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1. Introduction 

Let G be a reductive group over a p-adic field k. The study of admissible representa- 
tions of G(k) via their restriction to compact open subgroups was begun by 
Mautner, Shalika and Tanaka for groups of type A I .  In contrast to real reductive 
groups where the representation theory of a maximal compact subgroup K is given 
in terms of slight modifications to Cartan's theory of the highest weight, the 
representation theory of a (compact) parahoric subgroup ,~ is quite complicated. 
There is still no comprehensive theory for classifying the irreducible representa- 
tions. In the case of GL,(k), Howe, in [8], defined the notion of an essential 
character of a filtration subgroup Ki of GL,(o) based on realizing characters of 
Ki/Ks (2i > j)  as cosets in M,(k). In particular, Howe proved that any admissible 
representation of GL.(k) has only finitely many essential characters. 

In [12], based on work of Howe and the first author in regard to Hecke algebra 
isomorphisms, the first author gave a more precise formulation of Howe's ideas 
and defined the notion of an unrefined minimal K-type as certain representations of 
parahoric filtrations subgroups ~ i  in terms of semisimple and nilpotent elements in 
M,(k). It was conjectured in [12] that every irreducible admissible representation 
of GL,(k) contained an unrefined minimal K-type. This conjecture was proved by 
Howe and the first author via a combinatorial argument and it was also shown that 
any two unrefined minimal K-types contained in an irreducible representation 
must be closely related, namely they must be associates of one another. 

The term "minimal K-type" was used by the first author in analogy with 
a similar notion in the case of real groups. In both cases there is a measure of the 
depth of a representation. In the real case Vogan [16] defines the depth of an 
irreducible representation of K as the length of the highest weight with a rho shift. 
A minimal K-type of an admissible irreducible representation ~ is then defined as 
a K-type whose depth is minimal among all K-types occuring in ~. In particular, in 
the real case, a representation of K can be a minimal K-type in one representation 
and not in another. In the p-adic case an unrefined minimal K-type is intrinsically 
defined (see 5.1), i.r its definition depends only on the representation and not on 
how it sits in the restriction of an admissible representation relative to other 
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representations of filtration subgroups. Because the definition is intrinsic, one 
must now prove that there is an unrefined minimal K-type in any irreducible 
admissible representation rr. In both the real and p-adic setting a minimal 
or unrefined minimal K-type is a very important constituent of a representa- 
tion. In the real case Vogan has proved that a minimal K-type occurs 
with multiplicity one and used minimal K-types as an anchor in classifying 
the irreducible admissible representations. Unrefined minimal K-types and 
their refinements to "refined" minimal K-types should hopefully play a similar 
role in the classification of irreducible admissible representations of a p-adic 
group. 

Based on insight obtained from the combinatorial proof with Howe, the first 
author discovered that the existence of unrefined minimal K-types would follow 
quite easily if certain cosets, which realize characters of filtrations subgroups, 
satisfy a descent property whenever a coset contains a nilpotent element. The 
descent property for M,(k) was established in [5] and [9] and for Lie algebras of 
certain classical groups in [11]. The formulation of the descent property in terms of 
the Lie algebra leads to certain unnecessary restrictions. In the case of GL,(k), the 
vector space M,(k) is both naturally the Lie algebra and the dual of the Lie algebra. 
This double role of M,(k) obscures the distinction between the Lie algebra and its 
dual. 

In this paper, the existence of unrefined minimal K-types is established for all 
reductive p-adic groups (Theorem 5.2). We also prove that any two unrefined 
minimal K-types occuring in an irreducible admissible representation are associ- 
ates of each other. Depth is defined in terms of the congruence level of a filtration 
subgroup and it is proved that an unrefined minimal K-type minimizes depth. To 
each point x in the Bruhat-Tits building of G/k there is a naturally attached 
filtration {~x,,,} of the parahoric subgroup ~x which is the isotropy subgroup at x. 
These filtrations include as special cases the filtrations introduced in [14]. The 
point x also defines filtrations {gx,r,} (resp. {g*._,,}) of the Lie algebra g (resp. its 
dual g*). In particular, cosets in the dual g* naturally parametrize characters of the 
abelian group ~x.~,/~ ..... ~, ri > 0. The descent property can be formulated in the 
proper setting of the nilpotent, i.e. unstable, elements in the dual, and its truth 
implies the existence of unrefined minimal K-types. 

The proof of existence of unrefined minimal K-types presented in this paper is 
conceptually different from the approach followed by earlier authors to prove the 
existence in particular cases. Our proofs are uniform and do not require explicit 
realizations of the reductive groups over local fields. 

The existence and associativity properties of unrefined minimal K-type allows 
one to attach a nonnegative rational number O(n)-the depth of an unrefined 
minimal K-type contained in n - t o  any irreducible admissible representation n. 
This number should be important for certain aspects of the representation 7t. Thus, 
it is quite natural to conjecture that Harish-Chandra's local character expansion of 
the character O~ of n is valid for all regular g ~ r for any point x in the 
Brubat-Tits building of G/k. 

2. Parahoric subgroups and their natural filtrations 

The goal of this section is to introduce natural filtrations of any parahoric 
subgroup in terms of the (absolute) affine root system. 
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2.1. Let k be a nonarchimedeau local field and K be a fixed maximal unramified 
extension ofk. Let o (resp. ~)  be the ring of integers in k (resp. K) and ~ (resp. ~) be 
the residue field of k (resp. K). Note that N is an algebraic closure of [. Let 
F = Gal(K/k) be the Galois group of K/k; F has a natural identification with the 
Galois group of ~/f. We fix a uniformizing element m in o. Let a~ be the discrete 
valuation of K such that c~)(K • = Z. 

Let G be an absolutely quasi-simple, simply connected algebraic group defined 
over k. Let 9 be the Lie algebra of G/k and g = g | K. Recall that the Bruhat-Tits 
building of G/K is a contractible simplicial complex on which G(K) and the Galois 
group F operate by simplicial automorphisms. The Bruhat Tits building of G/k is 
the set of points in the building (of G/K) fixed under F. For  a point x of the 
Bruhat Tits building of G/K, Px will denote the isotropy subgroup at x in the 
natural action of G(K) on the building; Px is a parahoric subgroup of G(K) and all 
the parahoric subgroups of G(K) arise this way. If x is fixed under F, then P~ is 
defined over k (i.e. it is F-stable) and we shall denote P~ c~ G(k) by sg~. 

In the sequel when we say that a point lies in a particular simplex of the 
building, we shall mean that it lies in the interior of the simplex. 

2.2. Let S be a maximal k-split torus of G and let T be a maximal K-split torus of 
G defined over k and containing S. According to the Bruhat-Tits theory such 
a torus T exists [4, 5.1.12]. Since the residue field of K is algebraically closed, 
according to a well known result of Steinberg, G is quasi-split over K i.e., it contains 
a Borel subgroup defined over K. Equivalently, the centralizer Z of T in G is 
a (maximal) torus; it is defined over k since T is. Let N be the normalizer of T in G. 

