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A Bound for the Fixed-Point Index
of an Area-Preserving Map
with Applications to Mechanics™

Carl P. Simon (Ann Arbor)

Area-preserving maps and flows play an essential role in the study
of motions of mechanical systems, especially in celestial mechanics (see
[1, 14]). Since one is often interested in the behavior of an area-preserving
map around a fixed point and in the number and type of critical points
and periodic orbits of an area-preserving flow, the fixed-point index of
a map and the index of a singularity or a closed orbit of a flow can yield
much information about the map or flow. For example, the fact that the
index of an isolated singularity of an area-preserving flow can never be
greater than +1 has aided in setting a lower bound for the number of
stationary points of certain area-preserving flows. It has also been a
useful necessary condition for a flow to be area-preserving. For these
reasons, the conjecture that the fixed-point index of an area-preserving
homeomorphism of a 2- manifold is always less than or equal to + [ has
drawn attention. In this paper, we answer this conjecture in the affirmative
for smooth maps and then put this bound to work to show that certain
maps must have at least two fixed points and certain flows at least two
periodic orbits. An important application is the following generalization
of a famous theorem of Liapunov: a Hamiltonian vectorfield on M*
must have two distinct one-parameter families of periodic orbits around
a non-degenerate minimum (or maximum) of the Hamiltonian, even
when the pure imaginary characteristic exponents are in resonance.

Conversations with Jean Martinet, Ken Meyer, Charles Titus, and Alan Weinstein
were very helpful in the preparation of this paper. This paper is a simplification and ex-
pansion of [15]. Many of the improvements over the prescntation in [15], especially
Theorem 4, are based on suggestions of K. Meyer.

1. The Index for Flows and Transformations

Let x=G(x) be a continuous vectorfield on a manifold M" with
isolated singularity x,. Since we are interested only in local behavior,

* Supported in part by the Institute for Science and Technology at the University of
Michigan and by NSF Grant GP 29110.
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we can assume that x,eU an open ball in R”, that G: U —IR", and that
U~ G~ 10)={x,}. The following are equivalent definitions of the index
of vectorfield G at x:

a) The local degree of G at x,, i.e, if U is a ball of radius r and
S"-1=9U, the index is the degree of the map G: S" ' —->S§"! by
rG(x)
G (x)]

b) the intersection number of G(U) and the zero section in the
tangent bundle of M;

¢) if G is smooth, the index is ), {sign det DG(x)}, where bis a
regular value of G near 0; xeG~ b

d) in 2-dimensions, the index is 1 +4 [E — H] where E is the number
of elliptic regions about x, and H is the number of hyperbolic regions,
oris +1 if x, is a rotation point for the flow [Poincaré Index Formula].

G(x)= +x,, for xedU;

{p}

(e) (e)

Fig. 1. Flow of G about x, with elliptic regions (e), hyperbolic regions (h), and parabolic
regions (p)

On the other hand, let /: M — M be a continuous homeomorphism
with isolated fixed point m,. The following are equivalent definitions
of the index of f at m,:

) The local degree of 1,,— fatm,ie., if m; corresponds to the origin
in ball U of radius r, and if it is the only fixed point in U, then the index
is the degree of the mapping "' — §" 1, given by x r—»r—{cﬂ, where
ou=8*1; Ix —f(x)]

f) the intersection number of the graph of f with the diagonal at
(mg, mgyin M x M;
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g) The Lefschetz number of (f|V),: H(V; Q)— H(fV;Q), where
m, is the only fixed point in V.

Among the many references for these definitions are [4-8], and [12].

2. The Index for an Area-Preserving Flow

Proposition 1. If p is an isolated stationary point of an area-preserving
flow X, the index of X at pis £+1.

