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Continuous Cohomology and a Conjecture of Serre’s

W. Casselman* (Vancouver) and D. Wigner (Ann Arbor)

0. Let G be the group of Q,-rational points on a connected semi-
simple group defined over Q,,, % its Lie algebra, H* (G, Q) the continuous
cohomology of G with coefficients in Q,. When G is compact, a result
of Lazard’s ([7], Chapter V, Theotem 2.4.10) and an argument about
Zariski-closure (see § 3) imply that H*(G, Q )= H*(%4, Q). The original
motivation for most of the results in this paper was the question asked
by Serre ([11], p. 119): Does Lazard’s result hold for more general G?
We show this to be so (Theorem 1 in § 3).

We include a largely self-contained exposition of continuous cohomol-
ogy theory for locally compact groups. Our main result here is a form
of Shapiro’s Lemma (Propositions 3 and 4 in § 1). We also include a
discussion of the Hochschild-Serre spectral sequence (in §2). We have
drawn largely on a paper of Hochschild and Mostow [4] which treais
the case of G-modules which are real vector spaces, but our emphasis is
quite different.

In many cases our cohomology agrees with that constructed by
Calvin Moore (described in [10]), and a number of our results are
implied by results of his.

In §3 we apply Shapiro’s Lemma and the Bruhat-Tits building to
prove Serre’s conjecture. In §4 we deal with the cohomology of p-adic
groups with coefficients in real vector spaces, including some remarks
about the cohomology of smooth representations over more general
fields. In § 5 we answer a question of Serre’s about the analytic cohomol-
ogy of a p-adic semi-simple group.

We wish to thank A. Bore] for several valuable suggestions; P. Cartier for remarks
concerning §2; and R. Bott for explaining to one of us a long time ago how a form of
Shapiro’s Lemma offered a simple proof of Theorem 6.1 in [4]. (It was this explanation
which ultimately suggested the proof of our Theorem 1.) Finally, we wish to thank the
referee for the great deal of patience involved in reading and correcting several versions of
this paper, and more particularly for suggesting the proof of Hochschild-Serre that we give.

1. Let G be a locally compact topological group. Define a G-space
to be a topological Hausdorff space 4 together with a jointly continuous
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associative G-action: Gx A—A. Define a G-module to be a G-space
which is a topological abelian group such that the operations by elements
of G are group automorphisms. (We shall always write the product on 4
additively.) If A4 is a G-space, let A9 be the (closed) set of points fixed by G.

If 4 and B are G-spaces define #ow (A, B) to be the set of all
continuous maps from 4 to B. If one gives it the compact-open topology
and defines a G-action by the formula (gf)}a)=g- f(g !a), it becomes
a G-space, and a G-module if B is one. If 4 and B are G-modules, define
Hom( A, B) to be the set of all continuous homomorphisms from 4 to B.
This similarly becomes a G-module.

If H is any closed subgroup of G and 4 an H-space, define Ind(A4|H, G),
or merely I, for short when confusion is unlikely, to be the space of all
continuous maps f: G— 4 such that f(gh)=h~1-f(g) for all he H, geG.
If one gives it the compact-open topology and defines a G-action by the
formula (gf)(x)=f(g~! x), one has a G-space, that induced by A from H.
Another way of describing I, is as #%#4(G, A), where one lets H act
on G on the right: g—>gh~!. From this one sees immediately that I,
is Hausdorff, since #%x(G, A) 1s and I, is closed in it. Define the
canonical map §: 1,— A by the formula 8= f(1}. This is an H-morphism.

Lemmal. If 4 is already a G-module, then there exists a G-iso-
morphism of Ind(A|H, G) with #os(G/H, A).

Proof. Associate to fel, the function ¢: G/H — A such that ¢(g)=
2f(g). Associate to ¢€ #om(G/H, A) the function f such that f(g)=

g (g

Lemma 2 ( Frobenius reciprocity ). If 4 is a G-space and B an H-space,
then the map 8 induces an isomorphism of Hewmg(A, Ig) with #Houmy(A, B).
Similarly for Hom, if A and B are modules.