Let X*(T) be the group of characters of T, and X,(T) be the group of 
1-parameter subgroups of T (recall that a l-parameter subgroup of T is a rational 
homomorphism 2:GL1 -* T). There is a nondegenerate pairing 

( , ) : X * ( T )  •  Z, 

defined as follows: For  )~ ~ X*(T)  and 2 ~ X,(T), )~ o 2 is an endomorphism of GL~. 
Now End(GLI)  = Z and (;(, 2)  is set to be equal to the integer corresponding to 
~o 2. Let ~U = X. (T ) |  R, and f *  = X*(T)|  Then ~ *  is the vector space 
dual of U.  

The apartment A associated with the torus T in the Bruhat-Tits building of 
G/K is an affine space under ~ff. As T is defined over k, A is stable under the action 
of the Galois group F on the building of G/K. There is a natural transitive action of 

on A by translations; for x c A and v ~ V,  we shall denote the translate of x by 
v by x + v. In particular, if 2 is a 1-parameter subgroup of T and r is a real number, 
then the translate o f x  e A under r2(~ 3v') is denoted x + r2. For a given x ~ A, the 
subset {x + r21r E R and 2 ~ X,(T)} is clearly dense in A. 

Let F be the space of R-valued affine-linear functions on A. The function which 
takes the value 1 at all the points of A will be denoted by 6 in the sequel. 

2.3. Let cb(cX*(T)) be the set of roots of G with respect to T a n d / 7  be the basis of 
the root system determined by a Borel subgroup containing Tand defined over the 
splitting field of T. For  a root b ~ ~, let U~ be the corresponding root subgroup. It is 
a connected unipotent subgroup of G defined over K, normalized by Z, and of 
dimension < 3. The Lie algebra of Ub consists of root spaces corresponding to the 
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roots which are positive integral multiples of b. For  b e 4~, let G b be the subgroup 
generated by Ub and U-b; Gb is a simply connected semi-simple subgroup of 
G defined over K. Set Zb = Gb C~ Z. Then Zb is a maximal torus of Gb and Z is 
a direct product of the subtori Za, a e 11. Let Z~ be the maximal bounded subgroup 
of Zb(K) and for any positive integer s, let Zsb~ be the congruence subgroup 
described in [14: 2.6]. Let Z0 be the maximal bounded subgroup of Z(K); then Zo 
is a direct product of the subgroups Z~, a e / / .  

2.4. The subgroup Uq,. To every affine function ~k e F, with gradient b belonging to 
4, one associates a subgroup Ur of Ub(K). (This subgroup has been denoted by Xq, 
in [15].) As we shall need to make extensive use of this subgroup, for the reader's 
convenience we reproduce its description from [15: 1.4] below. An equivalent 
description of the subgroup, which uses a "Chevatley basis" over the splitting field 
of the torus Z, is given in [14: w 

The group X*(Z) of K-rational characters of Z can be identified with a sub- 
group of finite index of the character group X*(T). Let v : Z ( K ) ~  le ~ be the 
homomorphism defined by 

x ( v ( z ) )  = - c o ( z ( z ) ) ,  

for z e Z(K) and X e X~(Z). Then the maximal bounded subgroup Zo of Z(K) is 
precisely the kernel of v, and A: = Z(K)/Zo is a free abelian group whose rank is the 
K-rank of G (which is equal to dim3r The affine Weyl group N(K)/Zo is an 
extension of the K-Weyl group N(K)/Z(K) by A. There is an extension of v to 
a homomorphism of N(K) in the group of affine transformations of A. This 
extension will be denoted again by v. 

Let b �9 4, and u �9 U b ( K  ) --  {1}. It is known ([2: w that the intersection 
U _ b U U _  b (~ N(K) consists of a single element re(u) whose image in the K-Weyl 
group is the reflection r b associated with b. Hence r(u):= v(m(u)) is an affine 
reflection whose gradient is r b. Let ~(b, u) ( e F )  denote the affine function on 
A whose gradient is b and which vanishes on the hyperplane of points fixed by r(u). 
Now for any affine function ~ e F with gradient b �9 4, let 

U 0 = {u E Ub(K)[u  = 1 or a(b, u) > ~}. 

Then Uo is a subgroup and it is normalized by Zo. If b is a multipliable root (i.e. 2b 
is also a root), then Uzo ~ Uo. 

2.5. An affine function ~ with gradient b �9 �9 is called an affine root of  G (relative to 
T a n d  K) if Uq, is not contained in Uo+,. U2b(K) ( = UO§ if2b is not a root) for 
any e > 0. Let ~ ( c F )  be the set of affine-roots of G relative to T and K. As T is 
defined over k, there is a natural action of the Galois group F on 7L Now let x be 
a point of the apartment A, then the parahoric subgroup P~ is generated by Zo and 
the subgroups U~, ~ �9 ~u such that if(x) > 0. 

2.6. Filtrations ofparahoric subgroups. Let x �9 A. There is a natural filtration of P~ 
defined as follows: For  any nonnegative real number r, let P~., be the subgroup of 
P~ generated by Z~o, a � 9  and n �9 Z, n > r, and the U o, for ~ e ~u such that 
~,(x) > r. It is obvious that P,.o = P,, and if s >_ r, then P~,~ c P~,,. For r > 0, let 
P,,,~ = ~)~>,P~,s. It follows easily from Lemmas 2.4 and 2.7 of [14] that for 
all r > 0, P~,, is a normal subgroup of P~. In fact, for any nonnegative real 
numbers r and s, the commutator  subgroup [P,. , ,  Px,~] is contained in P~.,+~. This 
implies in particular that for all r > 0, P~,,/P~,~, is abelian; moreover as 
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[Px.o +, Px,,] c Px,r., the conjugation action of P~ = Px, o on Px.r induces an action 
of the group Px.o/P;,o' on Px,,/P~,,.. I fx  is fixed under F, i.e. if it is a point of the 
Bruhat-Tits building of G/k, then for all r > 0, P~., is F-stable. 

The apartment A' corresponding to a maximal K-split torus T' of G contains 
x if, and only if, T'(K)c~Px is the maximal bounded subgroup of T'(K) (see 
[15: 3.6. l l), and if this is the case, then T' (resp. A') is conjugate to T (resp. A) under 
an element of Px. This at once implies that the filtration introduced above is 
independent of the choice of the apartment containing x. 

Now let y = g. x, g ~ G(K), be a point of the Bruhat-Tits building of G/K. Then 
Py gPxg -1. For r >_ 0, we set Py,r = P -a = _ g ~,rg . Then Py.~ depends only on r and 
y and not on the choice of the conjugating element g. Note that i fx  and y are points 
contained in the same simplex, then P~ = Py and P~.0 ~ = Py, o ~ ; however, for r > 0, 
Px.~ may not in general be equal to Py,,. 

