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Summary. The ionization conjecture for a tomic models states that the ionization 
energy and maximal excess charge are bounded by constants independent of 
the nuclear charge. We prove this for the Hartree-Fock model  without the 
exchange term. 

1 Introduction 

One of the most challenging problems in mathematical physics is to try to 
understand the experimental fact that a toms can only carry a very small net 
negative charge. It seems that a neutral a tom can only bind one or  two extra 
electrons. 

Over the last decade the research into this problem has been extensive, see 
[BE], [FS1] ,  [L3] ,  [-LSST], I-R1-2], [SSS],  [S i l -3 ] .  The best known result 
is due to Lieb [-L 3], it says that the total number N of electrons that an a tom 
with nuclear charge Z can bind satisfies the  bound 

(1) N < 2 Z + I  

For  Z =  1 this gives the correct bound. In  the asymptotic limit Z-- ,ov,  (1) can 
be improved ([FS1],  [SSS]) to the following bound  on the excess charge 
Q = N - Z  

(2) Q < const Z 1 -~, 

for some ~ with 0 < ~ < 2 / 3  (that one can  choose e=2 /3  has recently been 
announced in [FS 2], this also follows from the method in [SSS], if one compares 
with the model presented here, and use the main results below). However, none  
of these results come close to explaining Q < 1 or 2. The lack of understanding 
is so great  that to the best of my knowledge not even a heuristic argument  
for Q < C, with C independent of  Z has been given. 
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In this paper we prove this fact in an atomic model whose complexity is 
so great that it mimics the true quantum theory to a very high degree. The 
constant bound on Q has previously been established in only a few much simpler 
models, the Thomas-Fermi model [LS], the Thomas-Fermi-von Weizsficker 
model [BL], and the Hellmann model [SW]. 

The complexity of the model studied here and the nature of the proof given 
is such that I feel it might very well indicate the right approach to the full 
problem. 

The model we study is given by an energy functional defined on what is 
called admissible density matrices. An admissible density matrix ~ is a trace 
class operator 

(3) "~: L2(R3;~2).--.4. L2(~3;~ 2) 

satisfying the operator inequality 

(4) 0 < 7 < 1 .  

Such an operator can be written a s  ~=E2k(~gk(~Ok, where {q~k} is an orthonor- 
k 

mal family in Lz(N3; 1132) and 0<2k<  1. We can then define the density 

(5) p~(x) = ~ 2 k I~ok(x)12 ~ L' 0R3). 
k 

The Reduced-Hartree-Fock functional is 

(6) gRHF (Y) = Tr [h z Y] + D (pr, pr), 

where hz = - A - Z/I x l and 

(7) D ( f , g ) = k l f ( x ) l x - y l - l g ( y ) d x d y ,  f g e L a ( ~ 3 ) .  

The real Hartree-Fock model which is so widely used in physics and chemistry 
is given by the functional 

(8) O~nF (Y) = 8RHF(T)-- �89 I Y (X, y) l 2 [ X -- y [ -1 d x dy. 

Here y(x, y) is the integral kernel representing ~,. The last term in (8) is called 
the exchange term. 

Usually the Hartree-Fock functional is only defined on projection operators. 
However, it was proved in [L2] that minimizing gnv over admissible density 
matrices gives the same result as minimizing over projections only. This fact 
seems not to hold in general for gRnF, see also Corollary 2 below. The reduced 
Hartree-Fock model is somewhat similar to the model originally introduced 
by Hartree in [HI. 

The energy of an atom with N electrons (N not necessarily an integer) and 
nuclear charge Z in the reduced Hartree-Fock model is 

(9) ERH F (N, Z) = inf {~RHF (F)[7 E G, Tr ~ < N}, 
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where 

(10) G = {7 admissible [ Tr ( -  A 7) < ~ ,  O(p~, p~) < ~ }. 

In appendix A we study the minimization problem of (9). The result is sum- 
marized in 

Theorem 1 (a) There exists N~(Z) with Z <N~(Z)~=2Z such that for all O < N  
< N~(Z), ERHF(N, Z ) =  ~Rav0')for  some ~ G  with T r y - - N .  

(b) N~--~ E~Hz(N, Z) is convex, non-increasing and constant for N > N~(Z). 

(c) The density p~ is uniquely determined and is spherically symmetric, 

(d) y can be written as 

(11) 7= ~ I~kfPk~k, 0<2k<- 1 
k=l 

where each ~o k with 2 k =~ 0 is a normalized eigenfunction of  

Z 
(12) h~z = - A - ~  + pr * l x l -  ', 

(* denotes convolution). 
(e) The energy ERH r approximates the true quantum energy EQ; 

(13) (1 + C a Z -  2/3) ERHF(N ' Z) < Eo(N , Z) <~ ERHv(N, Z), 

if N = 2 Z for some constant 0 < 2 < 1. 

Except for a few differences the corresponding theorem for Har t ree-Fock 
was proved in [LS2]. F rom this theorem we easily conclude 

Corollary 2. I f  ];=Z,~k(Pk@~Ok is an absolute minimizer then )~k=l o r  0 unless 
h ~z qgk = O. 

Proof We know that (q~j, h~ q~i) < 0. If (~0j, h~ cp~) < 0 and 0 < 2j < l we get 

'~i gRHv(r) = (~0j, h~ q~j) < 0, 

hence y cannot be the absolute minimizer. []  

As stated earlier we will prove a constant bound on the excess charge 

(14) O~ (Z) = N~ (Z) - Z. 

But we will in fact conclude this bound from a much stronger result which 
we will now describe. 

In the rest of this paper we will let ), denote an absolute minimizer. Define 
v(R), the screened nuclear charge at radius R and the potential (~RHF by 

(15) v ( R ) = Z -  ~ p~(x)dx 
I~l<=R 
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and 

Z 
(16) tPRnF(X ) = ] ~ - -  p~ * IX I- x. 