Proof. Since G is locally compact, one has H#om (A, Howm(G, B))=
Hom (A x G, B) as topological spaces ([ 1], §4, Corollary 2 to Theorem 3,
pp. 46-47). If one considers the G-fixed elements of each side, one gets
Homg (A, Hoam(G, B)) isomorphic to the space of all maps f: A x G—B
such that /(g a, g)=f(a, 1) for all ge G, ae A. The restriction of f to A x {1}
induces in turn an isomorphism of this space with #sm(A, B). If one
considers the H-fixed elements, the proposition follows. (Note: One
may check that the isomorphism is actually the one induced by 6. The
technical problem here is to show that the isomorphism is a topological
one.)

Lemma 3. The map 6 induces an isomorphism of 1S with AY.

Proof Trivial to prove directly, but it is also a special case of Lemma 2,
with A there a trivial G-space of one element.
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Lemmad. If A is any locally compact G-space and B an H-space,
then Ly, 4 py= Hom(A, 1) as G-spaces. Similarly for Hom, if A and B
are modules.

Proof. By Corollary 2, p.47 of [1] again, #om(A, #om(G, B))=
Hom(A X G, B)= Hom(G, #om(A, B)). Apply the interpretation of I.
as Homy (G, C) for the H-spaces C=B and C=.#0m(A, B).

If A and B are G-modules, a strong G-injection of A into B is a G-
morphism for which a continuous left inverse {not necessarily a homo-
morphism) exists. A strong G-morphism f: A— B is a G-morphism for
which Ker f—A4 and Coim f— B are strong G-injections. In general, the
composition of strong morphisms is not strong.

A G-module A is said to be continuously injective if for every strong
G-injection U— V and every G-morphism f: U— A4 there exists a G-
extension of f to V. Every topological abelian group is continuously
injective with respect to the trivial group. If A is a continuously injective
H-module, then Ind(4|H,G) is a continuously injective G-module
(this from Lemma 2).

If A isa G-module, define C*(G, A4), the space of continuous n-cochains
on G with values in 4, tobe #ous(G"*!, A). The left regular representation
of G on each factor defines G"**, hence C"(G, A), as a G-module. By
Lemma 1, C°(G, A)~Ind(A4|1, G), and further one may see easily that
C** (G, A)= C°(G, C"(G, A)). Thus each C"(G, A) is continuously in-
jective. Every G-module A has a canonical strong G-injection into
C%(G, A), and if one applies this process in turn to the quotient, etc.,
one obtains the canonical strong resolution of A by the complex C* (G, A4)
with the differential d,: C"— C"*! defined by the familiar formula

(dnf)(g07gl’ ~--,gn+1)=>: (— 1)mf(go’ ""érrﬁ ""gn+1)'

Define H"(G, A), the n-th continuous cohomology group of G with coef-
ficients in A, to be the n-th cohomology group of the complex C*(G, AC.
Of course H°(G, A)~ A°.

If 0> A4 B— C—0 is a short exact sequence of strong morphisms,
so is the induced sequence 0 — C*(G, 4)— C"(G, B)— C"(G, C)—0. One
has therefore an associated long exact sequence of cohomology.

A G-module A is called acyclic if H'(G, A)=0 for n>0.

The groups H"(G, A) inherit a topology from that of the cochain
spaces, which we shall call the canonical topology. We shall call these
groups strongly Hausdorff if the injection of every

B"(G, A)=C" (G, A)/Z"" (G, A)

into Z"(G, A) is a strong injection (where Z" are the cocycles n C".
This implies at least that the canonical topology on H*(G, A)is Hausdorff.
14*
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(The terminology is faulty, since whether the groups are strongly Haus-
dorff or not is not an intrinsic property, but depends on their definition.
This will cause no trouble.)