For  a parahoric subgroup P = Px defined over k, the group Px/Px.o + has 
a natural identification with the group of t~-rational points of a connected reduc- 
tive ~-group (see 3.2 below). The pro-nil radical R,(P) of P is by definition the 
subgroup Px. 0-- The pro-nil radical R,(~) of the parahoric subgroup ~ = P c~ G(k) 
of G(k) is R,(P) c~ G(k). 

2.7. Standard parahorie subgroups. We fix a chamber (i.e., a simplex of maximal 
dimension) C lying in A, which is stable under F. Then given a point y of the 
Bruhat-Tits building of G/K, there is a unique point x in the closure C of C (C consists 
of points lying in C and all its faces) and an element g ~ G(K) such that y = g. x. If 
y is fixed under F, then so is x and the element g can be chosen to be k-rational. The 
isotropy I of C in G(K) is an Iwahori subgroup defined over k. I determines a basis 
A of the affine-root system ~. An affine root ~b ~ ~ is said to be positive (~O > 0) if it 
is a nonnegative integral linear combination of roots in A. Equivalently, ~ > 0 if, 
and only if, U o ~ 1. An affine root ~, is said to be negative (~b < 0) if - ~b is positive. 
As I is defined over k, A is stable under the action of the Galois group F on the 
affine root system 7'. For  a subset O of A, let P~ be the subgroup of G(K) generated 
by I and the U-o, 0 E O. Then Pe is a parahoric subgroup of G(K) and any 
parahoric subgroup (of G(K)) containing 1 equals P~ for a unique O ~ A. The 
parahoric subgroup Pn is defined over k if, and only if, O is stable under F. Any 
parahoric subgroup P of G(K) is conjugate (in G(K)) to a unique Po, moreover if 
P is defined over k, then the unique Po to which it can be conjugated is also defined 
over k, and then P and Po are in fact conjugate to each other under an element of 
G(k). The parahoric subgroups Po, for O ~ A, will be referred to as the standard 
parahoric subgroups. These are the isotropy subgroups of points lying in t~. 

Let x be a point of (~ and let O = {0 ~ A ]0(x) : 0}, then Px = P~. Since x E C, if 
for an affine root ~,, ~,(x) > 0, then ~ is positive. This implies that P~,, is contained 
in the Iwahori subgroup I for all r > 0. 

It is obvious that for a suitable point x in the simplex fixed by a parahoric 
subgroup P, the filtration subgroups P~,, of P = P~, defined above, coincide with 
the filtration subgroups introduced in [14: 2.14]. 

3. The associated filtrations of the Lie algebra g and its dual .q* 

Every point of the Bruhat-Tits building of G/k determines a natural filtration of the 
Lie algebra 9 and its dual g*. The purpose of this section is to describe these 
filtrations. 
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3.1. If G/K is not a triality form of type 6D~, let L be the smallest Galois extension 
of K over which G splits. If G/K is a triality form of type 6D4, let L be a 
fixed extension of K of degree 3 contained in the Galois extension of K, of degree 6, 
over which G splits. There are three such extensions, all isomorphic to each other 
over K. We fix a uniformizing element ~vL of L. Let f = [ L : K ] .  Then ~v~/~v 
is a unit. 

For a root b ~ q~, let Lb equal K or L according as b is a long or a short root. (If 
all the roots of the root system �9 are of equal length, then by convention all roots 
are long: if 4) is nonreduced, then all divisible roots are long and all nondivisible 
roots are short.) Let ~v b = ~v if Lh = K and mb = mL if Lb = L. We shall denote the 
ring of integers of Lb by o(Lh) and let (b = [L:Lb].  If ff is an affine root whose 
gradient is b, set L~ = Lb, ~ ,  = Wb and {~ = #b; then for an integer n, ~ + n6 is an 
affine root if, and only if, n is a multiple of E~(cf. [14: w We shall denote the affine 
root ~ + ~,6 by ~ + 

If b ~ q~ is a nonmultipliable root, then U~(K) is isomorphic to Lb. Also, if b is 
a multipliable root, then U~(K)/U2b(K) is isomorphic to Lb as well. For any affine 
root ~O, U~/Uq, + is isomorphic to o(Lq,)/~v,~o(Lq,); see [14: w 

3.2. Let x be a F-invariant point of (~. We shall now describe the filtration of the 
Lie algebra fl associated with x. 

The Bruhat-Tits theory associates a smooth affine o-group scheme J (resp. cNx) 
to I (resp. Px) whose generic fiber J | (resp. f#x | is G and whose group of 
(3-rational points is Px (resp. I). Let L ( J )  and L(C~x) be the Lie algebras of J and 
~x respectively. Since the generic fibers of both J and rex are equal to G, we have 
L ( J )  | = g = L(~x) | In particular, both L ( J )  and L(fgx) are lattices in ff 
We denote them by i and 9~ respectively. Set 

i = i |  

g~ = g~, @ o ~ .  

The inclusion o f / i n t o  Px induces an o-group scheme homomorphism o f ~  into f#~; 
we use it to identify i with a o-Lie subalgebra of gx and i with a D-Lie subalgebra of 
gx. Note that gx is itself a lattice in the Lie algebra g = 9 @kK. 

The special fiber fix @o f of fgx is a connected algebraic group defined over the 
residue field ~; it admits a Levi decomposition over [. Let t'lx be the quotient of 
f~x | f by its unipotent radical. Then Px, o/Px.o + has a natural identification with 
the group of J-rat ional  points of the reductive group I"1~. 

Let 3 c 9 be the Lie algebra of Z, and let 

= 3 |  K .  

For  any b e ~, let ]b C ~ be the subalgebra corresponding to the subgroup Zb and 
let gb be the root subspace in g corresponding to b. 

It is known that for each b ~ 4), both 

i b : = i n f f ,  and 3o b : = i n 3 b  

are "canonically" isomorphic to o(Lb) as D-modules. For  any nonnegative integral 
multiple n of ~b, denote the ~3-submodule of i b (resp. ~lg) corresponding to the 
submodule m'l/l~o(Lb) of o(Lb) by i, b (resp. ~).  Let ~k be an affine root, b be 
its gradient, and let ~Ob be the smallest positive affine root with gradient b. 
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Then ~ - fib = n6; where n is a multiple of :b. Define the ~ - submodule  

~ i~ if n > = 0  

u~ = (wq~-,,(:_ ~ if n < O. 

If n is a negative integral multiple of :b, set a. h = w"]b-,(:_ 11. It is clear that  the uc,'s 
and the ]~'s do not depend on the choice of the uniformizing elements w of K and 
WL of L. 

