearly, the sum over i and j vanishes if we take [t] not less than the 
largest of the s i and sj. 

All that remains is to verify that some of these vectors have a non- 
vanishing projection into ]FD" Consider the vector 

f ( s ) =  V ( -  s) q) + V ( - s +  a) (#, 

with q~ e ~/fu. It belongs to F+ or F_, respectively, if a is positive or 
negative. Then 

[E v f ]  (s) = V( . -  s) [I + V(a)] ~o, 

and a short calculation gives 

[f ,  ( I -  Ev) f ]  = (qo, [ I -  V (a)* V(a)] (p). 

Thus, if there is any positive number a for which V(a) is not unitary, 
either V(a)* V(a) # I or V ( -  a)* V ( -  a) = V(a) V(a)* 4:1; and there must 
be some vector ~0 such that the matrix element above does not vanish. 
That proves Lemma 11 if we put ~p = (I - Ev) f .  [3 

Lemma 2. Let U (t) = exp ( -  iE t) be a weakly continuous, one parameter, 
unitary group on a Hilbert space :gf. Let  (~p, U(t) ~p) = 0 for It[ > B > 0. 
Then either tp = 0 or the spectrum of E is the whole real line. 

Proof. This lemma is widely known among both physicists and 
mathematicians. It is a variant of the converse of the Paley-Wiener 
theorem. For  completeness we give the proof. 

Let E = ~ 2 dE(2) be the spectral decomposition of the self adjoint 
operator E. Then 

<~p, U(t) ~p) = ~ e -'~' d(~p, e(2) ~p) 
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is the Fourier transform of a bounded measure. If it vanishes outside 
a bounded region in t, the measure is entire analytic. It either vanishes 
everywhere, in which case ~p = 0, or its support is the whole line from plus 
to minus infinity, in which case all those points are in the continuous 
spectrum of E. [] 

III. Unitary Extension of Zwanziger's Representation 

We find the particular construction of Sz.-Nagy used in Section II 
a bit awkward for looking at specific examples, such as Zwanziger's 
representation. Although Sz.-Nagy has other versions of the construction 
that might be more suitable, we proceed instead by guessing the answer 
on "physical" grounds, and verifying that it is correct. 

Thus, let Jr%. be the space of four-velocity wave functions corre- 
sponding to Zwanziger's nonunitary representation for complex mass 
F = m -  i7 and real spinS, as described in Section I. We are looking for 
an embedding of ~ v  into a larger space 3¢f, and a minimal, unitary 
extension to ~¢f of the representation 

V(b, A)= T(b) U(A) (7) 

of the Poincar6 group, where A ~ SL(2, C) corresponds to a homogeneous 
Lorentz transformation, represented by the unitary operator U(A). The 
homogeneous transformations do not get extended, being already 
unitary; and to get a relativistic extension of the translations, we extend 
the semigroup of nonnegative, proper time evolution operators, by the 
prescription below. 

We can write the action of the translations in the form 

[T(b) cp] (u) = e'r~'q~(u), (8) 

where % = u. b, and we can emphasize the evolution in the center of 
momentum frame as follows. Let C be the one-dimensional Hilbert space 
of complex numbers with the usual scalar product. We can trivially write 

~ f v = ¢ ® W v ,  (9) 

and we define the action of the proper time evolution on C by 

V(v) z = e - i t"  z ,  (10) 

for z ¢ C. Suppose we have a minimal extension of the nonunitary semi- 
group V(T) for z > 0 from ~ to a space Jg,~ ~ ~ and a unitary representa- 
tion exp ( -  i ~v~v). Then we can define 

W - -  9ff~® Wv, (11) 
23 Commun. math. Phys., Vol. 21 
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and U(b, A) = exp(i IMu. b) U(A), by which we mean the action 

U(b, A) [Q ® q0(u)] = [exp i ]Mu. b Q] ® [U(A) q)] (u), (12) 

where 0 c W~. This is clearly a unitary, continuous extension of V(b, A), 
satisfying the multiplication law for the Poincar6 group. 