More generally, if C* is any complex of G-modules, one may similarly
define its cohomology to be strongly Hausdorff if the injections of
coboundaries B* into cocycles Z* are strong.

If A* is any strong resolution of 4 by continuously injective G-
modules, then the groups H"(G, A) are the cohomology groups of (4*)°.
The topology on H* (G, A), and whether or not these groups are strongly
Hausdorff, is independent of the resolution.

The following result implies that H*(G, A) may be computed from
any acyclic resolution of 4.

Proposition 1. If
0545454 542 ...

is a strong resolution of A by G-modules, then there exists a spectral
sequence converging to H*(G, A) with E5 =~ HY(H?(G, A*)).

Proof. One has this resolution of 4 and the complex 4*:

0 0 0 0
0 A s A% — 5 o4 4
0 - C%(4) Co4%) —— Y4 —— C®(4) ——— -

0—— C'(A) —— C'(A°) C‘(A‘) CH{AY)—— -
| ]

where we have written C"(x) instead of C*(G, *). Apply the functor (*)°
to the complex C?(A4%, and then apply the usual spectral sequence
arguments to the resulting double complex. One obtains by one filtration
H*(G, A) {because the horizontal cohomology is trivial) and by the
other the spectral sequence desired.
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Proposition 2. Let
0->A°—>A' 5425 ...

be any complex of acyclic G-modules and G-morphisms whose cohomology
is strongly Hausdorff. Then there exists a spectral sequence converging
to the cohomology of the complex

0 (A7) (A1) > (A7)0 — o
with E3 42 HP(G, Hi(A4%)).

Proof. Resolve A* by C*(A*), apply the function (x)°, and compute
the two spectral sequences one has at hand. This time the vertical co-
homology is trivial. The assumption on the topology of H*(A4*) is used
to identify C?(G, H*) with the quotient C?(G, Z*)/C?(G, B*).

Proposition 3 (Shapiro’s Lemma). Let G be a locally compact group,
H a closed subgroup of G. Let A be an H-module, and suppose that each

C"(G, A) is acyclic as an H-module. Then the map from H*(G,1,) to
H*(H, A) induced by 0 and the inclusion of H in G is an isomorphism.

Proof. Consider the standard resolution of I, by the cochain modules:
01, C%G, L) > C (G, 1)~ .
The cohomology H*(G, L,) is that of the complex
0— C°G,1,)¢— CHG, L)’ —---.

By Lemma 4, C*(G, I,) = #om(G" "', 1) =1, .61, 4y=lcnG, 4> @nd bY
Lemma 3, C"(G, 1,)°~ C*(G, A)". This isomorphism is natural, so that
the cohomology H*(G,1,) is that of the complex C*(G, A)!!. By assump-
tion, the complex C*(G, A) is a resolution of 4 by acyclic H-modules,
so that by the remark preceding Proposition 2, the cohomology of
C*(G, A" is H*(H, A).

This proof is only a more technical version of the proof of Shapiro’s
Lemma for discrete groups (see [12]).

Proposition 4. (a) Suppose that the canonical projection t: G — H~\G
has a continuous section. Then any continuously injective G-module is
continuously injective as an H-module.

(b) Suppose that H~G is paracompact, the projection n: G — H~G
has local continuous sections, and A is a vector space over R. Then each
C™(G, A) is a continuously injective H-module.

Proof of (a). Every G-module 4 has a canonical strong injection into
Hom (G, A) (A injects as the constant functions, and f—f(1) gives the
splitting necessary for this to be a strong injection). If 4 is continuously
injective, A will be a summand of #osm (G, A), so that it suffices to prove
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that #24(G, A) is a continuously injective H-module, for every G-
module A.

If s is a continuous section of z, then the map from G to Hx H~\G
taking g to (g- (s(r(g)))~", n(g)) is an H-isomorphism (with H acting on
the left on itself, and trivially on H < G). Thus

Hom (G, A)=Hom(Hx H\ G, A)= Hom(H, Hom(HN G, A)),

and we have remarked earlier that this last is a continuously injective
H-module.