Now for any real number  r, let ~, be the ~ - submodu le  of 3 spanned by the 
3,"'s, a E/7, and  n ~ :,,Z with n >_ r. Let g~,~ be the ~ - submodu le  o fg  spanned by 3~ 
and  the u~,'s for affine roots ~ such that  O(x) -> r. It is obvious that  gx, o = g~, and 
for r >= 0, ,q~.~ is an ideal in g~. For any r, g~,r is stable under  the action of the Galois 
group F and the adjoint  action of P~ on g. 

For  r __< s, we have g~,~ ~ g~:. Set g~,~+ = ~)~>~g~.s- The induced action of 
Px.o+ on g~.~/g~. : is trivial, so there is a natural  action of PI~(~) = P~,o/P~.o~ on it. 
Note  that  for all r, wg~,, = g~,~+: and so g~.~, ~ wg~.,. 

For all r > 0, there is a natural  isomorphism of P:,.,/P~.~, with gx.Jgx,,, which 
is F x  N~(~) equivariant.  

The o-submodule ofg~,~ (resp. g~.,,) consisting of the elements fixed under  F will 
be denoted by .%,~ (resp. gx.,+) in the sequel. 

3.3. Now let y be a point  of the Bruhat  -Tits building of G/k which is conjugate to 
x and choose .q ~ G(k) such that  y = g .x .  We define 

gy,r = Adg(gx,r) and gy,r = Adg(gx.~). 

Then since P~ keeps g~,~ stable, it is clear that  gy,~ and 9y,~ depend on y and r and 
not  on the choice o f g ( ~  G(k)). I fy  E A, it can be conjugated in C by an element of 
N(k), and hence gy., is the ~ - subm odu l e  of g spanned by 3r and the u0's for affine 
roots ff such that  ~(y) > r. 

3.4. To every point x of the Bruhat -Ti t s  building of G/K, we associate a mono tone  
increasing sequence of nonnegat ive numbers  as follows: If x is in C, let 
{rili 6 N w {0}} be the set of nonnegat ive values assumed by the affine functions in 
7 ~ w (nf[n e N} at x arranged in a mono tone  increasing sequence. Now to an 
arbi trary point  x of the building of G/K, we associate the sequence associated to the 
(unique) point  of C conjugate to x. Then for r l -  1 < s < r ,  we have Px.s = P .... and 
gx,~ = gx, r,. In particular, P~,r~ = P ..... , and gx,r i = g~,r,~l. 

3.5. Filtration of the dual. Let 9" = HOmk(.q, k) and g* = HomK(g, K). There is 
a natural  action of the Galois group F on g* by semi-linear automorphisms,  and 9" 
is the k-subspace of g* of elements fixed under  F. In this paper  we shall always view 
g* as a G-module under  the coadjoint  action of G. An element X of g* will be called 
nilpotent (resp. semi-simple), if in the coadjoint action, the G-orbit  through X 
contains zero in its closure (resp. is closed) in the Zariski-topology. As confusion is 
unlikely, we shall denote the coadjoint  action also by Ad. Let 

g* = go* | @ g~ 
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be the weight space decomposition of g* with respect to T. Here, 

g* = {X ~g*lAd(t)X = b(t)X for all t ~  T}. 

Note that for X e g* and Ye  g~, if X(Y)  # O, then b = - c. Thus, we can identify 
g* with the dual 3* = Hom(3, K) of 3, and for every b e r g* with the dual o fg  ~. 
For  an affine root #, with gradient b, let 

u ~ = { X e g ~ I X ( Y )  E ~  fora l l  Yen_q,}. 

Let x be a F-invariant point of the apartment A. For  r 6 R, let 

g~,r163  fora l l  Y~g~,~+}. 

For  t E R, let 

3 * = { X e 3 * I X ( Y ) e ~ 3  fora l l  Ye3~ and s > - t - ~ e } ,  

and let g*,t be the ~-submodule of g* spanned by 3* and u~,'s for affine roots ff such 
that ~(x) > t + (f - f~). Then 

and 

( , )  g * , _ ~ = m g * _ , _ e = { X ~ g * l X ( Y ) ~ w ~  fora l l  Y~g~,~}. 

From the above description it is clear that for all r, g* _, is stable under the 
action of the Galois group F and also under the coadjoint action of the parahoric 
subgroup P~ on g*. For  r > s, g* _, ~ g*,_~. Set g* ,+ = ~ < , g *  .~. Then for all r, 
g~._~+ ~ t~g*_~. The induced action of Px,o + on g* _~/g*_~ is trivial and hence 
there is a natural action of Ivl~(~) = P~.o/P~.o+ on it. 

The o-submodule of g*._, (resp. g*_r+) consisting of the elements fixed under 
F will be denoted by .q*_~ (resp..q*_~+). 

3.6. If y is a point of the Bruhat-Tits building of G/k which is conjugate to x under 
an element g of G(k), we set 

g*._, = Adg(g*._r) and g'y, ~ = Ad0(g*.-,). 

Then g*._~ and g* _, are well defined i.e., they depend only on y and r and not on 
the choice of the conjugating element g. 

3.7. Now let x be a point of the Bruhat-Tits building of G/k and let {r,} be the 
sequence associated to it in 3.4. Then gx, r; = gx.,j+, for allj. For  i > I, the f-bilinear 
map 

(X, Y) w-~X(Y) modwo  

is a nondegenerate Mx(~)-invariant pairing. This nondegenerate pairing composed 
with a fixed nontrivial character of the prime field of ~ provides an M~(f)- 
equivariant isomorphism of the Pontrjagin dual of gx.,,/g ... . . .  with gx,-r,/gx.-,, ,. 

3.8. Let ~x = Px c~ G(k) and for r > O, #x., = Px., c~ G(k), ~ , , +  = Px.r+ c~ G(k). 
Then for r > 0, the natural isomorphism of P~.,/Px,,+ with g~.,/g~.,, gives an 
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isomorphism Of~x,r/~x.r§ onto 9~,~/g~,r~ which is M~(f)-equivariant (cfi [14: 2.24]). 
Thus the above also provides an identification of the Pontrjagin dual of 
~x,~,/~ ...... with g~.-~,/9~.-~ ~. The character of ~ . ~ / ~  ...... corresponding 
to the coset . t~=X+g~.* ~, , will be denoted by X~. We shall say that this 
character is nondegenerate if the coset X + 9",- .... does not contain any nilpotent 
elements. 

4. Unstable elements in integral representations 

4.1. Let P be a parahoric subgroup of G(K) and Tbe a maximal K-split torus such 
that the apartment corresponding to Tin  the Bruhat-Tits building of G/K contains 
the simplex whose isotropy subgroup is P, or, equivalently, P contains the maximal 
bounded subgroup To of T(K). We assume that both P and T are defined over 
k and further that T contains a maximal k-split torus S of G. 