There are two quick ways of verifying this proposition. One can use
definition d) above and observe that an area preserving flow cannot
have any elliptic or parabolic regions about a stationary point. Alter-
natively, one can note that in a ball U about p with coordinates (x, y)
there is a real-valued function H(x, y) such that the vectorfield X is

0H 0H

5<-~(—37, y=— P (see [1]) and then follow the argument in Hartman
[7, p. 173].
Note that Proposition 1 holds also for gradient vector fields since the
H H . . .
vectorfield kza—, y= _“8_ is perpendicular at each point to the
9y ox oH . oH

corresponding gradient vector field x=——, j=——.
dx Oy

3. Parameterizing Diffeomorphisms by Vector Fields

Let C¥(R",IR™) be the space of C* maps R"— R" with the fine C*
topology ([11]), k=1. Let D¥*(R" R") be the open subspace consisting
of the C* diffeomorphisms, with the identity map I D*(IR", R"). Since
f—L(I+f)is a continuous map of D*(IR", R") into C*(R”,IR"), there is
aneighborhood % of I in D*(R”, R") such that if fe %, (I + f)e D*(R", R").
Similarly, let ¥ be a neighborhood of the zero map 0 in C*(R",R")
such that if € is in ¥; I+3¢ and 1—3¢ are in D*(R" R"). Let o =
{{x, f(x))eR"xR"| fe@}, an open neighborhood of the diagonal 4 in
R"xR"

Proposition 2. a) Consider maps F: % — C*(R",R") and G: %—
DY(R",R") defined by F(f)=U~[ )e[3(U+f)]17" and G()=U—3¢)o
(I+18~ . Then F: % —¥, G: ¥ -, and F and G are inverses to each
other.

b) Consider the linear map H: R"x R"-> R" @ R"=TR" by H(x, y)=
[3x+1y, x—y]. H takes the graph of an f in % onto the graph of F(f)in V"

c) Suppose that - R"—R"; that f(x,)= Xo; that for some neighbor-
hoods U and V about x,, 3(I+f): U~V is a surjective diffeomorphism
and that (x, f(x))esf for all xeU. Then F(f): V—>R" is defined and
F(f)(y)=x—f(x), where y=3%(x + f(x)).
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x is a fixed point of f if and only if y=2%(x+f(x)} is a zero of F(f);
and the fixed point index of x for f is equal to the index of y as a stationary
point for the vector field F(f). If n=2and k21 and if f: U—R?* is area-
preserving, then F(f): V— R? is divergence-free.

d) Likewise, if &: R"—>R", E(yo)=0, and I +5¢&: V> Wis a surjective
diffeomorphism for neighborhoods V and W of y, with (y,<(y))eH (/)
for yeV, then G(&): W-TR" is defined and G(E)(x)=y—1E(y) where
x=y+%&(y). vy a zero of G of index j implies that x is a fixed point of
G(&) of index j. If n=2 and k=1 and &: V- R? is divergence-free, then
G(&) is area-preserving.

Proof. a) To see that GoF is the identity, let zeR". Then,

(2. (G F)()(2)=(z. G({))(2)
=(z, (- sz) (I+% &) 'z)
:(w+% o) o—3& (@), where w=(+5&,)" 'z
=GO O+ =TSO+ ) =2 — W)

where w=%{(y+ f ()

(. S)-
F)

So, z=yand (Ge F)(f)z)=f(z2).
Slmllarly F( (&)=¢.
b) () =[5 (x+fx). x = f(x)]
=[»U~f)e [2(I+f 'y],  where 3(x+/(x))=y.

¢) Clearly, F(f)(3)=0 if and only if x= f(x), where y=3(x+ f(x)). H
takes the graph of f|U onto the graph of F(f)| V. H also takes the graph
of I to the graph of 0. Using definition b) for the index of a zero of a
vector field, definition f) for the index of a fixed point of a map, and the
fact that H preserves intersection numbers, one finds that the index of
a zero of F(f) is the same as the index of the corresponding fixed point
of f. For the last sentence of ¢), we use the fact that a transformation f
of the plane is area-preserving if and only if its Jacobian, det Df(x), is
+1 for all x; and the fact that divé=trace D¢&. So, if E=F(f),

D¢(x) D(I f)[ L+ x D[z”‘*‘f] Hx)

