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Introduction 

Let X be a smooth proper curve over an algebraically closed field k of charac- 
teristic p. The purpose of this paper is to extend "Poincar6 duality" on X to 
p-torsion groups, by allowing as coefficients any finite flat group scheme A on 
X. Let A D= Homgrp(A, I13,,) denote the Cartier dual of A. Our result (4.9) is that 
the natural pairing A |  Po~ gives rise to a perfect duality on cohomology. 

A new phenomenon which arises when one considers flat coefficients is that 
their cohomology groups are not, in general, discrete groups. For example, if X 
is a supersingular elliptic curve, then Hi(X, c~p),~Hl(X, Ox). This is a k-vector 
space, and its natural algebraic structure should be taken into account. 

There are two different contexts in which the duality can be formulated. The 
first follows a suggestion of Grothendieck that the cohomology theory should 
take its values in the category of unipotent quasi-algebraic groups. Our original 
construction was made in this context. 

Let U k denote the category of commutative unipotent algebraic groups over 
k, and let QU k be the corresponding category of quasi-algebraic groups [17]. This 
is the quotient of the abelian category U k by its subcategory of infinitesimal 
groups. There is a functor 

(0.1) U ' ~  U'*=RHom(U', Q/Zp) 

* Supported by NSF 
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on the derived category of Q U k, which is an autoduality it has these values: 

Z/p* ,.~ :e /p, 

~ *  ~ ~ ,  1' 1] = { ~ , ,  shifted to degree 1 }, 

or ,  

Horn (Z/p, Q/Z),~ Z/p, 

Ext t ( ~ ,  Q/Z) ~ C a. 

In the first three sections, we define cohomology groups HI(X, A)~QU k and prove 
a duality theorem based on (0.1) for group schemes A of height 1, i.e., those on 
which the Frobenius map F is zero. 

Since every unipotent quasi-algebraic group is an extension of a discrete 
finite group scheme by a connected unipotent group, Hi(X, A) fits into an exact 
sequence 

(0.2) 0 --, U_I(X, A) --,HI(X, A) ---~ Di(X, A) --~ O, 

_D i being discrete, and _U i connected. The duality (3.10) implies that 

(0.3) (a) _Di(X, a ) ~ H o m  (D2-1(X, A~ ff~/Z), 

(b) _Ui(X, A)~ Ext 1 (if_l-i(X ' AO), Q/Z), 

so that particular _Di=0, if i+0,  1, 2 and U i = 0  if i~: 1, 2. 
The second context in which one can formulate duality is in the category of 

sheaves on the "perfect site" Sperf, S = Speck (cf. Section 3). To do this we simply 
replace H'(X, A) by R" rosA, where ~: X--+S is the structure map, and take the 
pairing R" rc.A| n . A ~  (Q/Z) [2] induced by cup product. Fortunately, a 
recent result of Breen [3], (4.1) about the vanishing of certain sheaf Exts on Spear 
allows us to do this (Corollary (4.9)). 

In both contexts, our method of proof is to resolve by complexes of vector 
groups, and then to apply Serre duality. 

It may be worthwhile to begin by considering the two cases A =/~p and A = ~p. 
There are canonical exact sequences of group schemes 

(0.4) (a) (0 ,7Z./p) , ~ .  ~ ~3~ , O, 

(b) (0 , ~.)  , C a ~ C a , 0 ,  

(c) (0 , #p) ~' [~m ~ {~m ' 0, 

which we view as resolutions of the left terms. These resolutions can be used to 
compute the flat cohomology of 7Z/p, ~p, and pp. Since C a, ~ , ,  are smooth schemes, 
flat and 6tale cohomology agree for them [7, 11.7], and so we can work with the 
6tale topology on the resolutions. 

The first of these sequences is exact for the 6tale topology, but the other two 
are not. Instead, the Frobenius map in the 6tale topology can be continued by 
differentiation and the Cartier operator 1-18]. It is known that the following are 
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exact sequences of sheaves for the 6tale topology on a smooth curve X: 

(0.5) 0 ,o, 
0 ) fO*  F ./r d log. rxl C ' - I  

~ X  ~ C~x ~ Sgx ~ Q 1  ) 0, 

where C' denotes the Cartier operator on f2~. It follows that the complexes 

(0.6) (a') 0 ,,~1 c,-1 ,-,1 '~ZX ~ ~"~X ~ O, 

can be used to compute cohomology o[/lp and % respectively, with a shift in 
dimension. In particular, the sequence (a) identifies H2(X, pv)=Z/p as 

ker (Ht(X, f21) c'-~, Hi(X, O1))=ker (k ~ k), 

which supplies a fundamental class for duality. 
We show (3.4) that the natural pairing (9 x x f2~ ~ f2~, can be extended to 

pairings of complexes 

(a) x (a') ---, (a'), 

(b) x (b') --, (a'), 

and that these pairings yield the duality for flat cohomology, with coefficients 
(Z/p, pp) and (%, %) respectively. 