Proof of (b). This is Lemma 3.4 in [4].

Remarks. (1) When G is metrizable and H ~ G is totally disconnected —
i.e., has as basis for the neighborhoods of some, hence any, point a
(countable) set of open and closed subsets —then a continuous cross-
section of n: G — H G always exists (see [9], Corollary 2). This is so in
particular when G is an analytic group over some non-archimedean
locally compact field. In this case, one knows even that an analytic cross-
section exists. Incidentally, if G is o-compact, totally disconnected, and
A a complete metric G-module, one knows ([13], Theorem 1) that the
continuous cohomology of G with coefficients in A agrees with that of
Calvin Moore in [10].

(2) Combining Propositions 1 and 2 we obtain: If the projection
n: G— H~ G has a continuous cross-section, then for each H-module A
the map from H*(G, 1,) to H*(H, A) induced by 6 and the inclusion of H
in G is an isomorphism. We present here a second proof of this, because
it has applications to cohomology theories other than that of continuous
cohomology. This second proof begins as the first does, establishing
that H*(G, 1,) is the cohomology of the complex C*(G, A)¥. But from
this point: let i, be the map from C"(G, A} to C"(H, A)¥ induced by
i: H— G. Let s be a cross-section of 7. Then one obtains a morphism o of
H-spaces (H acting on the left): G — H by the formula a(g)=g - (s(r(g)))” "
This induces a chain map ¢,: C"(H, A — C"(G, A)"". The composite i o0,
is the identity on C"(H, A)”. One also has

Jco lc(f)(go’ ety gn):f(o-(gO)’ o.(gl)’ e O-(gn))'
Now define the map «: C**'(G, A)— C*(G, 4) by the formula

n

Kf(g()’ ""gn)= Z (— ij(g()’ R gj’ a(gj)9~-"g(gn))'
j=0
It is straightforward to verify that x is a chain homotopy from ¢ ¢, to
the identity, and thus that both i and ¢, induce isomorphisms on co-
homology. This concludes the second proof.
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(3) As an application, suppose that G is an analytic group over the
field k=Q,. If M and N are two k-analytic manifolds, define #ox»"" (M, N)
as the set of k-analytic maps from M to N. If 4 is a finite-dimensional
vector space over k on which G acts analytically, define CJ,(G, 4) to be
How™ (G™F!, A), on which G acts in the obvious way. The cohomology
of the complex C:, (G, A is what Serre [7] calls the analytic cohomology
H* (G, A). If H is a closed (hence by [2], § 8, No. 2, k-analytic) subgroup
of G and A is a finite-dimensional space over k on which H acts ana-
lytically, define I§"=Ind**(A4|H, G) to be the space of k-analytic maps
f: G— A such that f(gh)=h"'f(g) for all he H,geG. Define the co-
homology HZX(G,I{") by means of the cochain spaces C, (G, 13")=
Honi? (G*+1 x G, A) (where H acts on the final G factor on the right).
Because an analytic cross-section exists, the proof we have given in
Remark (2) will work with only slight modifications in this situation as
well to show that HX (G, I"= H, (H, A).

(4) It will be useful later on to have a proof of Proposition | more
detailed than the one we have given.

The basic construction underlying the proof is this: By Lemma 1, we
know that C°(X)=Ind(X|1.G) for any G-module X, and from this and
Lemma 2 one can deduce that there is a natural map from Hom(C,, C,)
to Homg(C°(C,), C°(C,)), for any two G-spaces C; and C,. Explicitly,
suppose that \ is a map from C; to C, (not necessarily a G-map). Then
the map ¢, from C°(C;) to C°(C,) is that defined by the formula
Yold)g)=g¥ (g~ ¢(g) If  is itself a G-map, then of course o (P)(g) is
just ¥(¢(g)), and this diagram commutes:

C, v, C,

|

Co(Cy) 2 C2(Cy)

where the vertical arrows are the canonical injections. Since C"(X)=
CO(C"‘l(X )), one can extend this construction to give maps

Yo C(C)— C(C).