=DU—[),o[PGU+),]” U where y=0B+/)]11(x)
ﬁf1 . cf #< 4 ”fz) __li[l
(y] 6,}"2 1 2 €y, 2 ﬁy
oy i detDLU+/], | 1 oy L ( N ﬁﬁ)
oy ey, 2.0y 2 vy
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0 v,

1 o, G
i (1 —detDf(y)+ (fl ffl > < fl
! 2 ¢y,

T detDZUHM, | o, 1

( —det Df (v)+— t —fﬁ—)
oy 0y

oy, 2
So, div & (x)=trace D& {x)=0 for all x if and only if 1 =det D f(y) for all y.
d) The first part of d) is proven as the first part of ¢) was. For the last
sentence, if f=G(E),
Dfx)=DI+58); 1n-1,oDU=587"x
=D(I+38),o[DU—38,17",  where y=(I—3&)""x.

So,
detD(I+ C), 1+%divc‘f(_v)+%det0cf(y)
de et D(I—38), T 1—ldivép +idetDE()

det D f{x)

det D f(x)=1 for all x if and only if div{(y)=0 for all y. Q.E.D.

Proposition 2 describes a “coordinate chart” from a neighborhood
of the identity in the group of diffeomorphisms of R” to a neighborhood
of zero in the Banach space of smooth vector fields on R”. (This chart is
not smooth since F and G involve inversion.) For n=2, this chart shows
that the space of area-preserving diffemorphisms of the plane is a sub-
manifold modelled on the subspace of divergence-free vectorfields.
Both of these results are special cases of much more general results in
symplectic geometry in the work of Weinstein [18,21]. A symplectic
manifold M is one that supports a closed non-degenerate 2-form Q.
Q non-degenerate means that Q: TM—>T*M by Q(X)=X_1Q is an
isomorphism. If (M, Q) is a symplectic manifold, there is a natural
symplectic 2-form @, on TM and a natural symplectic 2-form &, on
M x M. In [18], Weinstein describes a diffeomorphism F of a neigh-
borhood of the diagonal 4 in (M x M, ©,) onto a neighborhood of the
zero section Z in (TM, ©,). F is symplectic in that F*Q, =Q,. As a result,
F maps the graphs of symplectlc diffeomorphisms f of M (1e fiM-M
with f*Q=() near the identity onto the graphs of infinitesimally
symplectic vectorfields X (ie., X: M—>TM such that L,Q=0) near
the zero vector field. In two dimensions, symplectic means area-preserving
if one chooses Q2 to be the area element.

Meyer uses such a parametrization of symplectic diffeomorphisms
by symplectic (locally Hamiltonian) vector fields to study generic
bifurcations of periodic points of area-preserving maps in [9] and to
write canonical forms for symplectic and Hamiltonian matrices in [10].
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4. The Fixed Point Index of an Area-Preserving Map

In this section, we compute the possibilities for the index of a fixed
point of C' area-preserving map f of a 2-manifold. Since this is purely
a local problem, we can suppose without loss of generality that U is a
convex neighborhood of the origin 0 in R?, that f: U - IR? has 0 as its
only fixed point, and that det D f (x)=1 for all x in U.

Since det D f(0) is the product of the eigenvalues A, u of D f(0),
there are three possibilities for these eigenvalues: a) O0<[A]<1<|u|
(hyperbolic case), b) |1|=|u|=1 but A=%1 (elliptic case), and ¢c) A=pu=1
(parabolic case).

Proposition 3. With f: U — R? as above, the index of 0 in case a) is +1
and the index in case b) is +1.

Proof. To compute the index, we use the fact that the index is a
homotopy invariant. More precisely, if f, is a continuous one-parameter
family of mappings of U into R? for 0<t<1 with 0 an isolated fixed
point for each f,, the index of O for f; equals the index of O for f,. (See
Dold [4].)

Letfs(x)=%f(ex)for0<£§l;fo(x)=Df(0)x. Iff(x)=Df(0) x+R(x)

is the Taylor expansion of f where R=o0(|x|), then f,(x)=D f(0) x + 5 (¢, x),
where S is C! in ¢ and x and $(0, x)=0. So, £, is a homotopy of f for
0<e=s1. f.(x)=x for xeU if and only if f(ex)=¢x if and only if x=0,
provided 1 is not an eigenvalue of D f(0). So, in cases a) and b), the index
of f at 0 is the same as the index of D (0} at 0.