Our main result is 

Theorem 3. For all 6 > 0 there exist ~, D > 0 such that for all R satisfying 

(17) ctZ- a/3 <-R <-D 

we have 

(18) (324 ~z2--6) R -  a < v(R) <(324 7zE + 6) R -  a, 

and for all x such that R = I xl satisfies (17) 

(19) (817r 2 -6) Ix1-4  _< tPRHF (X)__< (817~2 + 6)[X1-4. 

The constants 3247r 2 and 81~2 come from the Thomas-Fermi (TF) theory. 
It is in fact easy to prove the above Theorem in the TF theory (see Theorem B 3). 

The result corresponding to (19) in the Thomas-Fermi-von Weizs/icker theory 
was proved in [So], by a method completely different from what will be presented 
here. In [So] (19) was the key to proving universality, i.e., the existence of 
a limiting electron density for large atoms. 

The idea to prove Theorem 3 is to use a renormalization scheme comparing 
with TF type models on different length scales. By comparison with the regular 
TF model it is indeed, as we will see, easy to show that (18) and (19) hold 

1 1 

for ctZ-3<_R<_flZ -~(1-E), for some e>0.  Using this we compare the density 
outside {Ix[<R} with the density of what we call an exterior TF model. This 
will give (18) and (19) for R in an interval of larger scale. This scheme will 
converge to give Theorem 3. In Appendix B we define and study exterior TF 
models. 

From Theorem 3 it will be easy to conclude 

Theorem 4. For all Z we get the following bounds on the excess charge Q~(Z), 
and ionization energy I (Z) = ERHF(Ne(Z)  - -  1, Z)-- ERHF(Ne(Z) ,  Z )  ~ 0 

(20) Qc(Z)<CQ and I (Z)<CI ,  

where CQ and Ct are independent of  Z. 

The paper is organized as follows: In Sections 2 and 3 we compare with 
the exterior TF model. Section 2 gives an upper bound to ERHF and Sect. 3 
a lower bound. In Sect. 4 we prove Theorem 3 and in Sect. 5, Theorem 4. 

2 Comparison with exterior TF density: upper bound 

Let 7 be an absolute minimizer of ~RHF" We will define a trial density matrix 
by changing 7 in an exterior region. We use the method of coherent states 
(see [L 1], [L4] and [T]). 
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For  all R I > 0  and 0 < r < � 8 8  choose two spherically symmetric 
C~ 0• : 113 ~ 11+ w {0} such that 02 + 02_ = 1 and satisfying 

(1) 0 . ( x ) = 0  if Ixl<Rl-r  and 0 + ( x ) = l  if Ixl>Rl+r 

with 

(2) IIzO• 1. 

Define a trial density matrix by 

(3) ~7(x, x') = 0_ (x) ~ (x, x') 0_ (x') + 0 + (x) K (x, x') 0 + (x') 

where 

(4) K(x,x')=l~(2n)-3Sdpdqg(x-q)g(x'--q)M(p,q)e iv~x-x'~. 

Here I ,  is the identity on q22 and 

(5) g(x)=r-3/2gl(x/r ) gl={ (2n)-l/2lx[-lsin(nlxl)' I x l < l  
0, I x l > l  

then ~g(x) 2 dx= 1. 
The function M is defined by 

M (p, q)= O((3 7c2) 2/3 pu(q)2/3 -- pZ), (6) 

where 0 is the function 

(7) O(t)={lo if t > 0  
if t < 0 '  

Pu is a non-negative function in L 1 (113)c~ L s/3 (1/3), to be chosen later, and satisfy- 
ing 

(8) supp p u -  ~ {xl Ixl>R1 + 2 r }  

We have to check the admissibili ty of ~. Given fELZ(113; I~ z) then with 
( , )  denoting inner product  

(f, ~Tf) = (f, 0_ y O_f)+(f, O+ KO+f). 

Since 7 is admissible 0 < ~ ,  0_ ~, O_f)< II0_fll 2. 
A straightforward computat ion using Parseval's identity gives 

O<(f, O+ K O +f)< II0+fll 2. 

Thus O<(f, ~f)< r[ftl 2, i.e., 

0__<~__<1. 

The density corresponding to K is 

(9) Pt~ (x) = K (x, x) = Pu* [ g [2. 
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It is then clear that ~7 is trace class and 

(10) p~ (x) = 0_ (x) 2 p~ (x) + 0 + (x) 2 Pu* I g [ 2 

=O_ (x)2 p~(x) + pu *lg[ z 

where we have used the support properties (1) and (8). Indeed 0+ KO+ = K. 
We will now compute OVRnV(~, 

(11) Tr[--  AT~= Tr[--  A(O_ 70_)] + Tr[- -  AK ]. 

An easy computat ion gives 

(12) Tr[-AK]=[. lVgl2dxSp.(x)dx+~(3n2)z/3~.p. (x)S/3dx 

= n r -  2 [. p.(x) dx + ~(3nz)2/3 [. p.(x)5/3 dx. 

We also get with V = Z I x l- 1 

(13) Tr [VK] = S p~(x) V(x) dx  = ~ p. * ]g 12 "~x(x[ dx 

= Z I [ x l - '  p.(u) ax 

since supp g r supp Pu = 0 and g is spherically symmetric with JIg I 2 = 1. 
Thus 

(14) Tr [hz 7"] = Tr [hz (0_ 7 0_)] + ~- (3 g 2)2/3 j p, (x)S/3 d x 

- Z j l x l - l  p.(x) dx  + ~ r -  Z ~pu(x)dx. 