The main part of this paper is the generalization of the complexes (0.5) to 
arbitrary finite flat group schemes A of height 1, and of the sequences (0.4) to 
their Cartier duals A ~ There are some p-th powers in the general form which 
can not be eliminated, and this changes their appearance slightly. 

The sequences (0.5) are related to a Cartier operator for general smooth 
group schemes which is defined in [4]. Our original construction of the com- 
plexes was simplified considerably by the use of ideas of Hoobler [8]. 

We would like to thank Messing for many helpful conversations we had 
during the preparation of this paper. 

Conventions. All group schemes and sheaves are supposed commutative. There 
are many formal p-th powers which arise, such as the maps ~x ~ (gx~p,, or L --, Lt, p~ 
if L is an invertible sheaf. Such operations will generally be denoted by a bar: 
a.~fi. This will be unambiguous once the domain and range are specified. 

1. The First Exact Sequence 

Throughout  this section X will denote a scheme of characteristic p, and A a 
finite flat group scheme over X of height 1. 

Let e: X - * A  be the zero section, let J c ( 9  A be the ideal defining this closed 
immersion, and let Inf , (A)= Spec ((gA/J 2) be the first order infinitesimal neigh- 
borhood of the zero section. Then j / j 2  is the cotangent space co a of A over X. 
Under the above hypothesis it is a locally-free d)x-module of finite type [12, 
II 2.1.4], and hence we may regard it as a vector group over X. As such, it re- 
presents Hom,c.ptd(Inf~c(A), ~m), viewed as a functor on (schemes/X), where the 
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notation X-ptd means that the morphisms are required to respect the canonical 
X-points of the X-schemes Inf,(A) and ~ , , .  The Cartier dual A ~ of A represents 
the functor Homvp(A, 113,,) on (schemes/X), and the canonical map from this 
functor into the first, defined by Inf~(A)~---,A, induces a canonical r~ap 

~(A): A I ) - ~  (.OA . 

The Verschiebung 1-5, IV, 3, 4] is a map VA= V: A~m-" A, and it induces a 
morphism OJA--r Combining this with the canonical isomorphism O~A~p~ 
~ ,  we get a morphism co a - .  ~ which we denote by 90. The relative Fr.o- 
benius for e~ a over X also gives us a morphism ~i : (Oa --~ ~ "  

(1.1) Proposition. Let  A be a f inite f iat  group scheme o f  height 1 over X.  The 
sequence 

O----+ A ~ ' , (A)A ~--~),O)(ff)-------rO, 

where (p = (Po-91 ,  is an exact sequence o f  group schemes on X.  

For example, ifA =/tp, then A ~ = Z/p,  and e) A ~ ~o~ ) ~ ~a. With these canonical 
identifications, we have q)o = I, ~o 1 =F .  Thus the above sequence becomes the 
Artin-Schreier sequence (0.4a). Similarly, the case A =~v reduces to (0.4b). So, 
exactness is clear in these two cases. 

We shall need the following lemma. 

(1.2) Lemma. Let  O - * G ' J ~ G  & G " - * O  be a complex o f  f lat  group schemes o f  
f inite type over a noetherian scheme X.  Assume that for  all geometric points x o f  
X,  the sequence o f  f ibres 0 --~ G' x ~ ,  G x --~ G'~ --~ 0 is exact. Then the original sequence 
is exact. 

Proo f  The faithful flatness of the Px, combined with the local criterion for flatness 
I-6, IV 5.9], imply that p is faithfully fiat. Thus K = Ker (p) is flat and of finite 
type. The map i factors through K. Now the same argument shows that G'---~ K 
is faithfully fiat, and hence is an epimorphism. Finally, the kernel of i is a group 
scheme whose geometric fibres are all trivial, and hence is zero. 

As the exactness of the sequence in (1.1) may be checked locally on X, and the 
formation of the sequence commutes with arbitrary changes of base, we may 
assume, in proving (1.1), that X is noetherian. We check that the hypotheses of 
Lemma (1.2) hold for our sequence. Note that z is functorial in A. On writing out 
that this functoriality means in the case of the morphism V A: A (p~ --. A, we get a 
commutative diagram, 

A D z(A) ~. (2) A 

(A(P~)D .?(A~PJ~, CO A 
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It is known [5, IV, 3, 4.9] that, when (A(P)) D is identified canonically with (At)) (p), 
then (Va) ~ becomes identified with FAD. Thus ~Po o l(A) = l(A (p~) o FAD. 