In case a), D f(0) moves points as in Fig. 2 with a possible flip about
the origin. Here, E, is the eigenspace of A and E, the eigenspace of p.
Using definition e¢) for the fixed point index, one computes easily that
the index of 0 in case a) is —1 if D f(0)| E, preserves the natural orienta-
tion of E, and is +1 if D f(0)|E, reverses this orientation. For a more
general theorem, see Proposition 4.11 in Smale [17].
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In case b), D f(0) has the matrix ( cosfB sind

—sinf cos@

or is similar to (_ 0 111) . Using the same techniques as in case a),

one computes that the index of O for the rotation matrix is +1. By
-1 9

0 —1
homotopy, one finds that the index of 0 is also +1 in this situation. {J

) for some 0¢e(0, 2n)

letting # —0 in ( ) and using the invariance of index under

We come now to the main goal of this paper.

Theorem 1. Let f: N> N be a C* area-preserving transformation
of a 2-manifold N, k> 1. If p is an isolated fixed point of f, then the index
of fatpis £ +1.

Proof. As described in the first paragraph of this section, we are
led to consider f: U-IR? where U is a neighborhood of 0 in R% By
. 1
Proposition 3, we need only investigate the case where D f (0)= (O '1) .
1 /2 . .
Now, DEGU+N)0)=3(I+D f(0)= (0 171/ ) By the inverse function

theorem, there are neighborhoods U, and V such that f|U, is a diffeo-
morphism and 3(I+f)|U,;: U;—»V is a surjective difftomorphism,
where (x, f(x))e (of Proposition 2) for xeU,. Using Proposition 2,
construct divergence-free vector field F(f) on V. Since the fixed-point
index of f at 0 is equal to the index of 0 as a singularity of F(f), this
fixed-point index is < +1 by Proposition 1. []

5. Elementary Applications

As discussed in the introduction, the fixed point index is an important
tool in obtaining lower bounds for the number of fixed points of maps
of certain manifolds M —mainly because of the fact that if f: M—>M isa
map homotopic to identity with isolated fixed points or £ is a vectorfield
on M with isolated singularities, then the Euler characteristic is equal
to the sum of the fixed-point indices of f and to the sum of the indices
of the singularities of ¢ (see [4, 6,8, 12]). For example, since the Euler
characteristic of the 2-sphere S% is +2, every map f: $”— S* homotopic
to identity must have a fixed point and every vector field on $* must
have a zero. Proposition 1 and Theorem 1 yield the following strengthen-
ing of this result in the area-preserving case, since an area-preserving
map has degree 1 and so by Hopf’s Theorem is homotopic to identity.

Theorem 2. If f: S* — S* is a C* area-preserving map of the 2-sphere,
k=1, then f has at least 2 fixed points. If & is a gradient, Hamiltonian, or
divergence-free vector field on S, then & has at least two singularities.
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If one could prove the analogue of Theorem 2 for C° maps, then one
could show that an area preserving map g of the open two disk onto
itself must have a fixed point, without using the techniques of Brouwer
for mappings of the plane. One would construct from g an area-preserving
map & of S? with a fixed point at infinity and use the C° analogue of
Theorem 2 to point out that 3 must have another fixed-point.

As another simple application of Theorem 1, we obtain the following
clarification of Poincaré’s Geometric Theorem.

Theorem 3. Let T be a C' area-preserving transformation of the
annulus that leaves the boundary circles C, and C, invariant with T|C,;
a simple rotation of the circle. If T has a fixed point of index —n, then
T has at least n+1 fixed points.

(Birkhoff [37 has shown that if T rotates the boundary circles in
opposite directions, then T must have at least one fixed point.)