For the last term in gRHV we find 

D(p~, p~)=O(O 2 p~, 0 z_ p~)+ 2D(O 2_ p~, pu,  Ig / 2 ) 

+ D(pu * lgl2, pu * lg[2). 

Now D (p. * [ g ]2, pu.  ] g [2) < D (p., p.). Since 02_ p~ is spherically symmetric 

2D(O z _ p~, p,*]g[2)=(Z--~)~[x1-1 p.(x) dx 

where 

(15) ~= Z -  ~ 0 2_ p,(x) dx. 

We have 

( 1 6 )  , . i n  __ < ERHF = gRHF (~) = ~RHF (if) ~ ~RHF (0_ ~ 0 _) + t~TF (Pu) ~- ~ r - 2 ~ Pu (x) d x, 

where 6~xv is defined in Appendix B. 

J.P. Solovej 
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3 Comparison with exterior TF density: lower bound 

As before let 7 be an absolute minimizer, i.e., 

E~nv = O~anv(7) = Tr [hzy] + D (PT, P~) 

= Tr [(02- +02+)hz~] +D(p~, p~). 

It is easy to prove the following version of the IMS-formula 

Tr  [(02- +02+)(-Ay)]=Tr[--A(O_~,O_)--A(O+yO+)]--Tr[((VO_)z+(VO+)Z)y]. 

Thus 

(1) E'~v=Tr[hz(O_ ~ O_)+h~(O+ 7 0+)] -- Tr [((V 0_) z + (V 0+)2)7] 

+ D (0 ~_ Or, 02- p,) + 2 O (02- p,, 02+ p~) + O (O2+ p,, 02+ p~) 

= gRnv(O- 7 0_)+ Tr [hz(0+ ~ 0+)] + 2 D(02- p~, 02+ p~) 

+ D(OZ+ p~, 02+ pr ) -  Tr[((V O_ ) z + (V 0+)2)~/]. 

We write 

2 D (02- p,, O2+ p,) = g (0 ~_ p~) �9 I x I - '  (oz+ p~)(x) d x 

=(z-~)flxl-'OZ+ p,(x)+ ~((02- p ) * l x l - ' - - -  

Since 02_ pr is spherically symmetric we get using (2.15) 

where 

(2) 

(3) 

(4) 

Z - q \  2 

Z -  q\  2 s((02-p ),lx1-1 

Rt-r<lxl<Rl+r 
lYl>_-Ixt 

>-AQ(R, r12( 1_ i ) 
= ' \ R t - - r  R ( - + r '  

We obtain 

A Q ( R , , r ) =  ~ pv(x)dx.  
Ra-r<lxl<gl+r 

2 2 > Z - - ' ~  2 2 D(O_ p~, O+ P r ) = S ~ - 0 +  p r d x -  AQ(Rl , r) 2 -  
2 r  

(R1 - r) TM 

Hence from (1) and (2.2) 

rain ERH F ~ ~:~ F ( 0  _ 7 0 _ ) -'1- Tr [h~(O + 7 0 +)] + D (02+ py, 02 p r) 

- C o r -  2 A Q ( R I , r ) - 4  R? 2r AQ(RI, r) 2, 

we have also used r<�88 
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Fo r  pLELI(F,,.3)~LS/3(~-~ 3) a non-negative function, to be chosen later, we 
write 

(5) 0( 02 P~, 02 P,)=2D(pL, 02 P~)+D( 02 P,--PL, 02 P,--PL)--D(pL, PL)" 

Hence from (4) 

(6) ERH vmin ~ ~-r (0_ '),' 0_) -]- Tr [h~(O- + 7 0 +)] - D (PL, PL) 
+D( 02 Pr--pL,02 Pr--PL)--Co r-2AQ(Rl,r)-4R12rAQ(R1,r) 2, 

where 

We will now find a lower bound  to Tr[//~(0+70+)].  0+70+ is a trace class 
operator  in L 2 (~3;  ~z)  with 

0 < ( 0 + 7 0 + ) < 1  and supppo+~o+~_{Ixl>R~-r}. 

Therefore 

(8) Tr [h-~(0 + 7 0 +)] > sum of all negative eigenvalues of h -~ 

here ~ is the Dirichlet realization o f /~  on {I x] > R 1 - r}. 
Writ ing 

(9) ~'=~-pL*lxl-' 
we get since r<R1/4 using the same coherent states as for the upper  bound 
that  for [xI>=Ra-r 

~'* lg l2- -~ '=~( lg[2*lX[-1-- [X1-1)  

+pL*lX[ -1-pL*lg[z*[x1-1 

=pL *IX[- ~--pL *Igl2 *]x[- a >=o 

since PL* I x [ - 1 is superharmonic.  Hence 

(10) h-~> - - A o -  ~',]g[ 2. 

We will estimate the sum of all the negative eigenvalues of - A , - ~ ' , [ g [  z 
as an opera tor  on L2({[x[->__Rt-r}; (E2). 

Let m~, ... be the normalized eigenfunctions, Define 

(11) M(p, q)-- ~ (mi, II.qm,), 
i=1 

where/ /pq is the projection 

(12) H,~ (x, x') = I~ fp~ (x) f~q (x') 
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for 

(13) fpq(x) = g(x - q) e ipx. 

Since mi is supported in {[ x I > R 1 - r} we see that M has the following proper- 
ties 

(14) M(p,q)=O if I q l < R i - 2 r  

(15) 0 < M(p, q) < Tr/Tpq = 2 (=  dim I/~ 2 = # of spins). 

