
Inventiones math. 26, 187-200  (1974) 
�9 by Springer-Verlag 1974 

A Bound for the Fixed-Point Index 
of an Area-Preserving Map 

with Applications to Mechanics 

Carl P. Simon (Ann Arbor) 

Area-preserving maps and flows play an essential role in the study 
of motions of mechanical systems, especially in celestial mechanics (see 
[1, 14]). Since one is often interested in the behavior of an area-preserving 
map around a fixed point and in the number and type of critical points 
and periodic orbits of an area-preserving flow, the ./i'xed-point index of 
a map and the index oj" a singularity or a closed orbit of a flow can yield 
much information about the map or flow. For example, the fact that the 
index of an isolated singularity of an area-preserving flow can never be 
greater than +1 has aided in setting a lower bound for the number of 
stationary points of certain area-preserving flows. It has also been a 
useful necessary condition for a flow to be area-preserving. For these 
reasons, the conjecture that the fixed-point index of an area-preserving 
homeomorphism of a 2- manifold is always less than or equal to + 1 has 
drawn attention. In this paper, we answer this conjecture in the affirmative 
for smooth maps and then put this bound to work to show that certain 
maps must have at least two fixed points and certain flows at least two 
periodic orbits. An important application is the following generalization 
of a famous theorem of Liapunov: a Hamiltonian vectorfield on M 4 
must have two distinct one-parameter families of periodic orbits around 
a non-degenerate minimum (or maximum) of the Hamiltonian, even 
when the pure imaginary characteristic exponents are in resonance. 

Conversations with Jean Martinet, Ken Meyer, Charles Titus, and Alan Weinstein 
were very helpful in the preparation of this paper. This paper is a simplification and ex- 
pansion of [15~]. Many of the improvements over tile presentation in [151, especially 
Theorem 4, are based on suggestions of K. Meyer, 

1. The Index for Flows and Transformations 

Let 2=G(x)  be a continuous vectorfield on a manifold M" with 
isolated singularity x o. Since we are interested only in local behavior, 
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we can assume that xoeU an open ball in ~" ,  that G: U ~IR",  and that 
U ~ G -  1(0)= {Xo}. The following are equivalent definitions of the index 
of vectorfield G at x0: 

a) The local degree of G at x o, i.e., if U is a ball of radius r and 
S"-1=,9U, the index is the degree of the map G: S " -1 - - ,S  " - t  by 

(~ (x) --- rG(x)  
IG(x)l Fx0, for x~OU; 

b) the intersection number of G(U) and the zero section in the 
tangent bundle of M; 

c) if G is smooth, the index is ~ {sign det DG(x)}, where b is a 
regular value of G near 0; x ~ - q ~  

d) in 2-dimensions, the index is 1 +�89 E E -  H]  where E is the number 
of elliptic regions about x o and H is the number  of hyperbolic regions, 
or is + 1 if x o is a rotation point for the flow [Poincar6 Index Formula] .  

(e le) 

" /~p) / ' i f  oh) 

Fig. 1. Flow of G about x o with elliptic regions (e), hyperbolic regions (h), and parabolic 
regions (p) 

On the other hand, let f :  M ~ M be a continuous homeomorphism 
with isolated fixed point mo. The following are equivalent definitions 
of the index of f at too: 

e) The local degree of 1M - f  at m o, i,e., if m o corresponds to the origin 
in ball U of radius r, and if it is the only fixed point in U, then the index 

x - f  (x) where is the degree of the mapping S "-1 ~ S "-~, given by x F--~r]x - f ( x ) [  ' 
8U=S"-t; 

f) the intersection number  of the graph of f with the diagonal at 
(rno, m0) in M x M;  
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g) The Lefschetz number of ( f lVL:  H(V; Q)--* H ( f  V; Q), where 
m o is the only fixed point in V. 

Among the many references for these definitions are [4-8], and [12]. 

2. The Index for an Area-Preserving Flow 

Proposition 1. I f  p is an isolated stationary point of an area-preserving 
flow X, the index of X at p is <: + 1. 