Let Y be the smooth affine o-group scheme with generic fiber T and which is 
diagonalizable over 9 .  (The ring of regular function of J -  is ( 9  [X*(T)])r ;  where 

[X*(T)]  is the group ring of the character group X*(T) with coefficients in 9.) 
The group of !~-rational points of J is To. Let 5 ~ be the closed o-subgroup scheme 
of J -  corresponding to the subtorus S of T. Let S 5 ~ | and T = Y- | Then 
S is the maximal ~-split subtorus of T. There is a canonical identification of the 
character group X*(S) (resp. X*(T)) of S (resp. T) with the character group X*(S) 
(resp. X*(T)) of S (resp. T), and of the group X.(S)  (resp. X.(T))  of 1-parameter 
subgroups of S (resp. T) with the group X.(S) (resp. X,(T)) of l-parameter 
subgroups of S (resp. T). 

Let V be a free o-module of finite rank and p : 5 ~ G L ( V )  be a rational 
representation of ~- defined over o. Then p is completely reducible over ~ i.e., 
V @ , ~  is a direct sum of the weight submodules (see [6: Proposition on p. 177]). 
p induces a rational representation Pk of T = J -  | on VQok and a representa- 
tion f5 o f T  = Y | on V| The weights ofpk and ~ are the same if we use the 
canonical identification of X*(T) with X*(T). 

Now let f~ be the smooth affine o-group scheme associated to P by the 
Bruhat-Tits theory. The generic fiberfq | o f ~  is G/k, the group of its O-rational 
points is P and the special fiber ~ = ~ |  is a connected algebraic f-group 
which admits a Levi decomposition defined over ~. Let PI be the quotient of 

by its unipotent radical. Then t"t is a reductive f-group. There is a natural 
embedding of T in N, defined over f, which corresponds to the inclusion of To 
in P. In this embedding, T is a maximal torus of M and S( c T) is a maximal [-split 
torus. 

4.2. In the rest of this section we shall use the notation introduced in w167 3. Thus 
x is a F-invariant element of (7, P~. = P~ is the associated parahoric subgroup, and 
fqx is the o-group scheme associated with the parahoric subgroup Px. Denote by Ms 
the quotient of the special fiber fqx | (of ~x) by its unipotent radical; Mx is 
a connected reductive group defined over ~. The filtration lattices Ox,r (resp. O*.~), 
are free o-modules. The adjoint (resp. coadjoint) action of fqx on fix,, (resp. g*.s) can 
be placed in the context of a rational representation p:fqx ~ GL(V) of fqx on 
a finite rank free o-module V. We also denote by p, the extended representation of 
G = ~x | on V| In what follows, we shorten p(o)X to either 9" X or 9X. As 
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usual, we shall say that an element X e V is unstable if the Zariski closure of the 
orbit G. X contains zero. If k is of characteristic zero and X E V is an unstable 
element then, according to a result of Kempf [10] and Rousseau, there exists a 
1-parameter subgroup 2:GL~ --, G, defined over k, such that L im~o2( t )X  = 0. 

Nilpotent elements contained in g~.~ (resp. g*~) are unstable for the adjoint 
(resp. coadjoint) action of fr 

4.3. Proposition. Suppose that P : f~x --* GL(V) is a rational representation Qf (#x on 
a free finite rank o-module Vand Wis  a f#~(o)-submodule containing wV. Assume that 
the induced action oJ'f#x |  on V / W  has the unipotent radical acting trivially so that 
p gives rise to a representation of I"lx on V/W. Let X ~ V be such that there is 
a l-parameter subgroup 2:GL1 --* G, defined over K, so that 

Lim2(t)X = 0. 
t ~ O  

Then the M~-orbit through the image X of X in V / W  contains zero in its closure. 

Proof. Let Q be a special maximal parahoric subgroup of G(K) containing the 
lwahori subgroup I. Let 

~ = {g ~ GILim2(t)g2(t) 1 exists in G}. 
t ~ O  

Then ~a is a parabolic subgroup of G defined over K. Since by Iwasawa decompo- 
sition ([15: 3.3.2]), G(K) = Q.  ~]3i(K), and for any p ~ ~13~(K), Lim,,op2(t)p 1X = O, 
after replacing the 1-parameter subgroup 2 by a conjugate under an element of 
~ ( K ) ,  we may, and we shall, assume that it is contained in the maximal K-split 
torus T': = qTq- ~; where q is an element of Q. Then T'  c ~13z. 

Let ~ be the O-group scheme associated to the parahoric subgroup Q by the 
Bruhat-Tits theory. The generic fiber ~ |  of ~ is G/K and the special fiber 
Q : =  ~ |  is a connected algebraic ~-group. The group of O-rational points of 
.~ is Q and the reduction "rood p" map Q ~ O(~) is known to be surjective. Let 
R,(O) be the unipotent radical of O and M = Q/R,(O). Now observe that the image 
of I c Q under the composite of the reduction map Q ~ Q(~) and the natural 
projection (l(~) ~ M(~) is the group of ~-rational points o fa  Borel subgroup B of 
M; the image of ~Ba(K) ca Q is the group of ~-rational points of a parabolic 
subgroup P (of M) and the image of T' (K)  n Q is the group of ~-rational points of 
a maximal torus T' contained in P (recall that T '  ~ ~13~ and as T'  = qTq-  1 with q in 
Q, T ' (K)  ca Q is the maximal bounded subgroup of T'(K)). By the Bruhat de- 
composition, the intersection B n P contains a maximal torus T" ([1:14.13]). Then 
T" is conjugate to T' in P. Fix a p e ~a(K)  ca Q such that the image of p in M(~) 
conjugates T' to T" and let T" = pT 'p  -~. Then as T" c B, the maximal bounded 
subgroup of T ' (K)  is contained in I which in turn is contained in Px. This implies 
that T" embedds in a natural way in Mx as a maximal ~-torus. Let 2" be the 
conjugate of the l-parameter subgroup 2 under p. Then as p is in ~ ( K ) ,  

Limt~02"(t)X = 0. On reduction 2" gives a 1-parameter subgroup 2" of T" such 
that Limt~o2"(t)X = 0. Hence T".  3(, and so afortiori M~. 3~, contains zero in its 
closure. 

Notation. For an affine root ~p, we let ~b denote its gradient, then ~b e @( c X*(T)). 
For  2e  X, (T) ,  we set (q~, 2> = (~b, 2>. 
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4.4. Proposition. Let V, W, p and X E V be as in the precedin(c proposition. Then 
there is a p 6 ~ =  P~c~ G(k) and a l-parameter subgroup / t : G L I ~ S ( c G ) ,  
defined over k, such that 

(1) Limlx(t)(pX) - 0 (mod W), 
I ~ 0  

(2) .for all 0 ~ 0,  (0, I~ > O. 