We will choose PL such that the number  N of negative eigenvalues of 
is finite, see (23) below. Then 

(16) (2re) -3 f~ dp dq M(p, q)< N 

since (2 ~)- 3 ~ d p d q Flpq = 1. 
We also have the following identities for any function m6L2(R3; C 2) 

(17) ~[Vm[2 dx=(2n) -3~dpdqp2(m,  Hpqm)-(m,m)~llTg[2 dx 

(18) Sire 12 V'. ]g 12 dx = (2 ~)- 3 S~ dp dq ~'(q)(m, Hpq m). 

Hence the sum of the negative eigenvalues of - A n -  ~'* [g 12 is 

(19) (27r) -3 ~ dpdq{p2-V(q) )M(p ,q)  
Iql>-Ri-2r 

--(2~)-3 ~llTgl2 dx~S dpdq M(p,q) 

>(27r) -3 ~ dpdq(p2--~'(q)}'20(F'(q)-P2)--ffJ~llZg[2dx, 
Iql~Ri-2r 

here we have used (14) and (15). 
Now we choose PL, using the notat ion of Appendix B 

(20) PL(x) = P~F (x, R 1 -- 2 r, v-). 

Then for [ x l > R 1 - 2 r  

(21) 

and 

(22) 

V(X) = t~TF(X, R1 --2 r, v-) =(3 n2 pL)2/3 > 0  

pL(x) dx = ~. 
Ixl>R1-2r 



300 J.P. Solovej 

The number  of negative eigenvalues N can be estimated from a Theorem 
of Lieb [L5]  

(23) N ~ ( 3  7r2)- 1L ~ IF'*lgl213/2dx 
[xl>=R 1 - r  

~(3  7r2) - I L  I [ ~ [ 3 / 2 d X  

[x{>=R1--2r 

=L ~ pz (x )dx=~ .L .  
[xl=>Rl 2r 

L i s a  positive constant. 
F r o m  (19)-(23) we obtain 

(24) Tr [h-~(0 + ? 0 +)] > 3 (3 ~r2) 2/3 ~ pL(x) s/3 d x -  ~ V(x) pL(x) d x -  ~. L.zr r-2. 

Going  back to (6) and recalling (9) we find 

ERHF ~ ~XaRHF (0 - 7 (25) min O_)+r 

+ D(prO 2 - pL, prO 2 - pL)-Co r- 2 AQ(RI , r ) - 4  R [ 2r AQ(RI , r) 2. 

We return now to the upper bound (2.16) and make the explicit choice 

(26) pu(x)={p~x)  for ]xl>=Rl+2r 
for I x l<Rl  +2r" 

Then 

(27) CTF (P.) ~ CTF (PL) + ~ H'x ~ PL (x) d x 
R 1 -  2r<= lxl < Rl +2r 

We know that  

3 ~2  p L ( X  ) = ~(X)3/2 ~ ~3/2 IX I-  3/2. 

Hence since r =< �88 we can estimate the error  term in (27) 

161/2 -~ -5'2 
I ~ p L ( x ) d x < = ~ - - r R ,  v ' .  

R~ - 2r~ lxl <= Rl + 2r 

Thus combining (2.16) and (25) we obtain 

(28) D(p~O2--pL,p~O2--pL)<(L+l)~zr-2~+Cor-2AQ(Rl ,r)  

2 161/2 -�89 + 4 R [ E r A Q ( R I , r )  + ~ r g l  v . 
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In  the case where r=R~ = 0  we easily get by copying the argument in [L4] 

(29) D (p~ -- PTF, P~-- PTV) < Co Z 711 
s 

where ~ = ~o- 
We have 

Theorem 5. (a) Given R1, r > 0  with r< l R1. Choose O+ corresponding to R 1, r 
as described in (2.1.2). I f  7 is the absolute minimizer and pL(X)= PTF (X, R 1 --2 r, ~) 
then the inequality (28) holds, with ~ and A Q defined in (2.15) and (2) respectively. 

(b) In the case where R 1 = r = 0  we get the inequality (29). 

4 The renormalization procedure 

In this section we will prove Theorem 3. We begin with 
1 1 

Lemma 6. For every 6 > 0 there exist fl, ~ > 0 such that for ct Z - 3  < R < fl Z 7(1 --e) 
we get (1.18) and (1.19). 

Proof. Choose z e C ~ ( R  3) with Z (x )= l  for I x l < l  and )~(x)=0 for I x l > l + 2 .  
Let XR(X)= Z(x/R). Then with" denoting Fourier transform 

(1) J ~ )~R(X)(p~(x) -- PTF (X)) d x l = J S ZR (P)(Pr -- PTF)~(P) d p l 

=< C (~ 12. (p) j2 I p 12 d p)~/2 O (p,--  PTF, Or -- PTF)'/2 
7 7 

< Co II VZR II 2 Z~(1 --e) ~ C2 R 1/2 Z g(l -Q  

Here we have used Theorem 5(b). This inequality was an essential ingredient 
in [-FS 1] and [SSS]. 

For  v(R) defined in (1.15) we get 

(2) v ( R ) = Z - -  ~ p~(x) dx=SPTF(X)-- ~ p~(x)dx. 
Ixl_<R Ixl<R 

Using the result corresponding to (B.13) for the regular TF theory we easily 
see that we can find a such that if R > a Z -  1/3 and 2 is sufficiently small 

(3) -- C~ R 1/2 Z 7(l-e) q- (324 rc z - ~ )  R -3 ~ v(R) 
\ 

7 (~ 
<= C;~ R1/2 Z6(1-e) +(324 7z2 +~)  R - 3 

Thus if a Z -  ~/3 < R < f l Z -  1/3~-~) we get 

(-C). f lT/2+324rc2--~)R -3 <=v(e)<=(e~flT/2+B24rc2+~)R -3, 

It is therefore clear that we can choose fl such that (1.18) holds. 
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(1.19) is proved in a similar way except that we replace (1) with 

(4) ~ [ Vq~RHF - -  [7 (OTF [2 d x = D (P7 - -  P T F ,  P~, - -  PTF), 

together with the inequality 

(5) [q~RnF(X)--~OwF(X)[<�89 ~ IV~o,nr--17q~xFl2 dy) ~/2, 
l y l > l x l  

which holds because of spherical symmetry. [] 

The Renormalizat ion procedure is given in 

Lemma 7. Given 6<0.  Then there exists Dl(f i )>0 such that if (1.18) and (1.19) 
have been proved for R and Z satisfying 

1 1 . 