There are two quick ways of verifying this proposition. One can use 
definition d) above and observe that an area preserving flow cannot 
have any elliptic or parabolic regions about a stationary point. Alter- 
natively, one can note that in a ball U about p with coordinates (x, y) 
there is a real-valued function H(x, y) such that the vectorfield X is 

c~H OH 
5c=-~-v ' Y= Ox ' (see [1]) and then follow the argument in Hartman 

[7, p. 173]. 
Note that Proposition 1 holds also for gradient vector fields since the 

OH OH 
vectorfield x=~E-. .  , v y  ~'= - 0-~- is perpendicular at each point to the 

~H ~H 
corresponding gradient vector field ~ = - ~ - ,  ~=  ~y O X  

3. Parameterizing Diffeomorphisms by Vector Fields 

Let Ck(IR",IR ~) be the space of C k maps I R ~ I R "  with the fine C k 
topology ([11]), k>  1. Let D*(IR ", IR") be the open subspace consisting 
of the C k diffeomorphisms, with the identity map IsDk(IR ", IR"). Since 
f ~ � 8 9  (I + f )  is a continuous map of Dk(IR ", IR") into Ck(IR ", ~"), there is 
a neighborhood #/of I in O k (JR n, ]R .) such that i f fe  #/, �89 (I + f )  e D k (~", IR"). 
Similarly, let ~ be a neighborhood of the zero map 0 in Ck(IR ", IR") 
such that i f~  is in ~ I+�89 and I - � 89  are in Dk(IR ",IR"). Let M-= 
{(x,f(x))eIR" x F,"[fe#//}, an open neighborhood of the diagonal A in 
IR" x IR n. 

Proposition2. a) Consider maps F:  d~'--+Ck(]Rn,~n) and G: ~ - ~  
Dk(IR",IR ~) defined by F ( f ) : ( I - f ) o [ � 8 9  +f )]  -1 and G(~)=(I - �89  

1 - 1  (I + ~ )  . Then F" q l - ~ ,  G: U/-~ql, and F and G are inverses to each 
other. 

b) Consider the linear map H: IR" • IR"-~ IR ~ �9 ~"  = TIR" by H(x, y) = 
[�89 x + �89 y, x - y]. H takes the graph of an f in ~ onto the graph o fF ( f )  in ~. 

c) Suppose that f :  ~,P-~ IR"; that f(x0)= Xo; that for some neighbor- 
hoods U and V about x o, �89 + f ) :  U o  V is a surjective diffeomorphism; 
and that (x, f(x))e~r for all xeU.  Then F(f) :  V--*~" is defined and 
F(f ) (y)=  x - f ( x ) ,  where y=�89 + f(x)). 
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x is a.fixed point of f !f and only if" y=�89 +f(x) ) i s  a zero o[" F(f) ;  
and the.fixed point index of x .for f is equal to the index of y as a stationary 
point Jor the vector .field F(f) .  I f  n=2  and k> 1 and if.[': U ~ IR 2 is area- 
preserving, then F(f) :  V~ IR 2 is divergence-jbee. 

d) Likewise, if ~ : IR"--, IR", ~ (Yo) = 0, and I +�89 ~: V ~  W is a surjective 
diffeomorphism for neighborhoods V and W of Yo with 0', ~(y))eH(,~) 

_ t y[l,~ where for y~V, then G(~): W--*IR" is defined and G(~)(x)=y 2 ~ i  
x =  y + �89 ~ (y). y a zero of G of index j implies that x is a f ixed point of  
G(~) of index j . / j"  n = 2  and k >=l and ~: V-~ IR 2 is dirergence:kee, then 
G(~) is area-preserving. 

Proof a) To see that GoF is the identity, let z~IR ~. Then, 

(z, (G o F)(f)(z)) = (z, O (if)(z)) 

=(_~, (I-�89 ~s)O(1 +} Cst- ~ z) 
=(oJ +�89 r co-�89 where o ) = ( l §  

= (�89 +f(Y)) +�89 - f(y)), �89 + f ( Y ) ) -  ~(y - f(Y))), 

where ~o = �89 (y + f (y)) 
= (r ,  f ( y ) ) .  