Explicitly, ,(4)(go> 215 -+ 8) =8 ¥ (& ' ${80> ---- &)
N
ow let Ow—.>A——d~_‘—>AO—£‘O-'*A]—1~I—’
be given, and let §;: 4'— 4'~! be maps such that I =d;_; 6;+9; ., d; (which
exist because A* is a strong resolution of 4). From what we have said,
there exist maps d:, C"(A')—> Cn(Ai+l) and 5:’ C"(Al)—> C"(A‘—l) such
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that I =d,_, 6, +9,,,d; and the following diagram commutes:

+1
0 0 0
| |
| j |
0 A d-1 A() do Al dy

0—— COd) — T2 €0 (4%) % 04—

Furthermore, for n=0 all the maps 4} and 67 are G-maps. It is this which
guarantees that each row

0**C"(A)G—>Cn(AO)GHCn(Al)G‘*"'

is exact, and insures that one of the two spectral sequences we get
collapses, proving the lemma.

2. Throughout this section, let G be a locally compact group and H a
closed, normal subgroup.

Proposition 5. Let A be a G-module such that (a) the groups C"(G, A)
are continuously injective H-modules and (b) the cohomology H*(H, A)
is strongly Hausdorfl. Then the cohomology H*(H, A) has a canonical
structure as a G/H-module, and there exists a spectral sequence converging
to H*(G, A) with E% 4~ H?(G/H, H'(H, A)).

Proof. The groups in the complex
0— C%G, A" = CH(G, AT — -

are continuously injective G/H-modules. Condition (a) implies that the
cohomology of this complex is H*(H, A). Apply Proposition 2 to finish
the proof.

Remarks. (1) Calvin Moore has for his cohomology a stronger result
({101, § 9) assuming only that H* (H, A) is Hausdorff, which is the weakest
natural assumption in view of the fact that it should be a module for G/H.
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(2) The spectral sequence always exists when H is open in G, hence
G/H discrete. (This case was dealt with by Lazard in [7].) This covers one
of the two cases we shall apply it to in this paper; the other is covered by
the even easier case when A is a vector space over a field of characteristic
0, and H is finite, so that the complex in the proof is exact.

Now let IF be any field with a valuation inducing a non-trivial
topology, complete with respect to this valuation. A number of useful
cases are covered by:

Proposition 6. Suppose H is o-compact., A any complete metrizable
topological vector space over IE. If H"(H, A) has finite dimension over IF,
then it is strongly Hausdorff.

Proof. The spaces C"(H, A), Z"=cocycles in C”, and B"=C"~'/Z"" 1,
are all complete and metrizable over IF. Let 1 be the canonical injection
of B"into Z". Let W be some complement (finite-dimensional by assump-
tion) to 1(B"). The obvious map from B" x W to Z” is a bijection, hence
an isomorphism by Corollary 1 to Theorem 1 of Chapter I, §3 in [3].

3. Let k be Q,. Assume G to be a connected semi-simple algebraic
group defined over k, and G the group of its k-rational points. Let % be
the Lie algebra of G.

Theorem 1. If A is a finite-dimensional vector space over k on which
G has an algebraic representation, then H* (G, A)= H*(%, A).

(The cohomology of 4 is the continuous cohomology. That of 4 is
the usual Lie algebra cohomology. It is immediate that the representation
of G induces one of % since it corresponds to an algebraic homomorphism
from G to GL(A).)

Proof. In several steps.