(6) ctZ-~ < R < f l Z - 3  0 -~) < Dx (6) 

where o~ and fl are the same as in Lemma 6, and n is a positive integer, then 
(1.18) and (1.19) will hold for  R satisfying 

1 1 . . . .  +~ 

(7) ~ Z - 3  < R < f l Z - 3  ~'-~ . 

Before proving this lemma we show how to use it in the 

Proof of  Theorem 3. Assume R satisfies (1.17) with D = min {fl, D 1 (6)}. Then since 
1 

lim f lZ  -~(I -`J = fl we can choose a smallest possible n > 0 such that  
n ~ o o  

1 1 . . . .  + 

c t Z - - ~ < R < f l Z - 3  ~-~J . 

1 k 

If n = 0 we are done  by Lemma 6. If n > 1 we know that  for all k < n, flZ -3(1 -~) 
< R < D,  (6). Then starting with Lemma 6 we prove by induction using Lemma 7 

1 1 , . + ,  

that  (1.18) and (1.19) hold for all R 1 satisfying o~Z-3<R1 < flZ -~(1 ~J especial- 
ly for R. []  

Proof of  Lemma 7. We assume that  Z satisfies (6), and that (6) implies (1.18) 
1 1 . 

and (1.19). We first notice that ( 4 a Z - ~ ,  ~ f lZ  -~<1-~)) is a non-empty interval 
if O1 (6) <-~ fla/~ ctl - 1/,. Indeed 

1 1 1 

1 1 . 

Now for any R 1 e ( ~ a Z - 3 ,  ~ f l Z - 3  0-~) ) define 

(8) r = R I + 2/3. 
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T h e n  if (4 D 1 ((~))2/3 _____ 1 we get r < �88 R 1. 
W e  choose  0 • for R ~, r as descr ibed in Sect. 2. Then  since R1 -- r a n d  R 1 + r satisfy 

(6) we can  use  (1.18) to  get the  fo l lowing e s t ima te  for ~= Z -  ~ O_ (x) z p~(x) dx 

(9) (324 7~ 2 - -  ~ ) ( 5 ) -  3 R~- 3 ~ ~_~ (324 rt 2 + 6)(�88 3 R [- 3. 

F u r t h e r m o r e  f rom (3.2) 

(10) AQ(RI-r)<=v(R 1 --r)--v(R 1 +r) 
=< [(324 rt z + 6)(43-) - 3 _ (324 rc z - 6)(�88 - 3] R i- 3 = c~ R 1- a. 

No t i ce  especial ly  t h a t  

(11) (R 1 --  2 r) 3 ~7> vR3 > 1 ( � 8 8  3(324 z~2 _ 6) 
8 ~ 

W e  get  f rom T h e o r e m  5 us ing  (8)-(10) 

-7  _1 
(12) D(p~,O2+--pL, p:,O2+--pL)<=c,~R 1 +3(R~/3 +R2/3)<=C~Dl((~)l/3 R? vO-e), 

w h e r e  we h a v e  used R 1 < D1 ( 6 ) <  1 a n d  e - w o  < ~ . -  1 1 
F r o m  (11) an d  T h e o r e m  B.3 we can  f ind 5 ( 6 ) > 0  s u c h  tha t  f o r / ~ > � 8 9  1 

(13) (324zt2--~)/~ -3< ~ p L ( x ) d x < ( 3 2 4 r c 2 + f ) R  -3, 
I x l ->_~  

w h e r e  we h a v e  used t ha t  pL(X)=PTF(X,  R1--2r, ~). I f  we recall  t h a t  SpLdX=f  
we can  r e p e a t  the a r g u m e n t  f r o m  L e m m a  6 to  get t h a t  for  R => ~(6)R~ 

7 

-C'~Dl/6R~/2R~-2(l-~)+(324rcE-�88 - ~ O+(x)2p~(x) dx 
Ixl<=R 7 

<= C'~Dl/6 RX/2 R~g(1-") + (324 rc2 + �88 b) R -3. 

N o t i c e  t h a t  ~ -  S O+(x}2pr(x)dx=v(R). If  ~(6)R~<R<flaR(~ 1-~) for a n y  
Ixl<-_g 

fix > 0  we o b t a i n  
7 7 

(14) (--C'6D]/6fl?2-~46§ 

+ 324 re2) R -3  . 
1 1 . 

If we le t  R1 ru n  ove r  ( ] c~Z-3 ,  4flZ-r ) we f ind  t ha t  (14) h o l d s  if 

1 I , ,  ,n+ 1 

(15) 4c~ 5(6) Z 3 <  R < fll (~ fl)l -~ Z - 3 " - ~  . 

W e  c h o o s e  fla s u c h  
7 

t ha t  fll(~fl)l-~>fl. T h e n  we choose  D1(6 ) such  t h a t  
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Furthermore  we want to make sure that the interval (15) overlaps the old 
interval (6), i.e. 

1 1 

~c~(,~)z x < f l z - x  "-~). 

1 

But since c~ Z - 3  < D (6) this holds if just D (6) is chosen small enough. 