So, z= y and (GoF) ( f ) ( z )=  f (z). 
Similarly, F(G(4))= 4. 

b) H(x, f(x))= [�89 +ix)) ,  x - f ( x ) ]  

= [ y , ( l - f ) o [ } ( I + f ) ] - ~ y ] ,  where �89 

c) Clearly, F ( f ) (y )=0  if and only i f x = f ( x ) ,  where y ={ (x + f ( x ) ) .  H 
takes the graph off]  U onto the graph o fF( f ) [  V. H also takes the graph 
of I to the graph of 0. Using definition b) for the index of a zero of a 
vector field, definition f) for the index of a fixed point of a map, and the 
fact that H preserves intersection numbers, one finds that the index of 
a zero of F( f )  is the same as the index of the corresponding fixed point 
of f For the last sentence of c), we use the fact that a transformation f 
of the plane is area-preserving if and only if its Jacobian, det Dr(x), is 
+1 for all x; and the fact that div~ = trace D~. So, if ~ = F(f) ,  

D ~ ( x ) = D ( I  1 �9 -1 - f  )[_~.~;+f~l_~xoD[-z-(l +J)] (x) 

= D(I -f)~.o [D(�89 (I +J))).] - ' ,  where y = [�89 %/')] -~(x) 

8yl 83;2 [ o 1 
= ~ detD[�89 1 ~')fz l ( +  ~fl" 

,'~y, ~ 2 8y 1 2 -87yt l 
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det D [�89 + f ) ] y  

(l -det  Df(ylq ~ (:::(~fl)yl (/-~2 / 

~ .  ~ (1 - det Df(yj 4 ~.I; 
8Yl ~Y2 ] -~ 

So, div ~ (x)= trace D ~ (x) = 0 for all x if and only if I = det DfO')  for all y. 

d) The first part of d) is proven as the first part of c) was. For  the last 
sentence, if f =  G(~), 

D f (x)= D(1 + ~ d.)(r-~r ~ x~ D( I _ �89 ~.)- t x 

y = ( l - ~ )  x. =D(I+�89  1 -~ 1~-~  - 5  ~-),] , where 

So, 
detD(l+�89 _ 1 + �89  ] det D~(y) 

det D r ( x ) =  1 1 div ~ (y) + ~ det D d (y) " d e t D ( l - g ~ ) y  1 - 5  

det D f ( x ) =  1 for all x if and only if div ~(y)=0 for all y. Q.E.D. 

Proposition 2 describes a "coordinate chart" from a neighborhood 
of the identity in the group of diffeomorphisms of IR" to a neighborhood 
of zero in the Banach space of smooth vector fields on IR ~. (This chart is 
not smooth since F and G involve inversion.) For ~7 = 2, this chart shows 
that the space of area-preserving diffemorphisms of the plane is a sub- 
manifold modelled on the subspace of divergence-free vectorfields. 
Both of these results are special cases of much more general results in 
symplectic geometry in the work of Weinstein [18,211. A symplectic 
manifold M is one that supports a closed non-degenerate 2-form Q. 
f2 non-degenerate means that f~: T M ~  T * M  by f ) ( X ) = X ~  ~2 is an 
isomorphism. If (M, Y2) is a symplectic manifold, there is a natural 
symplectic 2-form s on T M  and a natural symplectic 2-form s on 
M x M. In [18], Weinstein describes a diffeomorphism F of a neigh- 
borhood of the diagonal A in (M x M, 02) onto a neighborhood of the 
zero section Z in ( T M ,  (21). F is symplectic in that F*/?I : ~2- As a result, 
F maps the graphs of symplectic diffeomorphisms f of M (i.e., f :  M --+ M 
with f* f2=(2)  near the identity onto the graphs of infinitesimally 
symplectic vectorfietds X (i.e., X:  M--+ T M  such that Lx O =0 )  near 
the zero vector field. In two dimensions, symplectic means area-preserving 
if one chooses f2 to be the area element. 