Because we expect an unstable particle to correspond to a particular 
mass distribution, we can guess that the extension space NC~ is naturally 
identified with L2(IR 1, dM), the elements of which are square integrable 
functions Q(M) on - ov < M < oo. l° And we can guess that the unitary 
extension of V(z) is 

[U(z) 0] (M) = e -iM~ o(M) .  (13) 

Now we have to find the one-dimensional subspace corresponding to 
[V(z), ti2]; and check whether we indeed have a minimal extension. 

Let the one-dimensional subspace to be identified with ~: be spanned 
by a fixed, unit vector fly c ] f~.  The projection operator on this subspace 
is IOv x Qv], and the equation V(~) = pr U(~) for ~ > 0 is equivalent to 

(Qv, V( t )Or)  = e-ir*--- ~ d m  IQti(m)[ 2 e -iMz (14) 
~ 0 0  

=- F(z) .  

The right-hand side satisfies F ( -  ~) -- F(z---), and thus TQv[ 2 is the Fourier 
transform of 

F(z) = O(z) e -ir~ + 0 ( -  z) e -ir~ . (15) 

In other words, 

[0v12 _ 7 1 
rc I M -  1"t 2 ' (16) 

the familiar Lorentzian shape. These formulas were already written down 
by Matthews and Salam, from a less abstract viewpoint. 

We can choose 

V 7  1 (17) ev(M) = M - F ' 

and the span of this vector fixes the subspace 112 in ~ .  The extension 
[U('c), ~¢~] of IV(v), IE] defined in this way is minimal, because Qv does 
not vanish anywhere; and we can generate any measurable function by 
multiplying Qv with trigonometric polynomials formed from e -iza~ and 
taking linear combinations (infinite sums, if necessary). 

If we had made a different choice of phase for Qv, multiplying by 
expi~o(M), where q~ is any real, measurable function, we would have 

10 As usual, the choice of the measure dM is free up to measure equivalence. 
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induced a unitary transformation of ~ N  by the map 0-~0 expi~o and 
got a unitary-equivalent, minimal extension. 

The extension space for IV(b, A), ~VC~v], according to Eq. (1) and 
Eq. (11) is 

= L2(]R 4, aM d3u/2 ~ 1 ~ ) @ ~  2S+1 , (18) 

and ~ v  is identified with the subspace of functions of the form 
( M - F )  -1 ~p(u)x. By the same reasoning as above, it is clear that the 
functions of the form exp( iMu,  b) (M - F) -1 go(u)x span 5¢~; and thus the 
extension [U(b, A), ~¢~] is also minimal. 

Just as the theorem in Section II says, the spectrum of the mass 
operator ~ on ~f, ~ being simply multiplication by M, contains all 
values from plus to minus infinity. The unitary representation U(b, A) is 
a multiplicity-free, direct integral of irreducible representations of the 
Poincar6 group for fixed spin S and all masses - oo < M < oo. There is, 
of course, a doubling in the sense that the representations [M, S] and 
[ - M ,  S] are antinnitary equivalent to each other. 

At first glance, it is tempting to try to give a physical interpretation 
of the space ~ v ,  i.e., the wave functions in ~ having a Breit-Wigner mass 
distribution, by cutting off the mass below the threshold M o = Z mj of 
the n decay products in whatever channel, and embedding the space 
Jr+ = 0 ( M - M o ) ~  in the angular momentum S sector of the tensor 
product space of n free particles. That is mathematically straightforward 
to do. If n = 2, there is a finite multiplicity of ways (channels) to do that, 
while if n _>_ 3, the multiplicity of ways is countably infinite, according to 
the number of representations of the Poincar6 group having spin S that 
appear in the decomposition of a tensor product. 

Matthews and Salam proposed a view like that. Leaving aside the 
question whether the wave function ought to be cut off in a more 
sophisticated way, we could argue that this provides a concept of an 
elementary, unstable particle which in its ideal world has a distinguished 
mass distribution from plus to minus infinity, but which in the real world 
has open to it only decay channels with physical masses. We could say 
that the real world distorts our view of the elementary, unstable particle 
so that it does not obey an exponential decay law (which is close to the 
accepted view), but that its wave function has a "memory" of its ideal 
structure because it is analytic in the mass (up to a phase) and has a 
unique analytic continuation to negative masses giving the group theo- 
retical distribution. 