We have proved that  (t.18) holds if R satisfies (7). The proof  that (1.I9) 
holds is very similar, using results corresponding to (4) and (5). It is left as 
an exercise to the reader. [] 

5 Bounds on excess charge and ionization energy 

In this final section we prove Theorem 4. 
First notice that f rom Theorem 1, Qc ( z ) <  z and 

I (Z) <= - ERHF(Ne(Z), Z) ~ const. Z 7/a. 

The last bound follows since ERHF(Nc(Z), Z) can be estimated below by the 
sum of the No(Z) first negative eigenvalues of the hydrogen atom. 

It is then clear that  in proving Theorem 4, we can assume that Z is greater 
than any constant. We can therefore use Theorem 3. 

The method we will use to prove the excess charge bound is similar to 
the methods used in [SSS] and [So]. 

The absolute minimizer can be written as 

k 

where {gk} is an or thonormal  family with 

h~ (Pk = ek qh,, ek <= O. 

Let R be a fixed radius independent of Z, with R<�88 Choose 0 < z E C ~  3) 
with X(x) = 1 if I xl _-> 2 R and X(x) = 0 if I xl < R. Then 

(1) 0_-> ~ ~ ;t~(~o~, I x I z(x) q,~) 
k 

= y  ~(~o~, Ixl z(x) h~ q~) 
k 

z Z I. 
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Notice that the first term is real so 

(~k, I xlx (X)(-- A) ~k)= j" ~ok (x) lxlx(x)(- A) ~Ok dx 

= ff I V~Pkl 2 Ixl Z(x)dx + Re( j  ~ x )  Vgk(X ) �9 V(Ixl Z(x)) dx) 

>--�89 -1 ~ I~#kl 2dx. 
Ixl>_R 

Using Theorem 3 we conclude 

~ 2k((Pk, IXIZ(X)(--A)qgk)>=--CR-I( ~ pr(x)dx) 
k }xl>R 

>= -- C R - '  (5 Z(x) p~(x) d x  + C). 

Then from (1) we find 

0 > - CR- l ( f  Z(X) p~(X) dx -~- C)--Z f Z(X) py(x) dx 

+ SZ(x) pv(x)[x[ Ix--y[-1 py(y) dx dy 

= - CR-  l( j  Z(x) pr(x) dx + C)--Z j Z(x) pv(x) dx 

+ 5 (1-  Z(y)) p~(y)lx- y] -1 ]xl z(x) p~(x) dx d y 

+ k ~ Z(y) p~(y) ~ Z(x) pr(x) dx dy. 

In the last term we have used symmetrization. Using the triangle inequality 
and the definition of v(R) we arrive at 

0 >= - CR -1 (j X(x) pv(x) dx + C) -- v(R) j Z(x) p~(x) dx + �89 (~ Z(x) p~(x) clx) 2. 

Since R and v(R) are bounded by constants we get 

X(x) p~(x) dx <= Const. (2) 

Then 

Q~(Z)= X~(z)- z =  I p~(x) d x -  Z 

<-- I P.:(x)dx-Z+Iz(x)p~(x)dx 
Ixl<2R 

= -- v (2 R) + 5 Z (x) p~ (x) d x < Const., 

since v(2R)>0.  
To prove the bound on the ionization energy we go back to equat ion (3.4). 

F r o m  Theorem 3 we can choose R 1 and r independent of Z such that 

I02_pv<=N.tZ)-I. 

Then ~RHF(O_yO-)>ERHF(Nc(Z)--I,Z). Hence we just have to estimate 
gRHF(0_ ~ 0-)  rain --ERH F from above by a constant. Or, from (3.4) it is enough to 
show 

(3) -Tr[h~(O+yO+)]+Cor-2AQ(Rl,r)+4R[ErAQ(Rx,r)Z<Const. 
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But since ~, R~, r are bounded by constants and 

0 + (x) 2 pr (x) d x = N~ ( Z ) -  ~ 0_ (x)2 p~ (x) d x 

= Q~ (z) + ~ < Const. 

We immediately conclude (3). 
This completes the proof of Theorem 4. 

J.P. Solovej 

Appendix A. The RHF minimization problem 

In this appendix we prove Theorem 1. We first notice 

Lemma A 1. The map 

Trace class operators in Lz(R 3, ~3)oyF-rpraL1 (~3) 

is continuous and linear. 

The proof of this is left to the reader. 
For  all rotations f2ESO(3) there corresponds a uni tary operator Ua on 

L2(Ra, C2). We denote 7 a = U a - l y U a  for 7~G, where the set G was defined 
in (1.10). Then p r ,  (x) = pr (f2- a x). It is clear that gRnv (7) = gRnF (~a)" 

If dO denotes the Haar  measure on S0(3) we get from the convexity of 
~RHF 

Given N > 0, it is then clear from the above spherical averaging procedure 
that we can choose a sequence {~,(,)} in G with TrTC")<N and 7~)=~ c"~ for 
all f2~S0(3), such that 

(1) lim ~RHF (])(n)) = ERHF (N, Z). 
n~oo 

Let pC.)= Prc.;. Then pC.) is spherically symmetric. 
Since ~(.) is minimizing Tr[hzy  c")] is a bounded sequence. It then follows 

from Kato 's  inequality 

(2) Tr  [~c.) V] < ~ Tr [ -- A 7 c")] + C~ Tr 7 c"), all e > 0 

with V = Z/I x l acting as a multiplication operator, that Tr [ - A yc,~] is bounded.  
~") = (1 - A) 1/2 yc")(1 -- A) 1/2 defines a sequence of positive trace class operators 

on L 2 (R 3, ~z) with bounded trace norms 

(3) Tr [~")] = Tr [(1 - A) 7(")]. 

Especially {~7 (")} is a sequence of Hilbert-Schmidt operators with bounded Hil- 
bert-Schmidt norm. 