Meyer uses such a parametrization of sympleclic diffeomorphisms 
by symplectic (locally Hamiltonian) vector fields to study generic 
bifurcations of periodic points of area-preserving maps in [9] and to 
write canonical forms for symplectic and Hamiltonian matrices in [10]. 
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4. The Fixed Point Index of an Area-Preserving Map 

In this section, we compute the possibilities for the index of a fixed 
point of C 1 area-preserving map f of a 2-manifold. Since this is purely 
a local problem, we can suppose without loss of generality that U is a 
convex neighborhood of the origin 0 in 1t 2, that f :  U -* 112 has 0 as its 
only fixed point, and that d e t D f ( x ) =  1 for all x in U. 

Since det Df(0)  is the product of the eigenvalues 2, /~ of Df(O), 
there are three possibilities for these eigenvalues: a) 0 < 121 < 1 < I#l 
(hyperbolic case), b) 121 = [gI = 1 but 2 4= 1 (elliptic case), and c) 2 = # = 1 
(parabolic case). 

Proposition 3. With f:  U ~ 11z as above, the index of 0 in case a) is + 1 
and the index in case b) is + 1. 

Proof To compute the index, we use the fact that the index is a 
homotopy invariant. More precisely, if f is a continuous one-parameter 
family of mappings of U into IR z for 0 < t <  1 with 0 an isolated fixed 
point for each ft, the index of 0 for fo equals the index of 0 for fl .  (See 
Dold [4].) 

Let f,(x) = ~-  f (e  x) for 0 < e < 1 ;fo(X) = Df(O) x. Iff(x) = Df(O) x + R (x) 

is the Taylor expansion o f f  where R = o ([ xl), then f,  (x)= D f (0) x + S (e, x), 
where S is C t in e and x and S(0, x)~:0. So, f~ is a homotopy of f for 
0<~<_ 1. f~(x)=x for x e U  if and only i f f ( e x ) = e x  if and only if x=O, 
provided 1 is not an eigenvalue of Dr(O). So, in cases a) and b), the index 
of f a t  0 is the same as the index of D f(0)  at 0. 

In case a), Df(O) moves points as in Fig. 2 with a possible flip about 
the origin. Here, Ez is the eigenspace of 2 and E, the eigenspace of #. 
Using definition e) for the fixed point index, one computes easily that 
the index of 0 in case a) is - 1 if D f(O)IE, preserves the natural orienta- 
tion of E,  and is + I  if Df(O)IE, reverses this orientation. For  a more 
general theorem, see Proposition 4.11 in Smale [-17]. 

Fig. 2 
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( cos0 sin0] 
In case b), Df(O) has the matrix \ - s i n  0 cos0!  for some 0e(0, 2re) 

(10 or is similar to . Using the same techniques as in case a), 

one computes that the index of 0 for the rotation matrix is + 1. By 

(-; letting r / ~ 0  in _ and using the invariance of index under 

homotopy, one finds that the index of 0 is also + 1 in this situation. []  

We come now to the main goal of this paper. 

Theorem 1. Let f :  N--, N be a C k area-preserving transformation 
of a 2-manifold N, k > 1. I f  p is an isolated fixed point o f f  then the index 
of f at p is __<+1. 

Proof As described in the first paragraph of this section, we are 
led to consider f :  U - ,  1R z where U is a neighborhood of 0 in R 2. By 

Proposition 3, we need only investigate the case where D f ( 0 ) =  (~ 71). 

Now, D ( � 8 9  r/f2). By the inverse function 

theorem, there are neighborhoods U 1 and V such that f ] U 1 is a diffeo- 
morphism and � 8 9  1" U I ~ V  is a surjective diffeomorphism, 
where ( x , f ( x ) ) e ~  (of Proposition 2) for x e U  1. Using Proposition 2, 
construct divergence-free vector field F ( f )  on V. Since the fixed-point 
index of f at 0 is equal to the index of 0 as a singularity of F(f ) ,  this 
fixed-point index is < + 1 by Proposition 1. []  