We find that interpretation uncomfortable, if the natural interpreta- 
tion of the Sz.-Nagy extension from which we "derived" it, is not to be 
lost. If we say that the entire sector of the n-particle space in which the 
cutoff extension is embedded is the space of decay products, any con- 
23* 
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nection between the physical time evolution and that of the ideal Sz.- 
Nagy extension is obscured. If, on the other hand, we say that only that 
part of the n-particle channel orthogonal to the cut-off 3ely is the space 
of decay products, as in the ideal Sz.-Nagy extension, we are still faced 
with the problem of specifying the physical time evolution. If it is to be 
simply that of the cut-off Sz.-Nagy extension, mathematically identified 
via the embedding with that of n free particles, we have to reconcile two 
interpretations of the same space: one, that of the unstable particle with 
decay products; the other, that of n free particles. 

Perhaps such a line of thought can be sustained, but we prefer to 
follow the ideas of the Wigner-Weisskopf theory sketched in the 
Introduction. 

IV. A Possible Model 

Let us discuss the possibility that the MSZ representation can be 
understood as describing the "interaction part" of the time evolution, so 
that the exponential decay law is realized in the approximation that all 
kinetic terms in the invariant Hamiltonian or mass operator are neg- 
lected. There is no reason in principle why the interaction should not 
have a spectrum from plus to minus infinity, so that objection to the 
MSZ representation could then be removed. 

Thus, we reinterpret the variable M in the wave functions of vectors 
in the unitary extension space to mean center of momentum interaction 
energy, and we change its name to V, replacing the notation Lz(IR 1, dM) 
by L2(1R t, d V), and reserving M for the continuous spectrum of the free 
mass operator. 

To specific the model, we apply the Wigner-We'isskopf theory, more 
or less in the form developed by H~Shler [11], restricting ourselves 
always to the center of mass. Our Hilbert space has the same structure 
as before, o~/g = ,¢gvG 34(D, and we have a realization in which the inter- 
action is diagonal, 3/g = Lz(IR ~, d V). In this realization, the one-dimen- 
sional space ~ v  is identified, as before, with the span of the Breit-Wigner 
wave function Or(V). 

Now we make a second identification of the components ~gv and 
JFD. The space ;cry is interpreted as the only discrete eigenspace of the 
free mass operator, corresponding to the undecayed, unstable, elementary 
particle. We emphasize that by the identification -3¢f v = C. The space 3/fD 
is interpreted as that of the free, center of mass wave functions of the 
decay products, belonging to the continuum of the free mass operator. 
We can realize it in a representation where the free mass is diagonal by 
the identification 

~D=L2[IR~,O(M-Mo)dM]=-Lz(Mo,~), M o > O ,  (19) 
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where Mo is the threshold of the free decay products. This gives a 
realization 

a r  = ¢ 0  L2 (Mo ,  oo) (20) 

in which the free mass operator IM o has the form 

11~ = m E v ( ~  IM °, m > M o  , (21) 

with the action 
~'v~oz = m z  , z ~ ff?, ; 

(22) 
(]IVI o f ) ( M )  = ( ] l ' ~ f ) ( M )  = M f ( M ) ,  f e L2(Mo, oo). 

As we described in Section III, only the space .~o = L2(Mo, oo) is to be 
embedded in an angular momentum S sector of a space of n free particles. 

Now we have two realizations of Jr, corresponding to the diagonaliza- 
fion of the interaction and of the free mass, respectively. We determine 
the dynamics when we give the correspondence between the two represen- 
tations. The mapping between the two representation of aft v is trivial, so 
we need only choose an isometry between the two representations of 
ari D. All such isometries are parametrized by picking O.N. bases in each 
realization and putting them in one-to-one correspondence. Thus, let 
q~, i = t, 2 . . . . .  be on O.N. basis in L2(Mo, ~ ) ;  and let q~ be an O.N. basis 
in the subspace of L2(IR 1, d V )  orthogonal to Qv- Let U be the isometric 
map 

U: [Ct~ Lz(m0, ~) ]  --+ L2(IR 1, d V )  

defined by 
Uz=zQv , z ~ ,  

(23) 
Uq~ = tp i . 