Step (1). First assume @ is simple, simply-connected, and isotropic.
One has associated to G its Bruhat-Tits building %, a complex whose
simplices are parametrized by cerfain open compact subgroups of G,
the parahoric subgroups (we refer to [8] for details). Choose 1+ 1 fixed
maximal compacts K,, K, ..., K,,; containing a fixed Iwahori sub-
group. Then the parahorics containing this lwahori subgroup are in
one-one correspondence with subsets xci1={l,2,...,1+1}, the subset
a corresponding to () K; (so that the Iwahori subgroup itself is K)).
Every parahoric subgroup of G is conjugate to some K. If o is the simplex
of # associated to a parahoric K which is conjugate to K,, we say o is
of type . Its dimension will be card{x)— 1.

The group G acts on %, transitively on the simplices of dimension L
The simplices of type x are isomorphic to G/K, as a G-set.
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For each a =1, let g, be the simplex associated to K.

The g-simplices in # form a G-space X, with the discrete topology.
If M is a G-module, define the module BY(M) of g-cochains on % with
values in M to be Hom(Z,, M). By Lemma 1,

B'M)= 3 Ind(M|K,,G)

card{a)=qg+1

asa G-module. By Proposition 3, therefore, since G/K , is discrete, one has

H*(G,Bi(A)= 3  H*K,A). ()
card{a)=g+1
Further, since 4 is contractible (see [5], Appendix 2), for any G-module
M the cochain complex

0—-M-—B*M)—B'(M)—--- B (M—0

is a strong resolution of M. Thus, one may apply Eq. (1) and Proposition |
to deduce that there is a spectral sequence converging to H*(G, M) whose
E%%-term is the g-th cohomology of the complex

0> Y HYK,M)— Y HPK,M)—--—H(K,M) 0

card(a)=1 card{a)=2

where all the maps are derived from the inclusions of K, in K, when
asp.

Now the groups K, are compact, and to these one may apply Theo-
rem 2.4.10 of Chapter V in[7]. The group H?(K,, 4) is therefore naturally
isomorphic to H?(%, A)*=. But one knows ([7] again) that the stabilizer
of HP(%, A) in G is open, at least. Since the actions of G on 4 and A4 are
algebraic, so is that on H*(%, A). Therefore, the stabilizer is Zariski-
open, therefore all of G. Thus each H?(K,, A) is in fact just H?(%, A), and
the complex above is just that of the simplex o,, with coefficients in
H?(%, A). Hence only the 0-th cohomology of this complex is 0, and
from this the theorem follows in this case.

Step (2). Next assume G=IIG,;, with G, anisotropic and each
G, (i= 1) simple, simply connected, and isotropic. The same argument as
above works, essentially, since G acts on the product of the Bruhat-Tits
buildings 4, (i=1).

Step (3). Allow @ to be general, G its simply connected covering,
G the corresponding group of k-rational points, ¢: G — G the canonical
map. One knows that Ker(¢) is finite and that ©(G) is normal and has
finite index in G. Let G act on A4 through ¢. Applying Hochschild-Serre
to (ker @, G), one has that H*(p(G), A)~H*(G, A) which in turn is
isomorphic to H* (%, A) by Step (2). Applying it to (¢(G), G) one has
that H*(G, A)=H*(¢(G), A)°= H*(%, A)°. Since ¢(G) acts trivially on
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H*(%, A) and its Zariski closure is all of G, this last is just H*(¥%, A), and
the theorem is proven.
This proof is the p-adic analogue of the proof of Theorem 6.1 in [4].

4. Assume G to be as in §3. We now discuss modules which are
quasi-complete locally convex topological vector spaces over R.

Lemma 7. If K is any compact topological group and V a quasi-
complete locally convex topological vector space over R, then H*(K, V)=0
for n>0.

Proof. If V is quasi-complete, so is C*(K, V), for each n. Therefore,
it is sufficient to show that any strong short exact sequence of quasi-
complete, etc., K-spaces splits with respect to K. But if

0->U—-»V->W-0

is such a sequence and ¢: W—V is an R-splitting then the map
ox: w— [ k-a(k~'w)dk (assuming K to have total measure 1) is a con-
K

tinuous K-splitting.