5. Elementary Applications 

As discussed in the introduction, the fixed point index is an important 
tool in obtaining lower bounds for the number of fixed points of maps 
of certain manifolds M -  mainly because of the fact that if f :  M - ,  M is a 
map homotopic to identity with isolated fixed points or ~ is a vectorfield 
on M with isolated singularities, then the Euler characteristic is equal 
to the sum of the fixed-point indices of f and to the sum of the indices 
of the singularities of ~ (see [4, 6, 8, 123). For example, since the Euler 
characteristic of the 2-sphere S 2 is + 2, every map f :  S 2 - ,  S 2 homotopic 
to identity must have a fixed point and every vector field on S 2 must 
have a zero. Proposition 1 and Theorem 1 yield the following strengthen- 
ing of this result in the area-preserving case, since an area-preserving 
map has degree 1 and so by Hopfs  Theorem is homotopic to identity. 

Theorem 2. I f  f: S 2 --~ S 2 iS a C k area-preserving map of the 2-sphere, 
k > l, then f has at least 2 fixed points. I f  ~ is a gradient, Hamiltonian, or 
divergence-free vector field on S 2, then ~ has at least two singularities. 
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If one could prove the analogue of Theo rem 2 for C o maps,  then one 
could show that  an area preserving map  g of the open two disk onto 
itself must  have a fixed point,  wi thout  using the techniques of Brouwer 
for mappings  of the plane. One would construct  from g an area-preserving 
m a p  ~ of S 2 with a fixed point  at infinity and use the C o analogue of 
T h e o r e m  2 to point  out  that  ~ must  have ano ther  fixed-point. 

As another  simple appl ica t ion of T h e o r e m  1, we obtain the following 
clarification of Poincare 's  Geome t r i c  Theorem.  

Theorem 3, Let T be a C ~ area-preserving transformation of the 
annulus that leaves the boundary circles C l and C 2 invariant with T[ Ci 
a simple rotation of  the circle. U" T has a f ixed point o f  index - n, then 
T has at least n + 1 f ixed points. 

(Birkhoff [3] has shown that  if T rotates  the boundary  circles in 
opposi te  directions, then T must  have at least one fixed point.) 

Proof The sum of  the indices th roughou t  the annulus is zero. To  
see this, let D~ and D 2 be the 2-disks bounded  by the simple closed curves 
C~ and C 2 respectively, with D t c D  2. Const ruc t  g: D~-,D~ with a 
single fixed point  such that  g [ C I = T I C  ~, thus extending T to a map  
T: D 2 --, D 2. Using definition e) of  the index as in part  a) of Proposi t ion 2, 
one notes that  the sum of the fixed-point indices of  g: D z --~ D 1 is + 1, 
as is the cor responding  sum for 7": O 2-~ D 2. Therefore,  the sum of the 
fixed-point indices in D 2 -  D~, the annulus, is zero. But by Theorem 1, 
each index in the annulus  is < +1 .  [ ]  

6. Families of Periodic Orbits for Hamiltonian Systems 

Our  main  tool in this section will be the index for periodic orbits 
of a smooth  vector-field X as described and utilized by Fuller  [5]. 
Let M be a smoo th  manifold  with q5: M • ( - o o ,  m ) ~ M  the flow of X 
on M. Let f2 be an open set in M x (0, m) such that  

a) ~ is compac t  in M x (0, oo); 

b) if(x, t ) e ~ \ f 2 ,  then r  t)=#x; 

c) if(x, t)e[}, X(x)+O. 

For  such f2, Fuller defines a ra t ional  number  i(f2), the index of  f2, with 
the following propert ies:  

1) if f2 = Q1 u f22, f21 c~ f2 z = qi, and ~21 and f22 satisfy a), b), c), then 
i(f2) = i(Qt) + i(g22) , 

2) if X 0 and f20 are cont inuously  deformed to X~ and Q~ such 
that  each f2, satisfies a), b), c) for X~, c~E[0, 1], then i(f2~) is independent  
of  co 
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( to) 
3) Suppose g 2 = U x  k t o - f ~ ,  kto+ ~ where k is an integer, 

U is an open set in M that contains only one periodic orbit Y; and 7 
has least period t 0. Let D be an ( n - D - d i s k  meeting 1' transversally 
at Xo, with D c~y= {x0}. Let T, mapping a neighborhood of x o in D into 
D, be the Poincar6 first-return map for X. Then, i(•) equals 1/k x (fixed- 
point index of T k at x0). 