Since the space cK2(L2 (~3, ~2)) of Hilbert-Schmidt operators on L2(R 3, C 2) 
is a Hilbert space we can assume by going to a subsequence that ~") converges 
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weakly in ~2(L2(R3, 1~2)). Thus there is a ~(~)eff2 such that for all W~(~ 2, 
Tr [W~7 ~")] -~ Tr [WTt~)]. Let 

(4) 

Choose an or thonormal  basis {~k} in L2(~-. 3, i/;2) such that each @k6H 1 (JR 3, ~2). 
From the weak convergence in oK2 it follows that 

lim (Ok, 7 ~") Ok) = lim ((1 -- A) -�89 Ok, ~")(1 -- A) -~ 0k) = (Ok, Y(~)~bk) 

Here ( , )  denotes the inner product in L 2 ( ~ 3  ~2). Likewise 

lim (Ok, (--A)W27("~(--A) l/2 ~kk)= (ffk, (--A) x/2 7t~ 1/2 ~'k)- 

Since 7(")>0 and (-A)l/27(")(-A)l/2>-O it follows from Fatou's  lemma for 
sequences that 

(5) Tr 7 t *) = ~ (l~k, 7 ~ ~ Ok) = < __lim Tr y~") =< N 
k 

and 

(6) T r ( -  A 7~)) < lim Tr( - -  d ?I")). 

We clearly also have 0 < 7 (~176 1. 
Since 7 r is spherically symmetric so is p(~)(x). Hence p(~).[x[ -~ 

< I x [ -  1 S p(~)(x) dx < Nix[ -  1. We then get from Kato 's  inequality again that 

(7) D(p~~ pr = Tr [p(~O), Ix I- ~. 7~~ < oo. 

For  any compactly supported function f with 0 < f (x)  ~ C/I x] the operator 
( 1 -  A) -~ . f .  ( 1 -  A) -~ is Hilbert Schmidt which can easily be seen from the inte- 
gral kernel representation of (1 - A)- 1. 

F rom this we can now prove that 

(8) lim Sp"(x)~xl dx=Sp~~176 dx. 

Write Z Ix I- ~ = V ( x ) =  v. z,+ v ( 1 -  zr), where gr is the characteristic function 
for the set {Ixl _-< r}. Now 

v ( 1 - x , ) ( x ) = Z , , l x l  -~ for Ixl>__r, 
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where Z,  is the uniform charge distribution over {]xl<r}  with total charge 
Z. Thus 

]~ (pC.)_ pC~)) V(1 -Z~) dx] <=2D(lp(")-pC~)l, Z~) 
=< 2 D (pC.) + pC~), pC,) + p(~))l/2. D (Z~, Z~) 112 

=< 2 (D (pC,), p(,))l/z + (O (pC~}, p(~))l/z). D(Z~, Z~) a/2 
< Const. D(Z,, Z~) ~/2 , O. 

r ~ o ~  

We have used (7) and that since ?c.) is minimizing D(p c"), pC,)) is bounded. 
On the other hand 

y pr V (x) Z,(x) d x= Tr[7 c") VG ] = Tr [y(")(1--A) - ~. VX~.(1- A) -}]  
. ~  ,Tr  [yc~)(1 - A )  -~. VX,.(1 - A)-~3. 

Since (1 - A) - �89 V;(~. ( 1 - A) - } is Hilbert-Schmidt. This gives (8). 
We likewise conclude that lira D(p t"), p{~))= D(p c~), pt~)). But 

n~cx2 

D(pC.), pC~)) < D(p(,) ' pC.))l/2 D(pC~), pC~))1/2 

and we conclude that 

(9) D (pC~), pC~)) =< lim D (pC,), pC,)). 

From (5)-(9) we see that gRUV(? c~)) = E(N, Z). 
Recalling that OCRHV is a convex functional because p~--*D(p, p) is strictly 

convex we conclude (a)-(c) of Theorem 1 except for the bound Z =< N~(Z)< 2 Z. 

We now prove Theorem l(d). We can write 7{~)=7= ~ 2aCPkQfOk with 1 
k = l  

> 2 ~ > . . .  > 0. Choose K > 0 such that K + 1 is the smallest number  with 2K + ~ < 1. 
If u_L span {q~ . . . . .  q~K} with Ilull = 1, we define for j~{1 . . . . .  K} 

1 
W ~ = Y, ,~k Ck | G + ~ (~oj + E u) | (~j + ~ a). 

k ~ j  

It is easy to see that we can choose rn > 1 such that for e small enough, 0 < 7~ j) < 1 
and Tr [7~ j)] < N. Then 

0 = d ~RHF (]/~J))ie = O = (~Oj, h~ u) -4- (u, h~ r 

Thus (u, h~cpj)=0. This shows that h~ maps span{(pl . . . . .  r into itself. This 
space is therefore a sum of eigenspaces for h E. 

We can rewrite 

dRnv (V) = Tr [h~ V] - D (p~, p~). 
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The first te rm is smallest  if ~0~, ...,  q~r are eigenvectors for h~. On the o ther  
hand  D (p~,, p~) is independent  of the basis for span {9~, -.-, 9t~}. Hence we con- 
clude tha t  q~ ~ . . . . .  q~  are eigenvectors. Tha t  q~r + ~, q~x + 2 . . . . .  are eigenvectors 
is proved by  showing in the same m a n n e r  tha t  h~ leaves span{9~ ,  ...,  q~r, q0~} 
invar ian t  f o r j  = K + 1 . . . . .  
We are left with proving  Z<N~(Z)<2Z. The upper  bound  follows as in [L3] .  
If N < Z it is clear tha t  h) has  infinitely many  eigenvalues. We define K as 
before. Then  K<N,  and  we can choose u_l_span{qh, ...,  q~r} such that  u is 
a normal ized  eigenfunction of h).  Then  for e > 0 small  enough  

satisfies 0 <),~ < 1 and  Tr  y~ = N + e. Fu r t he r m or e  

Cgnv(Y~) = gRnF (7) + e(U, h~ u) + e, 2 O(I u I z, [u 12). 