Proof. The sum of the indices throughout the annulus is zero. To
see this, let D; and D, be the 2-disks bounded by the simple closed curves
C, and C, respectively, with D, =D,. Construct g: D,— D, with a
single fixed point such that g|C,=T|C,, thus extending T to a map
T:D,— D, . Using definition e) of the index as in part a) of Proposition 2,
one notes that the sum of the fixed-point indices of g: D, —» D, is +1,
as is the corresponding sum for T: D, D,. Therefore, the sum of the
fixed-point indices in D, — D, the annulus, is zero. But by Theorem 1,
each index in the annulus is < +1. O

6. Families of Periodic Orbits for Hamiltonian Systems

Our main tool in this section will be the index for periodic orbits
of a smooth vector-field X as described and utilized by Fuller [5].
Let M be a smooth manifold with ¢: M x (—oc, oc)— M the flow of X
on M. Let Q be an open set in M x (0, :0) such that

a) Q is compact in M x (0, );

b) if (x, )eQ~Q, then ¢(x, 1)+ x;

¢) if (x, )e2, X (x)=0.
For such @, Fuller defines a rational number i{Q), the index of 2, with
the following properties:

DifQ=0Q uQ,, QnQ,=¢, and ©, and Q, satisfy a), b), ¢), then
i(Q)zi(Q1)+i(Qz),

2) if X, and Q, are continuously deformed to X, and Q, such

that each Q, satisfies a), b), ¢) for X, [0, 1], then i{Q,) is independent
of a.
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t t
3) Suppose Q=U x (kto—io, kto+—29) where k is an integer,
U is an open set in M that contains only one periodic orbit y; and y
has least period t,. Let D be an (n—1)-disk meeting y transversally
at x,, with Dny={x,}. Let T, mapping a neighborhood of x, in D into
D, be the Poincaré first-return map for X. Then, i(2) equals 1/k x (fixed-
point index of T* at x).

4) If @Q=U x(t,,t,) and i(£)#0, then U contains a periodic orbit
of period 7e(ty, t,).

Fuller applies his index in [5] to prove the following theorem of
Seifert.

Proposition 4 (see Seifert [13]). Let X be a vector field on S* with
every orbit a non-trivial periodic orbit of least period 2n and with the
orbit space homeomorphic to S*. Let Q=5 x(n,3n). Then i(Q)= +2.
Therefore, perturbations of X have at least one periodic orbit.

Fuller’s proof involves i) constructing a vectorfield G on S* where
flow fixes the north and south poles and sends the other points down
the meridians, ii) lifting G to G on S, using the fact that §? is the orbit
space of X, iii) noting that X, =X +¢G has only two periodic orbits,
both of index one, for £+0, small, iv) using the invariance of i(Q) under
homotopy.

Let us now apply Fuller's index to the search for families of periodic
orbits of Hamiltonian dynamical systems. Let H: M*— R be a smooth
(Hamiltonian or energy) function on a four-dimensional phase space,
with peM* an isolated critical point. Choose canonical coordinates
about p so that we can view H as defined on a neighborhood of 0 in
R* with H(0)=0 and grad H(0)=0. Let J be the matrix

0 0 1 0
0 0 0 1
-1 0 0 0
0-1 0 O

Then, the corresponding Hamiltonian equations for a system with
energy function H is x=Jograd H(x)= X (x). Suppose the characteristic
multipliers of X, at 0, i.e., the eigenvalues of the linear map DXy (0),
are pure imaginary: +iw, and *+iw,, where w; and w, are real and
lw,| <|w,|. Inthis case, by a standard diagonalization technique [ 14, §157,
there are canonical coordinates (x,, X,, y,, ¥») In U such that

w w
(*) H(xl,xz,yl,y2)=—5_‘—(Xf+yf)+—§2—(X§+y§:)+R(x, y)