4) If g2= U x (h, t2) and i(f2)#0, then U contains a periodic orbit 
of period Te(t l, t2). 

Fuller applies his index in [5] to prove the following theorem of 
Seifert. 

Proposition 4 (see Seifert [13]). Let X be a vector field on S 3 with 
every orbit a non-trivial periodic orbit of least period 2~ and with the 
orbit space homeomorphic to S 2. Let D = S  3 x(=,3=). Then i(g2)= +2. 
Therefore, perturbations of X have at teast one periodic orbit. 

Fuller's proof involves i) constructing a vectorfield G on S z where 
flow fixes the north and south poles and sends the other points down 
the meridians, ii) lifting G to G on S 3, using the fact that S 2 is the orbit 
space of X, iii) noting that X~=-X+eG has only two periodic orbits, 
both of index one, for e #  0, small, iv) using the invariance of i(f2) under 
homotopy. 

Let us now apply Fuller's index to the search for families of periodic 
orbits of Hamiltonian dynamical systems. Let H: M 4 ~ F.. be a smooth 
(HamiltonJan or energy) function on a four-dimensional phase space, 
with p e M  4 an isolated critical point. Choose canonical coordinates 
about  p so that we can view H as defined on a neighborhood of 0 in 
IR 4 with H(0 )=0  and grad H (0) = 0. Let J be the matrix 

(~176 0 0 0 

- 1  0 0 

0 - i  0 

Then, the corresponding Hamiltonian equations for a system with 
energy function H is x = J o grad H ( x ) - X n ( x ) .  Suppose the characteristic 
multipliers of X n at 0, i.e., the eigenvalues of the linear map DXn(O), 
are pure imaginary: +_ico 1 and _+ico 2, where col and o 2 are real and 
It 'll < Io21- In this case, by a standard diagonalization technique [ 14, w 15], 
there are canonical coordinates (x~, x 2, y~, Y2) in U such that 

(,) 

t4 lnvcntiones math. Vol 26 
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where R is 0(l(x,y)12), The linearized equations, x=DXn(0)x,  are the 
Hamiltonian equations for the Hamiltonian 

no(X1, x2,-)?1, Y2): ~ - (  X2 "~- y2)-~_ ~ ( x 2  2 ~_ ~,2), (4=) 

the quadratic part of H. These linear equations are: 

"Xt = fOlXl,  5C2 =C02 Y2, 5"1 = --C01Xl, ) 2  = --C~2X2" 

If we choose coordinates (z I, Z2)Ct~ X t~ in U where Zk=.Y k + i y  k, k = 1, 2, 
then x = DXn(O)x  = Xno(X ) becomes ~k = iO~kZk with solutions 

z l ( t ) = z l e  . . . .  ', z 2 ( t ) = z 2 e  . . . .  '. 

Here, the (generalized) eigenspace z2=0 for • is a one-parameter 

of periodic orbits of z=DXn(0)z with period 27~-~ - and the family 

(generalized) eigenspace z 1 =0  of _+ie) 2 is a one-parameter family of 
2rt 

periodic orbits of period ~ -  : A famous theorem of Liapunov (see [14]) 

asserts that there still exists a smooth one-parameter family of orbits 
for the non-linear equation~k=X~(x) near z1=0 with period near 

2 n  ; and if 092 is not an integer, there is another such family near zz=O 
% 601 

2re 
with period ~ . 