Then on a r  =@GL2(M0,  co), we can write the total mass in the form 

IlvI= IlvI o + U - 1 V U  = IM o +'gr.  (24) 

The freedom in the interaction operator V is exactly the freedom of 
unitary transformations that commute with the projection operator E v 
for arv. 

To specify the model further, and hopefully make it a physically 
reasonable description of an unstable particle, we have to look for a class 
of U's that guarantees several things: 

(i) ~ ought to be defined as a positive, setf-adjoint operator. 
(ii) The wave operators should exist, and the asymptotic state cor- 

responding to the initially undecayed state Qv, 

Q~ut= l i m e  ~°~ e - I N ~  Otr = U ( ~ ,  O) Qv,  
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ought to lie entirely in Yfo. The asymptotic states of vectors in Yt~o should 
remain in 3¢~D. In a theory with time inversion invariance, the same 
should be true of the incoming states. The wave operators U(oo, 0) and 
U ( - 0 %  0) should be partial isometries from Yt ~ onto 3(fD, SO that the 
S matrix 

S --. U(oo, O) U(O, - oo) = E D S E  D 

is unitary on .~f,. 
(iii) The positive time decay amplitude (Qv, e - i ~  Qv) ought to be 

approximately exponential. 
(iv) The appropriate, retarded Green's function ought to have an 

unstable particle pole on the second sheet. This property is well-known 
to be related to the approximate validity of the exponential decay law. 

The last two requirements, (iii) and (iv), are not matters of principle, 
but rather features that experience indicates to be desirable. 

Unfortunately, we have not been able to show as yet whether the 
well-defined mathematical problem posed by these conditions, especially 
positivity and self-adjointhess, has any solutions. If it does, then we 
clearly have a Wigner-Weisskopf theory with a particular class of inter- 
actions suggested, although indirectly, by the representation theory of 
the Poincar6 group. 

Even if self-adjointness and positivity can be solved, the rest of the 
program is complicated by the fact that • has nonvanishing matrix 
elements within Yfo, and not just between Yfv and YfD and within Yfv- 
The exact solution of the weak-coupling approximation, where the matrix 
elements of the interaction within ~vf D are neglected, is well-known, 
whenever it is well-defined, from either the Wigner-Weisskopf or the 
Lee model [11, 12, 14-17]. In fact, we are going to conclude from the 
remark just below that the weak-coupling approximation is not mathe- 
matically defined in our case. 

That fact is related to the basic question: how can V be chosen to 
make ]lVl self-adjoint? Although it is not the only possibility, it is natural 
to wonder whether ~V~might be made self-adjoint by virtue of the Kato 
condition. Kato showed [t8] that the sum of two self-adjoint operators 
A + B is in turn self-adjoint if A is bounded relative to B (or vice versa); 
i.e., if the domain of B is contained in the domain of A and if 

IIA q~ll < alt q~ll + b fIBgol{ 

whenever q~ is in the domain of A, for some fixed a and b with 0=< b < 1. 
It is straightforward to see that whatever be the unitary transforma- 

tion U in the definition of ]M, it is impossible to have W bounded relative 
to ]M 0, because the domain of RvI 0 is the direct sum of Jfv and the domain 
of H o  D in .)~9: 

~ (~0 )  = ~u  • ~ ( ~ g ) ,  
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whereas the subspace x/g'v is not in the domain of V, because 

[ v  ~v] ( v)  = v -  r 

is not square integrable. 
On the other hand, we have not been able to settle the possibility 

that ~r could be chosen to have its domain inside that of lMo, and to 
bound ]M 0 in the Kato sense. We would call such a theory a strong 
coupling theory. We think that such a possibility has a certain appeal 
as a quasikinematic description for elementary unstable particles, for not 
only would the unstable particle representation of the Poincard group 
play a role, it would dominate. 