Proof Let )( denote the projection of X on V~ W. Then according to the preceding 
proposition, the closure of Mx. X contains zero. Now in view of a result of Kempf 
[10] and Rousseau, there is a 1-parameter subgroup 2 : G L i  ~ M~ defined over the 
finite field f such that Lim,~o2(t))( = 0. Let T be the maximal f-torus of M~ 
corresponding to T; it contains a maximal f-split torus S of M~. Now we recall that 
the set consisting of the restrictions to S of the gradients of the affine roots 
belonging to O is a basis of the root system of M~ with respect to S (X*(S) 
identified with X*(S) here), cf. [15: 3.5.1]. By conjugacy of maximal f-split tori 
under M~(f) and the fact that the f-Weyl group of M~ acts transitively on the set of 
Weyl chambers in X,(S) ,  we conclude now that there is a conjugate 2' of 2, under 
an element of M~(f), such that 2' is contained in X.(S)(  c X.(M~)) and (0, 2'> > 0 
for all 0 e O. Let /x be the lift of 2' to S. Then /x has the desired properties. To 
determine p e ~x,  use the fact that the natural map N~--, M~(f) is surjective. 

5. Unrefined minimal K-types and the main theorem 

Given a point x of the Bruhat-Tits building of G/k, let Px be the associated 
parahoric subgroup. Let ~x  = P~ n G(k) and for r > 0, let ~ , ~  = P~,~ n G(k). Let 
the sequence {r~} be as in 3.4. For  i > 1, realize the characters of ,~x, , , /~ ....... as in 
3.8. 

5.1. Definition. An unrefined minimal K-type is a pair (~  ..... g), where x is a point of 
the Bruhat-Tits building of G/k, r is a nonnegative real number, Z is a representa- 
tion of ~'x., trivial on ~x,,+ and 

i) if r = 0, then Z is a cuspidal representation of ,~'x,o/~x,o' inflated to 

~x ( =  ~x,o) 
ii) if r > 0, then ~x,,  # ,~x,, ~ and Z is a nondegenerate character of ~x.,/~x.,~. 

In the remainder of the paper, we shall drop the adjective "unrefined". The 
nonnegative number r is called the depth of the minimal K-type. Let y be another 
point of the Bruhat Tits building of G/k, and let {sj} be the monotone increasing 
sequence of nonnegative real numbers associated to it as in 3.4. Then two minimal 
K-types (~  ..... Z) and (~r,sj, ~-), are said to be associates if they have the same depth 
(i.e. rl = s~), and 

i) in the case of zero depth, there is an element (C ~ G(k) so that ~x  n ~or 
surjects onto both Mx(f) and M0r(f ) and Z is isomorphic to Ad((C)(. 

ii) in the case of positive depth, the G(k) orbit of the coset X + 9".- . . . .  which 
realizes Z, intersects the coset Y + .%,* _ ~j , , which realizes ~. 

5.2. Theorem. Assume that k is of characteristic zero. Given an irreducible admiss- 
ible complex representation (r~, V=) of G(k), there is a nonne(cative rational number 
Q(rt) with the following properties. 
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(1) For some x in the Bruhat-Tits building of G/k, the space V~ ~~ of ~,ot~),- 
fixed vectors is nonzero and Q(n) is the smallest number with this property. 

(2) For any y in the Bruhat-Tits building, if W = V~ ....... ~ {0}, then 
i) /f ~o(n) = 0, any irreducible ~r,o(,)-submodule of W contains a minimal 

K-type of depth zero of a parahoric .~ ~ ~ ;  
ii) if ~o(n) > 0, any irreducible ~r,e(~rsubmodule of W is a minimal K-type 

Moreover, any two minimal K-types contained in n are associates of each other. 

6. Three key propositions 

6.1. Optimal points. Let 

2 ; = { ~ 9 ~ 1 ~  > 0  and ~ E l < 0 } .  

Then X is a finite set. For  any nonempty subset G of S, let f~ be the real valued 
function on C" defined as follows: 

f~(x) = min{~(x) - (E - f0)[~' ~ G} for x e C. 

Now for each nonempty F-stable subset ~ of S, we fix an element x~ of C such that 
i) the function J~ takes its maximum value at x~, 

ii) ff(x~) is a rational number for all affine roots if, 
iii) x~ is fixed under F. 
Note that the set of points wheref~ takes its maximum value is the intersection 

of C with a F-stable hyperplane of  A which is defined over Q. Hence there exist 
elements in C satisfying the above conditions. We shall call x~, an optimal point for 
the subset ~ of 27. Let (9 be the (finite) set consisting of the optimal points x~'s, for 
all F-stable nonempty subsets ~ of Z. 

Finding optimal points explicitly is a problem of linear programming. For  the 
basic results and techniques of this theory see [13]. That there exists a point x~ 
such that the functionf~ takes its maximum value at x~, and for all affine roots t~, 
qJ(x~) is rational, also follows from an observation on page 33 of [13]. 

Remark. It can be shown that if G = SL,, then given any nonempty subset ~ of S, 
the barycenter of a suitable face of C is an optimal point for ~.  

6.2. We say that a subset S of the affine root system ~ is bounded below if there 
exists an integer n such that for all ff e N, ~ + gn6 > 0. Now let N be a nonempty 
F-stable subset of ~ which is bounded below and let n be the smallest integer such 
that every root in the set ~+: = {~ + r e ~} is positive. To 3 we associate the 
subset ~ ( ~ ) : =  22 n N+ of 27, and set xz = x~tz);_where S, and for a F-stable 
nonempty subset ~ of S, the optimal point x| C), are as in 6.1. 

6.3_ Proposition. Assume that k is of characteristic zero. Let x be a F-invariant point 
of  C. Let r be a real number such that fix, r* properly contains gx,,+* and let X ~ g*,, be 
a nilpotent element. Then there is a p e t ~  = P~ n G(k) and a y ~ (9 such that for 
some s > r 

pX  + g*,+ c 9*s 

or, equivalently, X + g*,+ c g*-,~,~. 
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Proof F r o m  Propos i t i on  4.4 appl ied to the case where  V = g*.r and  W = g*,r ' ,  we 
conclude  that  there  is a p E ~ x  and  a 1-parameter  subg roup /~  : GL1 ~ S defined 
over  k such thal  Lim~ol~(t)pX =- 0 (mod g* , . )  and (0, # )  > 0 for all 0 E O. Deno te  
p X b y  Y. Then  Y_-- Yo + L'Y~ (rood g.*~,); wbere  Yo e 3~*, Y4, ~ u~, and the s u m m a -  
t ion is over  the set o f  affine roo ts  4` such that  O(x) = r + (C - (q,). N o w  let 6 be the 
set of  affine roots  4' such that  4'(x) = r + ( f  - {,) and Y~,~0 (mod g*.rd. As X is 
k-rat ional ,  6 is F-stable.  