In Theorem 4 below, we use Theorem 1 and Fuller's index to show 

the existence of this second family even if c~ is an integer (even 1), 
091 

provided that the Hessian of H at 0 is positive (or negative) definite. 
Weinstein 1-19, 20] has used much more complex techniques to obtain 
the definitive results in this situation. Berger [2] has used techniques 
of the calculus of variations to exhibit families of periodic orbits in similar 
situations. On the other hand, for each integer n > 1, there exists H: lR 4--, IR 

with H(0)=0, DH(0)=0, D2H(O) indefinite, ~  - - = - n ,  and X~ having 
only one family of periodic orbits [16]. col 

Theorem 4. Let H: M4--*IR be a smooth (C z) Hamittonian function 
on a 4-dimensional phase space with p e M  a non-degenerate minimum (or 
maximum) o f  H and H (p) = c o . Then, for c near c o, the H amiltonian system 
~ = d o g r a d  H(x) has at least two periodic orbits on each energy surface 
H -  1 (c). 
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Proof As above,  choose canonical  coordinates  (z 1, z2) in IE x IE abou t  
p so that  p cor responds  to 0 and in this ne ighborhood  

co t _ co_A_2 _ +e(zt,z2), IgOtl<lgO21, H(zI ' z2 )=~ -ztzt + 2 ZzZ2 = 

as in (.). Since p is a non-degenera te  min imum (maximum),  D2H(O) is 
positive (negative) definite and co t and co z are both  positive (negative). 
Wi thout  loss of generality, we assume p is a minimum.  (Otherwise, 
work with - H . )  Consider  the one-paramete r  family of Hami l ton ians  

H~(z) = @ H(e z) for 0<~=< I,  

gOt - gO2 - 
H o ( z ) = - ~ - z ~ z  I + ~ - z z z  z for e = 0 .  

Since R (z t, z2) is 0 ([z[ 2), H~ (z) is smooth  in ~. Let XH~ be the Hami l ton ian  
vector  field ~" = J o grad H~(z). For  ~ 4 = 0, mult ipl icat ion by e. takes integral 
curves of Xu~ on H i t ( t )  onto  integral curves of X u - X u ,  on H-t(g2) .  
So a periodic orbit  for Xt~ ~ on H~-I(1) corresponds  to periodic orbit  of 
X u on H-~(e2). [-We are using the fact that  H~ is constant  on integral 
curves of  XH. ]  

Consequently,  using the h o m o t o p y  H~ allows us to view X u as a 
per turba t ion  of the linear system Xno(Z)=DXn(O)(z). Xuo has solution 

(z~ o e -  ~ ' ,  zzo e -  ~ ~). If (`02 is not an integer, L iapunov ' s  Theo rem asserts 
co~ 

that  X u has 2 families of  periodic orbits, parametr ized  by energy. [ In  
this case, on Hff~(c) the periodic orbits  

have non-zero Fuller  index and so are preserved in per turbing XBo to 
Xu~.] 

We treat  the case where gO~ is an integer. Since X~ has the same 
gOt 

1 
phase por t ra i t  as X H w h e r e / - ) = - - H ,  we can suppose that  gO~ = 1 and 

601 

oJz = gOeN. H-o 1(• {(zl, z z ) ~  x IE I Iztt 2 +olz2L z = 1} is d i f feomorphic  
to the 3-sphere S 3. Each orbit  (Z~o e -~ ,  Z:o e-~~ has least period 27r, 

e x c e p t t h e o r b i t y o =  O, e- ) [te  whichhasleast p e r i o d ~  - .  

LetT~bethetorus{(zt,z2)~Hffl(�89189 (andthuslz2[2- l ~ a ) } ,  

0 < a < 1. H 0 t (�89 is the disjoint union of the To's for 0 < a < 1 and the orbits  

1 4  ~ 
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7o and h ,  where h = {e-~', 0)lt~IR}. Each T, is invariant under the flow 
of Xno on H o 1 (�89 

We want to compute i(g2) where Q=Ho~(�89 27r-  , 2 ~ + ~ -  . 