14 Inventiones math . Vol 26
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where R is 0(|(x, y)|?). The linearized equations, x=DX,(0)x, are the
Hamiltonian equations for the Hamiltonian

w @
‘:*:) Ho(xl,xzsyu}’2):—1()‘%4‘)’%)4—*21(’(%‘*‘}’%),

2
the quadratic part of H. These linear equations are:
X=Xy, X,=W3¥,, Y= 01X, Yy=—0,X,.
If we choose coordinates (z,, z,)e C x € in U where z,=x, +iy,, k=1, 2,
then x=DX,(0)x= X (x) becomes z, =i, z, with solutions
i/ (=z, e ', zy(O)=z, e O,
Here, the (generalized) eigenspace z,=0 for t+iw, is a one-parameter

and the

family of periodic orbits of z=DX,(0)z with period

W,
(generalized) eigenspace z; =0 of +iw, is a one-parameter family of

¥ .
——|: A famous theorem of Liapunov (see [14])
W3
asserts that there still exists a smooth one-parameter family of orbits
for the non- linear equation X=X, (x) near z, =0 with period near

l_*

with period

periodic orbits of period

and if 22 is not an integer, there is another such family near z, =0
W,

&

In Theorem 4 below, we use Theorem 1 and Fuller’s index to show

the existence of this second family even if % is an integer (even 1),
1

provided that the Hessian of H at 0 is positive (or negative) definite.

Weinstein [19, 20] has used much more complex techniques to obtain

the definitive results in this situation. Berger [2] has used techniques

of the calculus of variations to exhibit families of periodic orbits in similar

situations. On the other hand, for each integer n> 1, there exists H: R* > R

with H(0)=0, DH(0)=0, D*H(0) indefinite, —2= —n, and X,; having
only one family of periodic orbits [16]. @1

Theorem 4. Let H: M*— IR be a smooth (C?) Hamiltonian function
on a 4-dimensional phase space with pe M a non-degenerate minimum (or
maximum) of H and H (p)=c,. Then, for ¢ near c,, the Hamiltonian system
x=Jograd H(x) has at least two periodic orbits on each energy surface

H~Yc).
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Proof. As above, choose canonical coordinates (z,, z,) in € x € about
p so that p corresponds to 0 and in this neighborhood

_ w _
215 +_"‘2_2222 +R(z,, z,), 1w1|§|w2]»

w
H(ZIBZZ):_L 2

2
as ip.(*}. Since p is a non-degenerate minimum (maximum), D? H(0) is
positive (negative) definite and e, and w, are both positive (negative).
Wlthout' loss of generality, we assume p is a minimum. (Otherwise,
work with —H.) Consider the one-parameter family of Hamiltonians

1
Hi(z):g—zH(ez) for O0<e<l,

H ()= ' =2 Z, +%2222 for £=0.

Since R(z,, z,) is 0(z|%), C(z) is smooth in &. Let X, be the Hamiltonian
vector field z=Jograd H,(z). For ¢+0, multiplication by ¢ takes integral
curves of X, on H l(1) onto mtegral curves of X=Xy, on H™' (%)
So a periodic orbit for Xy, on HS 1(1) corresponds to periodic orbit of
Xy on H™'(g?). [We are using the fact that H, is constant on integral
curves of Xy .]

Consequently, using the homotopy H, allows us to view X, as a
perturbation of the linear system Xy (2)=DXy(0)(z). Xy, has solution

(z,0e ', 2,007 @20). 1522 is not an integer, Liapunov’s Theorem asserts

Wy
that X, has 2 families of periodic orbits, parametrized by energy. [In
2c

this case, on Hy (c) the periodic orbits
E T
e“‘”‘) |teIR} and {( — e"“’“,O) ]te]R}
w

2c
have non-zero Fuller index and so are preserved in perturbing X, to

{(0’ o
Xa,] 2

2
W

We treat the case where —% is an integer. Since X has the same

Wy

L1
phase portrait as X, where H=-—H, we can suppose that @, =1 and
W,

w,=weN. Hy'3)= {(zl,zz)e(tx(t[ |z, [* +wlz,*=1} is diffeomorphic
to the 3Asphere S3. Each orbit (z,,67 ", 2;0¢~ ") has least period 27,

1 . 2
except the orbit y, :{ (0, Ee”“") |te IR} which has least period 7"

1—a
Let T, be the torus {(zl, z,)eHy'$)| |z, =a? (and thus |z,|?= - )},
O<a<1.Hg'()is the disjoint union of the T.’s for 0<a <1 and the orbits

14+
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7o and y,, where y, ={e~",0)|reIR}. Each T, is invariant under the flow
of Xy, on Hy' ().