Since p is a 1-parameter  subgroup  conta ined in S, the coadjoint  act ion of/~ on 3* 
is trivial. F r o m  this and the fact that  Lim,~o#(t )  Y = 0 (mod  g*,r ~), we conc lude  that  

(1) Yo - 0 (mod  g*~+), 
(2) ( 4 ' , p )  > 0  for ~ /Je6 .  

Now,  for e, > 0, cons ider  the e lement  x + e.p E A. As x is F- invar ian t  and /~ is 
defined over  k, the po in t  x + ep is F- invar ian t  for all e. Recall that  for any affine 
root  0, O(x + e#) = O(x) + e,(O, p).  Now,  

(1) if 0 e O, then  O(x) = 0 and (0, p )  __> 0 so that  O(x + oF) > 0 for all e. > 0, 
(2) i f0  e A - O, then  O(x) > 0 and  hence for all sufficiently small r. > 0, we have 

O(x + ep) > O. 
Therefore,  for M1 sufficiently st~al~ ~ > 0, x + ~ ~ C. 

Fo r  4 ' e 6  and  e > 0  we have 4 ' ( x + r 4 0 = 4 ' ( x ) + e ( 4 ' , / ~ )  >4` (x)  
( =  r + ( ~ - { , ) )  since ( 4 ' , # ) > 0 .  Also, for the affine roo ts  4' such that  
4'(x) > r + ({ - gq,), it is clear that  4'(x + ~.g) > r + (E - (o) for all sufficiently small 
posi t ive s. Hence,  if z = x + ep, where  ~: is a sufficiently small posi t ive number ,  we 
can find a real n u m b e r  u > r such that  g=,,* ~ Y + 9",~.  

f * Let ~ = ~ u ,4'[no < g ' r . } .  Then  E is clearly F-s table  and  bounded  below. 
Take y = x.-; where  xz is in 6.2. Then  as y is an opt imal  po in t  for the subset  ~,, there  
exists a s, s >-_ u > r such that  gy*~ = Y + gx,~'.* This proves  the propos i t ion .  

The fol lowing is a converse  to the above  propos i t ion .  

6.4. Proposit ion.  Let x be an element of the Bruhat-Tits building of G/k, and r be 
a real number such that .q*~ contains g*,* properly. Suppose X e 9*.r is such that the 
coset X + 9.~.~-* does not contain an), nilpotent elements. Then for all y in the buildin 9, 
.q~*, n (X + * s g~.,,-) = ~.fiJr > r. 

Proof We argue by cont radic t ion .  Assume there is a y in the bui lding and a real 
number  s > r such that  .qx% n (X + g.*~ ~) # ~3. After replacing x, y and  X by their  
conjugates  under  an e lement  of  G(k), we assume that  bo th  x and y lie on A. 

E * Replacing X by X + Z for sui table Z e .%,~,*, we fur ther  assume tha t  X gy.~. Let 

�9 and  the s u m m a t i o n  is over  a (finite) set of  X = Xo + ~ X o ;  where  Xo e 3", X~ e u~ 
affine roo ts  4` with dist inct  gradients  and such that  r  > r + (E - f , ) .  Let 6 be 
the set of  affine roo t s  ~ such tha t  4'(x) = r + (g - Eo) and X0 ~ 0  (mod g*~+). Then,  
as g y * ~ n 3 * = 3 * = g * ~ c ~ 3 * ,  and s > r ,  we conc lude  that  X o e g ~ . , , .  Hence  

X - ~ o ~ X ~  (mod  .q*,.). Since X, and so also X~, is in g%,  ~k(y) > s + (d - d,)  > 

r + (t o - ( , )  for every affine roo t  4` such that  X o . 0, N o w  as the set of e lements  in 
A of  the form x + u2, with u e R and  2 e X. (T ) ,  is dense,  we can find an u > 0 and 
a 1-parameter  s u b g r o u p  ,t def ined over  k such that  4`(x + uA) > r + (~ - {~) for  all 
4` e 6 .  But as 4`(x + u2) = 4'(x) + u(4 ' ,  Z) = r + ({' - g',/,) + u(4 ' ,  )o), it follows 
that  (4' ,  2 )  > 0 for all 4' e 6 .  This  implies that  L im~o2( t )  ~ o ~ X ~ ,  = 0. Thus  

~0~ X0 is n i lpotent  and  we have shown  tha t  X is congruen t  to a n i lpo ten t  e lement  

modulo  * g~,,+. This  con t rad ic t ion  comple tes  the p roo f  of  the propos i t ion .  
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6.5. Proposition. Let x and y be two points o f  the Bruhat-Tits  building o f  G/k and let 
r and s be real numbers so that 9~,~ ~ 9~,~. Then P~,~ ~ P~,~ and hence, ~ , r  ~ ~y,~. 

Proof  After replacing x and y by their conjugates under a suitable element of G(k), 
we assume that both x and y lie in the apartment A. Recall that Px,~ (resp. Py,~) is 
generated by the subgroups U~, ff ~ 7 ~ such that ~(x) > r, and the subgroups Z,%, 
a~ /7 ,  n > r (resp. by the subgroups U~, ~9 ~ ~P such that ~b(y)> s, and the 
subgroups Z,"~, a ~/7, n > s). As 9~,~ contains gy,~, g~,~ contains fly,~. Now since 
u~0 c gx,, (resp. u~ ~ gy.,) if, and only if, ~(x) > r (resp. ~(x) > s) and ]~ ~ ~,~ (resp. 
~ ~ fly,.0 if, and only if, n > r (resp. n > s), the assertion of the proposition is 
obvious. 

7. Proof of  Theorem 5.2 

In this section the local field k is assumed to be of  characteristic zero. 
Suppose (z, V~) is an irreducible admissible complex representation of G(k) and 

(9 be as in 6.1. 
Given a point x of the Bruhat-Tits building of G/k, we shall let {ri} with ro = 0, 

denote the monotone increasing sequence associated to it in 3.4. If y is another 
point of the building, we shall denote the monotone increasing sequence associated 
to it by {s j} below. 