Also, the functoriality of the relative Frobenius implies that F,~Ao z(A)= 
I(A)(P)oFaD, and the functoriality of i with respect to X implies that t(A)tp)= 
t(A(P)). Thus, qh o z(A)= z(A (p)) o FAD, which shows that q~ o t(A)= (~o o -q~l) t(A)=0, 
i.e., that the sequence in question is a complex. 

The lemma now reduces us to the case that X is the spectrum of an algebraically 
closed field. We use induction on the rank of A: If the rank is p then A,~#p or 
A , ~ p ,  and we have already observed that the proposition holds in these two 
cases. In general, there will exist an exact sequence 0 ~ A ' - ~ A - *  A " - * 0  of 
finite flat group schemes with A', A" of smaller rank. Consider the commutative 
diagram 

0 0 0 

0 ) A r~D 

0 ) A ~ 

0 ) A tD 

0 

-+ o)~ ) ) 0 > (D A . . . .  

+ (D A ) (D~) ) 0 

) ~o A, , ~o~,~ , 0  

1 t 
0 0 

By induction we may assume that the first and third rows are exact. All columns 
are exact, the first because of the exactness of Cartier duality and the last two be- 
cause of the exactness of the functor which associates to a group of height one 
its p-Lie-algebra [5, II, 7, 4.1]. Since we know the middle row is a complex, it 
follows that it is also exact. 

(1.3) Corollary. Let cdqc(X) be the cohomological dimension of  quasi-coherent 
sheaves on X,  and let A be a finite f lat  group scheme of  height 1 on X. Then Hs(X, A o) 
= 0 / f s > c d q c ( X )  + 1. 

(1.4) Corollary. Assume, in addition to the above hypotheses, that there is a proper 
map ~ : X - ~  Spec k, with k a field. Then R ~ ~ . A ~ is representable by an algebraic 
group over k for all s > O. 

This follows from the exact sequence, since R ~ g .  F is represented by a vector 
g r o u p  for every coherent sheaf F on X. 
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2. The Second Exact Sequence 

Throughout this section, n: X ~ S will denote a smooth map of schemes of charac- 
teristic p, and S will be assumed perfect i.e. such that the absolute Frobenius 
S--~S (p~ is an isomorphism. We let X ' = X  tl/p~, and denote by W: X ~ X '  the 
formal p-th power, so that if F = F x,: X'--* X is the map defined by the inclusion 
(,0 x c (91x/p, then WF is the absolute Frobenius on X. 

We consider two maps 

F .  O ~ o 1 ~x ' ls ,  el ~ x / s ,  

namely, the (9x-linear Cartier operator C [9], and the formal p-th power map W* 
defined by W* ( fdx )= fd~ .  (Here the subscript cl denotes closed differentials.) 

(2.1) Lemma. There is an exact sequence C" of smooth group schemes on X: 

C. _ O _ _ _ _ _ ~ m ~ f ,  ~ m x "  F, dlog i-*"~1 C-W* 1 > 1~* SdX'/S, el ~' ~"~XIS ---+0" 

Proof This is standard. See for instance [8]. 

(2.2) Lemma. Let A be a finite flat group scheme on X of height 1. Let C" denote 
the sequence of (2.1), and a=cb a the Lie algebra of A. Then Hom(A ~ C') is an 
exact sequence of group schemes 

O--~A i , F ,  Ax, ~174 , *,a |  

The map ~ has the form ~ = ~o-~91, with ~o = 1 | C and ~91 = ,(m| W*, *(PJ being 
the p-th power operation on the p-Lie algebra a. Thus 

~k(a | ~ ) = a |  Cog-a(V)|  

Proof The first two terms can be identified using the functorial property of F,, 
and the last two from the isomorphisms [12, p. 138] 

Hom(A ~ f21)~ Hom(coA, (9) | f21 ~ ct ~) (21 

on X' and X respectively. It is clear that the functor Hom(A~ takes the linear 
map C to ~'o = 1 | C. On the other hand, W* is linear with respect to the map 
F, (9 x, ~ (9x. The p-th power map on (9 induces the p-th power in the Lie algebra. 
That is, the diagram 

A ~ 1 7 4  ,(9 

A ~ 1 7 4  l ~  

commutes [12, p. 138], or, if ~ A  ~ and a~a, then ~(a)= ~(a(P)). It follows formally 
that Horn(A, W*)= ,(P~| W*. 