It thus follows tha t  E(N + e, Z)< E(N, Z) and hence N~(Z)> Z. 
(1.13) holds because it is true for Har t ree -Fock  theory and  it is easy to 

see tha t  the exchange term is bounded  by C. Z 5/3. 

Appendix B. Exterior TF models  

The Thomas -Fe rmi  theory of an  a tom with nuclear  charge ~ is defined from 
the funct ional  

(i) gTv(P) = 3 (3 ~Z)Z/3 ~ p (X)S/3 d x -- ,7 ~ Ix I - '  p (x) d x + O (p, p). 

Usual ly  this funct ional  is defined on densities p on  all of R3. Here we will 
restrict the funct ional  to densities suppor ted  outside some ball. 

We define the exterior TF  energy cor responding  to a r ad ius /~  > 0 

(2) e x  - -  ETF (2, R, ~) = inf{r  lp E L 5/3 (n~ 3) ~ L 1 (~3), 

suppp~-{Ixl> R}, ~ p(x) dx<=2}. 

It is clear tha t  ~ex > ~ where ETF is the usual  T F  energy, i.e., cor responding  a ~ T F  ~ ~ T F  

t o / ~ = 0 .  
As for regular TF  theory (see [LS1]  or I-L4]) we can prove that  there 

exists 2c, 0 < 2 c  < o c  such tha t  the exterior  p rob lem has  a unique minimizer  
p with ~ p (x)dx = 2 if 2 < 2c. We will prove below in L e m m a  B 1 tha t  2~ < oo. 

Fo r  2 <  2~ the minimizer  p(x) satisfies 

(3) (3~z2p(x))2/3=[fpp(X)--ll]+ on Ix1 ~ / ~  

for a Lagrange  mult ipl ier /~ > 0. Here I t]  + = t if t > 0, [ t ]  + = 0 if t < 0, and 

~5 
(4) ~oAx)= i-~-p*txl-~. 

L e m m a  B 1.2c = ~. 
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Proof Let S={x[q~p(x)<O, Ix[=>/~}. We want to prove that S=0 .  Since q~ is 
radial and subharmonic it follows that if q~<0 on {Ixl=R} then cp<0 on 
{Ix[ >/~}. From (3) we get that p =0.  Thus q~>0 on {Ixl = g} and if follows 
that S is open. q~ is harmonic on S and is 0 on the boundary, hence q~=0 
on S which is a contradiction unless S = 0. 

We have proved that ~op > 0 for any minimizer. Hence 2 = ~ p(x)dx < ~, i.e., 
2c<~. 

Proving 2 > ~ follows as in [L4]  Theorem 3.18. []  

When 2 = ~7 we get the absolute minimizer corresponding to # = 0 .  This is 
the case that will interest us from now on, we denote it 

(5) p(X)~-PTF(X , R ,  Y) (p(X) = ~OTF(X , /~, I~). 

q~ is the unique solution to 

(6) { kT~Acp=tp 3/2, Ix l>g  

0,~pllxl=~= - ~ g  -2 

0, denotes the radial derivative. The boundary  condit ion follows from the spheri- 
cal symmetry since 

(7) 8,~P(X)=lx[-2( f p(y)dy-v-). 
Irl_-<lxl 

q~ has the scaling property 

(8) r (X,/~, ~)=/~-*  q~ (/~-1 X, 1,/~3 ~). 

Lemma B2. I f  vl <Y2 then ~p(x,/~, v l )<  ~o(x,/~, ~2)" 

Proof We cannot have ~ot(x)=~ot(x,/~, "~2)>r ~1)=~02(x) for all [xl>/~. 
Since this would imply from (3) that ~1 = S Pl dx > S P2 dx-= V2" 

On the other hand ~01 and ~02 cannot  intersect. Indeed if Ix I= rl is an intersec- 
tion, then there will be another intersection r z > r l  (possible r2 = 00) such that 
in {rl < I x  I< r2} # ( x ) <  ~o"(x) where r r represent ~01, ~02 in some order. Then 
A(~o'-~o")=const(t#'3/2-~o"3/2)<O but this implies ~p'>~o" on {r~<lx[ 
<r2}. []  

If ~./~3 > K > 0 we find from (8) 

(9) ~D(X,/~, ~-')=/~-4 ~0(/~-IX, 1, YJ~3) ~ Jl~-4 (p(/~- 1 X, 1, K). 

It is easy to prove, see [L4]  Theorem 2.10 or [LS 1] Sect. V.2 that 

(10) lim [y[ 4 ~o(y, i ,  to) = 81 ~z 2. 
lyl~oo 
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F r o m  [So]  L e m m a  11 we get  for I xl > C o n s t / ~  

(11) (p(x,/~, ~7) < (817~2+ C(Ixl/~p -~) Ix1-4 , 

�9 1 
where  z = ~ + 2 > 4. 

Pu t t i ng  toge the r  (9)-(11) we have  p r o v e d  

T h e o r e m  B3.  I f  ~7./~3__>tc>0 and 6 1 > 0  we can find e(~c, 6 0 > 0  such that for 
R=lxl>c~(~c, at)/i  
(12) (817z2-c51)lxl-4<tpvF(x,R,F)<(81~z2+cs,)]x] -4  

(13) ( 3 2 4 n 2 - d i l ) R - 3 <  S OrE( x 'R'F)dx<(324~z:+fl)R-3" 
IxI_->R 
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