7,1. Existence q fm in ima l  K-types. We claim (n, V~) contains a minimal K-type. 
Let r be the smallest nonnegative rational number such that there is a point x e (9 
so that the subspace W of elements of V. fixed under ~x,r, is nontrivial. (The 
existence o f r  is assured since (9 is finite.) Then r = ri for some i. As ~x,r , is a normal 
subgroup of 9~ .... there is an induced representation of ~x,r/,r on W. If r = 0, 
then r = M~(f). By Harish-Chandra's theory of Eisenstein series for reduc- 
tive groups over finite fields, [7: Vol IV], there is a parahoric subgroup .~ c ~x and 
a cuspidal representation Z of ~/R.(~.) whose inflation to ~ is contained in Wf~. In 
particular, n contains a minimal K-type of depth zero in this case. Therefore, we can 
assume that i > 0 and thus the group ~,~,/.r is abelian. Realize its characters 
as the cosets of * in * (see 3,8). Let gx,-r, ~ g~,-,, )~ = Zx +9*x-~, ~ be any character of 
90 .... which occurs in the decomposition of W into irreducible ~,r , -submodules.  
We claim that X + g~_,,* ~ contains no nilpotent elements and therefore Z is 
a minimal K-type. To prove the claim suppose X + * contains a g . . . .  , nilpotent 
element. Then we may assume that X itself is nilpotent, According to Proposi- 
tion 6.3, there is an optimal point y ~ (9, p ~ ~x ,  and a j  > 0 such that - sj > - r~, 
i.e. s j < r i ,  and X+g~_~,* ,~tip-* ~y,_~j. This implies that if z = p - l y ,  
g~_~, ,  cg~_~ j ,  from which we conclude by taking duals (see 3.5(*)) that 
g~,,, ~ 9~,~,. From Proposition 6.5 we infer now that 

Fo r  Y~ 9=.~j+,, we have X ( Y ) e  voo since X 6 $*.=,_~j (3.5(*)). So the restriction of 
V~ , and therefore also, is nontrivial. Now Z to ~,~,~, is trivial. Hence ~:"~J+~ V~ r'~j~' 

note that #y,~j~, = #y,.,; and as sj < r~ = r, this contradicts the minimality of r. 
Hence any irreducible #~,,-submodule in W is a nondegenerate representation. 
This completes the proof of existence of a minimal K-type. 
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7.2. Associativity of  minimal K-types. Suppose x and y are two points of the 
Bruhat -Ti t s  building of G/k. Let X be the representat ion of the group ~ .... on an 
irreducible ~ , ~ r s u b m o d u l e  V~ of V~. We assume that ( ~  ..... Z) is a minimal K-type. 
Let d be the representation of opy,~ on an irreducible ~ ,  ~Tsubmodule V~ of V, 
which is fixed pointwise by 9~ Let E~ be an ~ ,  ~-equivariant  projection of V~ 
onto ~ .  Since V~ is irreducible, there is a g ~ G(k) so that  

is nonzero. For  h ~ # .... c~ g~y,~g ~ we have 

( , )  ~o~,z(h)=?~(g ~hg)otp. 

We shall consider now three cases according to whether r~ and sj are both  greater 
than zero, r~ > 0 and s~ = 0, or r~ = s.i = 0. 

Case 1. Both r~, s i > 0. Let X + g~,* ,, ~ and Y + .%.* _,j ~ be the cosets which give 
the characters 7~ and ( respectively. As X is nondegenerate,  X + g* ~,~ does 
not contain any nilpotent  elements. By the intertwining principle (*), the two 
characters h ~ ;((h) and h ~ ~(g lhg) agree on ~. , . ,  c~ g.~,.~g ~. This implies 
(X - Ad(g) Y)(Z) ~ o  for all Z eg~.,., n Ad(g).%.,,, and  so X - Ad(g) Y lies 
in .q* . . . . .  +Ad(g)g*,  ~ ~. Hence, X+.%.*_.~, , and  Ad(g)(. Y + g * , - ~  l) 
( ~ Ad(g)(g*_.~) = g ~ . . v )  intersect. By Proposit ion 6.4, then - sj < - ri, i.e. 
sj > r~. In particular, if ('~r..v, ~) is another  minimal K-type in n, it follows that  
X and ~ are associates. 

Case 2. r~ > 0, sj = 0. The representat ion ~ o f ~ y  is the inflation of a representation 
of ~r,o/~y,o~. In particular, this means the trivial representat ion of ~r,o~, which 
corresponds to the coset g*.o, occurs in n. By the same reasoning as in case 1, the 
two cosets * * * 9g~,o and X + fl~.-,, t must intersect. However, X + .%,_~, t contains no 
nilpotent  elements. This contradicts Proposi t ion 6.4. Hence this case can not  occur. 

In the above argument,  interchanging the roles of x and  y, we conclude that  if 
is a minimal K-type and r~ = 0, then sj = 0. 

Case 3. rl = 0, sj = 0. In this case the only assertion which requires a proof  is that  
when s is also a minimal K-type, then it is an associate of Z. So we assume ~ is also 
a minimal K-type. Then, X (resp. r is the inflation to ,~x,o(resp. ~r,o)  of a cuspidal 
representat ion of Mx(f) = ,5~x,o/#~,o, (resp. M~,(f) = ,~  Observe that  the 
image of ~ x  n .~0~, in Mx(f) (resp. in Mgr(~) ) is the group of f-rational points of 
a parabolic f-subgroup Px (resp. P0r) of Mx (resp. Myr). If P~ = M~ and P0r = Mqy, 
then ~p is an isomorphism of Z to Ad(g)~. Thus, ~ and ~ are associates. Suppose 
pxc  M~. Using the fact that  there is an apar tment  of the Bruhat-Ti ts  building of 
G/K containing both x and gy and the description of parahoric  subgroups given in 
2.5, it is easy to check that  the image of ~ c~ R~(~gr) in Mx(f) contains the 
unipotent  radical of Px(f). Let 0// be the inverse image in N~ n R,{~a0r) of the 
unipotent  radical of P~(f). As ~//is contained in R,(a~gy), the restriction of Ad(g)(  to 
a# is trivial. On the other hand,  since Z is assumed to be cuspidal, the restriction of 
Z to q/ cannot  contain the trivial representat ion of q/. This is a contradiction; 
therefore Px = Mx. A similar a rgument  shows that  Poy = Mor. 

7.3. Minimality of  O(n). With the nota t ion as in 7.1, we claim O(rt):= r is the 
smallest nonnegat ive number  such that  there is a point  y in the building with 
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Vff ....... ~ {0}. By 7.1, Vff ....... ~ {0}. Suppose  by way of  con t rad ic t ion  that  there  is 
a nonnega t ive  real n u m b e r  s < r and a po in t  y in the bui lding so tha t  Vff .... 4 {0}. 
By case 2 in 7.2, s > 0. Let  r be any charac te r  o f  ~ y , J ~ y . s +  occurr ing  in Vff y.`+. By 
case 1 in 7.2, s __> r, a cont radic t ion .  

7.4. It remains  to s h o w  tha t  if e(n) > 0, and y is a point  in the bui ld ing of  G/k with 
Vff ....... 4: {0}, then any irreducible ~y.Ql~rconstituent o f  Vff ....... is a minimal  
K-type. Let j be such that  s~ = O(n) and let Y +  gy,-s~* , be the coset  which 
represents  such a const i tuent .  If Y + gr.*-s~-i conta ins  a n i lpo ten t  element ,  the 
a rgumen t  of  7.1 shows  tha t  ~,(n) is no t  minimal ,  a cont radic t ion .  Thus  the const i tu-  
ent  mus t  be a minimal  K-type. This comple tes  the  p roo f  of  Theo rem 5.2. 
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