We want to compute i(Q) where Q=H; () x (Zn——n—,?.n +—n->.
w w

For w=1 (characteristic exponents of X, equal in pairs), i(Q)= +2 by
the calculation of Proposition 4. So in this case, using 2) of the properties
of i(Q), i(Q,)= +2 where Q,=H;'(3)x(n,3n); and X, must have a
periodic orbit of period near 27r for ¢ small. Using the fact that the
Poincaré first-return map on an energy surface of a Hamiltonian system
on M* is area-preserving [1, 14], property 3) of the Fuller index, and
Theorem 1, we see that the index of this orbit is at most +1. Since
i(Q,)= +2, there must be another periodic orbit on H; '(3).

To compute i(22) when w > 1, consider the smooth map g: Hy '(4) > R
by glz;,2z,)=]|z;/%. Let Y be the gradient vector field of g on H;'().
The circles y, and y, are circles of critical points of Y and the flow of Y
takes torus T, to torus T,, where 0 <a <a’ < 1. Now, consider vector field
F=Xy +eYon S3. For ¢+0, the orbits y, and y, are the only periodic
orbits of F, and the flow of F, sends points from y, toward y, (i.e, 7, is a
source and 7, a sink). So, i(£2) satisfies a), b), ¢) for each F. By property
2) of i, i(2) for Xy equals i(Q) for F,. Let U; ={(z,, z,)e Hy ') |1z,1 <4}
and U, =the interior of its complement in H; '(2). For vector field E,

n 7 n i
i{Q)=i (U1 X (27z—~, 2n+-—>> +i <U2 X (21t——, 27n +—))
w %53 w w

by properties 1) and 4) of i(€2)

1
=+1+—
(6]

by property 3) and the fact that the fixed point index of a contraction or
its inverse is +1. Finally, for ¢>0 and small, H'(3) is a 3-sphere and

Q,=H '})x (271——n~,2n+£) satisfies a), b), ¢) for X} . Therefore,
w w

i(2,)> 1.Again using the fact that Poincaré map for X, on H '(3)
is area-preserving, property 3) of i, and Theorem 1, we see that there
must be at least two periodic orbits on H, '(3). These correspond to
2

periodic orbits of X, on H™! (%) :

As Alan Weinstein and Jean Martinet have pointed out to me, one
can construct an area-preserving Poincaré map about a periodic orbit
of a volume-preserving vector field X on a manifold M. If 5 is the volume
form on M and L, =0, one puts the volume form X _! # on a codimension
one transverse disk. Therefore, the above techniques and Theorem 1
yield the following strengthening of Proposition 4.
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Theorem 5. Let F be a vectorfield on S* equivalent to the vectorfield
zy=—izy, z,= —ikz, on the 3-sphere {(z,,2,)eC x C|lz,|* +k|z,]* =3},
where k is a positive integer. Then, divergence-free perturbations of F
have at least two distinct periodic orbits.

7. No Bounds in Higher Dimensions

The following computations, worked out with Charles Titus, show
that there are no restrictions on the index for volume preserving or even
symplectic transformations and flows in higher dimensions. Once again,
put coordinates (z,, z,)e € x € on R*. Consider the Hamiltonian function

H(zy,25)= —3(z1 + 2] +25 +23),

where n and m are integers greater than 1. The corresponding Hamiltonian
vector-field is

0H
3y =—2i———=inz}"}
7
OH _
fy=—2ic—=imz3 "},
22

or (2,,%,)=G(z,,z,). A simple computation shows that the determinant
of the Jacobian of G will have the same sign in a neighborhood of ¢
for cach m, n. By definition c) of the index of a singularity of a vector field,
the index of 0 for z=G(z) is equal to the cardinality of G Y(c) for regular
values ¢ near 0, ie., to (m—1)(n—1). The time-one map for the flow of
this vector field will be volume-preserving on R* and have 0 as an iso-
lated fixed point of index (m—1)}{(n—1).
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