Assume that @G is simple, simply connected, and isotropic. We follow
the notation used in Step (1) of the proof of Theorem 1. Let 4 be a quasi-
complete, etc., space.

Theorem 2. The cohomology H*(G, A) is that of the complex
0— 3 ) AKe o 5 AR5 0.

card{(z)=1 card{a)=2
Proof. As before, we have the strong resolution of 4:
0—A— B°(A)—--- > B{(A4)—0.

We claim that B%(A) is now an acyclic G-module.

Proof of the claim: Use Lemma 7 and Eq. (1) in § 2.
By Proposition 1, the cohomology of G is that of the complex

0— B°(A) > B! (4)° — -+ > B'(A)° - 0.

Apply Lemma 3 to get the theorem.
Corollary 1. The module A has trivial cohomology unless A% 0.
Corollary 2. One has H*(G, €)=0 for n#0.

Proof. In this case, the cohomology of the complex in Theorem 2 is
that of an (/+ 1)-dimensional simplex.

Define A, to be the subspace of all ac 4 such that ae A¥ for some
open subgroup K. If one gives A, the trivial topology, with respect to
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which every linear functional on A is continuous, then 4, is again quasi-
complete, etc., and G acts continuously on it.

Corollary 3. The inclusion of A, into A induces an isomorphism
H*(G, A))=H*(G, A).

Proof. The complex in Theorem 2 is the same for 4, and 4.

Remarks. (1) Let IF be any field of characteristic 0, and let V' be a
vector space over IF, with the discrete topology. A smooth representation
of any locally compact totally disconnected group on V is one which is
continuous with respect to this topology (see [6]). If K is a compact
totally disconnected group with a smooth representation on V, then
each C"(K, V) is again smooth. Lemma 7 holds in this situation, since
the integrals involved are merely sums (the observation that this can be
done for arbitrary characteristic 0 fields was made by Borel), and the
analogue of Theorem 2, with 4 a smooth representation of G, may be
proved exactly as Theorem 2 itself.

(2) One may take the field & in this section (the field of definition of G)
to be any locally compact non-archimedean field.

5. Again assume @, etc., as in §3. The following answers another
question of Serre’s in [11] (see Remark (3)in § I for the definition of H}):

Theorem 3. If A is a vector space of finite dimension over k on which
G has an algebraic representation, then HY (G, A)=H*(%, A).

Proof. Lazard has shown ([7], Chapter V, Theorems 2.3.10 and
2.4.10) that if K is a compact k-analytic group acting continuously (hence
analytically by [2], §8, Theorem 1) on A, then H} (K, Ay H* (£, A,
where # is the Lie algebra of K. Therefore, the proof of Theorem 3
proceeds as the proof of Theorem 1 does, once one has established the
existence of a spectral sequence which converges to H* (G, A) and has
as E%'? term the ¢-th cohomology of the complex

0- Y HI(K,A)— - —H(K, 6 A)—>0.
card(a)=1
To get the analogous result for the continuous cohomology, we applied
Proposition 1; if one carefully analyzes its proof and refers to Remark (3)
of § 1, one sees that everything carries through if the following sequence
is exact, for each n=0:

0 Cr (A)° - C (B°(A)° — - — C1.(B'(4))° — 0.
Here, C7, (B%(A)) is defined implicitly in Remark (2) of § 1, since
BiA)= ) Ind(4]K,.G).

card(a)=g+1
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More explicitly, it consists of the maps f from G"*! to B4(A4) such that
if o is any g-simplex of 4, then the function f(g,, g,, ..., g,)(0) is k-analytic
on G"*1. In Remark (4) of § 1, however, we showed how explicit homo-
topy maps &, on B*(A) give rise to G-maps 37: C"(B'(4))— C*(B~'(4))
and one can see without much difficulty that &7 takes C7 (B'(A4)) to
Ct (B'='(A)). This proves the theorem.
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