In any case, however IM might be defined, we can see from this dis- 
cussion that the weak coupling approximation is not defined as an 
operator theory in our perhaps nonexistent model. It corresponds to 
the decomposition 

V = Ev~rEv + E W E "  + EDgE v + EDVED, 

with the last term thrown out. What is left cannot be a self-adjoint 
operator, because the fact that ~v is not in NW) means that EDVE v is 
not an operator, although its matrix elements between ;'~o and ogz v do 
exist for the dense manifold of wave functions in ~Co having sufficiently 
rapid decrease at infinity in the V representation. Another way to see 
that is to verify that while E v V E  D is defined as an unbounded operator 
on the dense domain just mentioned, its adjoint is zero, according to the 
mathematical definition. 

Appendix: 

Trouble with an Exponential Decay Law 

The theorem proved here relaxes the condition that the evolution of 
the unstable state obey a semigroup law, but imposes a more detailed 
law of decay. It is welt-known [9], and we just give a modern proof for 
completeness. 

Theorem. Let V( t )= EvU(t  ) Ev, where U(t) is a strongly continuous, 
one parameter, unitary group on a Hitbert space 340 D 9~v. 

(i) I f  ][V(t)q~ll =<C exp(-Tt )  for some 7 > 0  and all t > 0 ,  and for 
some nonvanishing q) in ~fv, then the spectrum of the infinitesimal generator 
of U(t) is the whole real line. 

(ii) The same conclusion holds if we have exponential decrease only in 
the weak sense that there are two vectors ~ and ~o in 2/f v with Qp, q)) ~ 0 
and [(~p, V(t) q))l <= C e x p ( -  ?t) .for some 7 > 0 and all t > O. 
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Proof. We can reduce the first case to the second. In the first case, if 
we insert a complete set of vectors in ~ v  we get 

II V (O q'll 2 = E (q', V(t)* W,) (V'~, V(O q,) . 
i 

Each term in the sum is nonnegative, and hence has at least as good an 
exponential bound as the sum. If q~ 4= 0, there must be some value of the 
index i for which (Wi, q~) 4= 0. Put Vo~ = *p, and we are in case (ii). 

Now M(t) = (~0, V(t) q~) = (,#, U(t) q)), because ~o and ,# are in af' v. Let 

M(t)  = ~ d2J/g(2) e - i ~  , 

where J{(2) represents the bounded measure associated with the spectral 
decomposition of the generator E: 

d @ ,  e(2) ~0) = d2~(2 ) .  

Since the matrix element M(t) is a uniformly bounded, continuous func- 
tion, the decomposition 

M(t)  = [0(t) + 0( - t)] M(t)  

is well defined in the sense of tempered distributions; and if we set 

Mr(2) = ~ at  0 (+  t) M( t )  e i;'* , 
--¢10 

we get 

~(,~) = ~ + ( 2 )  + ~_ (,~). 

It is clear from the definition that for real 2 the tempered distribution 
~r+ (2) is the boundary  value of a function analytic in the upper half 
plane, while M_ (2) is the boundary value of an analytic function in the 
lower half plane. 

Suppose some nonempty, open set (9 of real values 2 is not in the 
spectrum of E. Then (9 is excluded from the support of/¢/(2), and 

M+ (2) = - M_ (2) 

for 2 ~ (9. It follows from the edge-of-the-wedge theorem for distribution 
boundary values [19] that M+ and - M _  are different pieces of one 
function analytic in the whole 2 plane, except possiNy for that part of 
the real axis in the spectrum of E; and we see that it/(2) is just the dis- 
continuity of this analytic function, as is well known. 

So far, we haven't used anything except the fact that U(t) is unitary 
and continuous. If we have a decreasing exponential bound on M(t)  for 
positive t, it follows that fie+ (2) is analytic in the half plane Im2 > -;~, 
which includes the real axis; and hence the function we just defined via 
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analytic continuation and the edge-of-the-wedge theorem is an entire 
function. We conclude that any open set (9 not contained in the spectrum 
of E must be empty, for otherwise the discontinuity is zero and Jg(2) is 
zero, contradicting our hypothesis that (~p, <p)= ~ d2 J¢/(2) is nonzero. 

Hence we find that the spectrum of E is the whole line. D 
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