Note that ~'o is linear and surjective, whereas qJl is F~b~-linear. It follows that 
~ =  qJo-~l  is a smooth map, and hence is an epimorphism. The fact [16, 6.2.2] 
that the f p p f E x t  ~ (A ~ ~m) is zero implies that the sequence is exact at the other 
points. 
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(2.3) Lemma.  Let A be a finite f lat  group scheme of height 1 on X. Then the map 
H l (X, A)--~ H 1 (X', A) is zero. 

Proof The condition that A has height 1 can be expressed by saying that the p-th 
power map on (9 A has its image in (9 x c 6o a �9 

p o w e r  A 
L', T 

iaen,, I "'" / 
section~ " ~  

p-th 
Cx ~ Cx 

By descent, the same is true for any torsor (homogeneous space) P of A: (gp ~ 6o x 
(ge. The composed map 

(g p ~ - ~  (g x ~ (9 x, 

is an (gx-homomorphism , and gives a point P with values in X'. Thus the pull-back 
of P to X'  is trivial. Since torsors are in one-one correspondence with cohomology 
classes, the lemma is proved. 

(2.4) Proposition. Let f:  Xfl--4'Xet denote the morphism of  sites induced by the 
identity map on X ,  where Xet is the small Otale site. Let A be a finite f lat  group scheme 
of  height 1 on X. 7hen Rq f ,  A = 0 / f  q 4:1, and there is an exact sequence of  sheaves 
on Xet 

O>a 1 O ~ R t f ,  A---~a| cl |  

Proof As is well known, any finite flat group scheme A can be embedded in an 
exact sequence 

O -~ A -* G -~ G' ~ O , 

where G and G' are smooth. One can take for G the scheme representing ~)*D, 
as functor on X. Since Rqf ,  vanishes on smooth group schemes for q > 0  [7], it 
follows that Rqf ,  A = 0 if q > 1. Our group A is of height 1, hence purely infinitesimal, 
and since X is reduced, f ,  A = 0. 

Consider the nerve of the covering X ' - *  X: 

X ....  f X , , = X ,  •  v , X .  

Let A'=  F, AA, , e t c  . . . .  Then this simplicial scheme induces an exact sequence 

O---~ A---~ A ' -*  A"----~ A'"--~ ... 

of group schemes on X [1]. We consider it a resolution 0 ~ A ~ A" of A. 

The spectral sequence for (~ech cohomology [1, V 3.3] 

E~ q = f fF(X ' /X ,  H~(A)) ~ H~+q(X, A), 

can  be made into a spectral sequence of 6tale sheaves on X by localization. Then 
its abutment  is RP+qf, A. In dimension 1, the spectral sequence reduces to the 
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exact sequence 

(2.5) O--,.H.~xt(X'/X, A) v ,Rl f ,  A~_Ot(x,/X,H__f:(A)). 

By Lemma (2.3), every cohomology class on X dies on X', and the same is true if 
X is replaced by any scheme 6tale over X. This implies that the map u is zero, and 
hence that v is an isomorphism. 

The left hand term of (2.5) is kernel modulo image in the sequence f ,  A'. Since 
X' is reduced, f ,  A' = 0. Hence 

t t t  r  t t  i t !  t ( X / X , a ) = k e r ( f , A - * f , a  ) = f , ( k e r ( a - - ~ A  )). 

Let B =ker(A"~A'")~A'/A.  Then B is a flat group scheme on X, and 

(2.6) W f ,  a = f , B .  

By (2.2) 

O-~B-~a| ~ ~ , a |  

is exact, and as we already remarked, ~, is smooth. The proposition now follows 
by applying f ,  to this sequence. 

1 (2.7) Remark. The map Raf, A--~aQf2x, s.cl can be described in this way: 
Let P be a torsor of A. Since A is purely infinitesimal, the trivialization X' ~'' , P  
of (2.3) is unique, and gives rise to two maps X' x X'=X"--~P, namely p*~p' and 

x 
p*tp'. Their difference is an element ~"sA(X") which is zero if and only if ~p' is 
induced by a section of P over X. Now if N denotes the nilradical of (gx,,, then 
r ,~ tP x, and N/N2,~ (21x,,s . Since ~" must be trivial on X', the restriction of ~" 
to  (-gx,,/N 2 defines a map co A ~ (2:~, s i.e., an element of a | [2~, s. 