For  co= 1 (characteristic exponents of X n equal in pairs), i((2)= +2 by 
the calculation of Proposition 4. So in this case, using 2) of the properties 
of i(~2), i(f2~)= +2 where ~2~=H/l(�89 0r, 3~z); and X~/~ must have a 
periodic orbit of period near 2re for g small. Using the fact that the 
Poincar6 first-return map on an energy surface of a Hamiltonian system 
on M 4 is area-preserving [1, 14], property 3) of the Fuller index, and 
Theorem 1, we see that the index of this orbit is at most +1. Since 
i(f2~)= +2, there must be another periodic orbit on H~-I(�89 

To compute i(~2) when co > 1, consider the smooth map g: H o i (�89 _~ IR 
H -  I t• by g( za , z j=[z~ l  2. Let Y be the gradient vector field of g on o ~2 " 

The circles Yo and h are circles of critical points of Y and the flow of Y 
takes torus T, to torus T o, where 0 < a < a '<  1. Now, consider vector field 
F~=X~o+eY on S< For  5+0, the orbits Vo and h are the only periodic 
orbits of F~ and the flow of F~ sends points from 70 toward h (i.e., Yo is a 
source and ~, a sink). So, i(Q) satisfies a), b), c) for each F~. By property 
2) of i, i((2) for X~o equals i(f2) for F~. Let U~ = {(z,, Z z)eHo~(�89189 
and U z = the interior of its complement in Ho~(-~). For vector field F~, 

by properties 1) and 4) of i(f~) 

1 
= + l + - -  

co 

by property 3) and the fact that the fixed point index of a contraction or 
its inverse is + I. Finally, for ~, > 0 and small, H~-'(�89 is a 3-sphere and 

- ~  ( 2 r c - ~ , 2 r c + - ~ )  satisfies a), b), c) for X , .  Therefore, fJ~ = H~ ( j  x 

i(f~)> 1.Again using the fact that Poincar6 map for Xu~ on H[~(�89 
is area-preserving, property 3) of i, and Theorem 1, we see that there 
must be at least two periodic orbits on Hit(�89 These correspond to 

p e r i o d i c o r b i t s o f X ,  o n H - I  ( @ ) .  

As Alan Weinstein and Jean Martinet have pointed out to me, one 
can construct an area-preserving Poincar6 map about a periodic orbit 
of a volume-preserving vector field X on a manifold M. Ifq is the volume 
form on M and L x t/= 0, one puts the volume form X ~  q on a codimension 
one transverse disk. Therefore, the above techniques and Theorem 1 
yield the following strengthening of Proposition 4. 
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Theorem 5. L e t  F be a vec to r f i e ld  on S 3 equ iva len t  to the vec tor f i e ld  

z a = - i z ~ ,  z 2 = - i k z  2 on the  3 - sphere  {(z~, z2)~ll~ x 1171 ]zlt 2 + k l z z l  2 =�89 
w h e r e  k is a pos i t i ve  in teger .  Then ,  d ivergence- f i ' ee  p e r t u r b a t i o n s  o f  F 

have  at  leas t  t w o  d i s t i nc t  per iod ic  orbi ts .  

7. No Bounds in Higher Dimensions 

The following computa t ions ,  worked  out with Charles Titus, show 
that there are no restrictions on the index for volume preserving or even 
symplectic t ransformat ions  and flows in higher dimensions. Once again, 
put coordinates  (z 1 , z2)~lE • tE on IR 4. Consider  the Hami l ton ian  function 

- ~ ( z l  +z l  +z2  +z21, H ( z l , z 2 ) =  1 . - .  m - , .  

where n and m are integers greater than 1. The corresponding Hami l ton ian  
vector-field is 

OH . 1 
z l  = - 2 i - - = i n b ~ -  

OH ,,, 1 
z2 = - 2 i ~ z g  = irn z2 - , 

or (~1, ~2)= G (z I, z2). A simple computa t ion  shows that  the de te rminant  
of  the Jacob ian  of G wit1 have the same sign in a ne ighborhood  of 0 
for each m, n. By definition c) of the index of a singularity of a vector  field, 
the index of 0 for ~ = G (z) is equal to the cardinali ty of  G- l ( c )  for regular 
values c near  0, i.e., to (m - 1 )  (n - l ). The t ime-one m a p  for the flow of 
this vector  field will be volume-preserving on IR 4 and have 0 as an iso- 
lated fixed point  of  index ( m -  1 ) ( n -  1). 
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