3. Duality for Finite Group Schemes of Height 1 

Let X be a smooth projective curve over S =  Spec k, where k is a perfect ring. 
Assume that X has connected, non-empty geometric fibres. In this section, we 
work with the site Sperf, whose objects are perfect schemes, essentially of finite 
type over k, with their 6tale topology. We also introduce an auxiliary site X/Spe~f: 
Its objects are pairs (U 1, $1) where $1 GSpr and U~ is 6tale over X x S 1 . A family 

S 

of maps {(U~, S~)-+(U 1, $1) } is a covering in X/Spr a if the maps U~--~ U 1 and S~-+S 1 
are 6tale, and { U~} covers U 1 . If 7:: X ~ S denotes the structure map, we obtain 
a diagram of sites 

(3.1) Xfl "17 ,X/Svo,f 

\ / 
Spcrf 
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Let A be a finite, flat group scheme of height 1 on X. It is clear that Proposition 
(2.4) extends to the above map f.  Let us denote the complex 

___+ 1 qt>a 0 a |  |  

on X/Spr by U'= U'(A). It follows from Proposition (2.4) that 

(3.2) N n s ' p , A , ~ R n p ,  U'[1],  

the symbol [1] denoting a shift in degree. We denote the complex 

0--, COA ~ co~--,0 .... 

which we view as a complex on X/Sp~f via f , ,  by V" = V'(AD). Then 

(3.3) ]Pxl~f,p, AO~]Rl~p,V. 
(3.4) Proposition. The formulas below define a pairing of complexes 

V'(A ~) • U'(A)---~ U'(pp): 

V O x U O = c o a X a |  ~ - . o  ~ U o 
~ X ' / S  ~ X ' / S  ~ ' 

1 ~ 1 1 V ~ • U ~ 1 7 4  Ox , s=U : 

v O x  U I = O ) A X O . ( ~ O  1 ---~01 .~_U 1: 
~"X/S ~X~S 

(~, a | Cd)o o = a (a )  co', 

(/~, a | co')t o = /~(~)  o~', 

(0~, a | co)o~ = 0~(a) co. 

Proof A pairing is a map V" | U ' - ,  U'(pp), and so the given maps are the required 
data. We must show that they define a map of complexes. This means we have to 
check that 

~ku(~, a | cO')o o = (~p(00, a | co')to + (~, ~k(a | co'))o i. 

Expanding the right side by (1.1) and (2.2), we get 

(~o o ~, a | 09') lo - (~, a | eo')l o + (a, a | C co') ol - (~, a~p~ | ~')ol 
= % ~(~)~'- ~(~)~' + ~(a) Cco' - ~(a~p')~'. 

The left side is 

C(~(a)  co ' ) -  o~(a) co' = o~(a) C c o ' - ~ ( ~ ) ~ ' .  

Thus we need only verify the equality 

(P O ~(  ~l) (f) ' = oc( a (p)) C)', 

o r  

~Po ~(a) = ~(a~"~). 

Consider the two maps COA ~ Horn(a, ~ , )  

~--~(a~--.~o~(a~p~)) 

~(a~q 'o (~ ) (~ ) ) .  

Since these are both linear, they will be equal if they agree on the subgroup 
l A n c c o a  (l: A~ is universal for maps into vector groups [10,1.4]). If 
arises from an ao in A ~ then (1.1) ~po(~)=qh(~), ~pl(~)(fi)=(FaDao)(fi)=~(FaD%) 
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(regarding a as an element of Hom(A ~ ~a)=a) ,  and ?t(FaDCto)=(Fr 
(a(V))(~o)=a(a(V)) [15, p. 138]. 

Since they are functorial, the definitions of U', V" and the pairing extend to 
any bounded complex A" of groups of height 1. The terms appearing in the com- 
plexes U', V" are all locally free coherent (gx-modules, and so we can use t~ech 
cohomology for some affine open cover of X to compute lRnp. for them. We then 
obtain t~ech complexes (~'(U'), C'(V'), each of whose terms is represented as a 
quasi-coherent Cs-module, but whose maps are not (gs-linear. Using cup product 
on (~ech cocycles, we can deduce from the pairing (3.4) a pairing 

(3.5) C'(U'(A'))x ~'(V'(A'~ 

We have 

c - F  

and so the trace map H 1 (X, f 2 1 x ) ~  ~ induces a map of complexes 

(3.6) ~ ' (U ' (#p ) ) t r~[~  ~ - e , ~ 3 j "  

Now it is easily seen that one can choose a covering so that the complexes C" 
are limits of quasi-isomorphic subcomplexes each of whose terms is a locally 
free (gs-module. For instance, we can cover X by two affine opens of the from 
X -  D, X -D' ,  where D and D' are disjoint Cartier divisors. Then the (~ech complex 
for any coherent sheaf F is the limit of the acyclic complexes 

O--,F(X,F(nD)OF(nD'))-*F(X,F(nD+nD'))--~O (n~O). 

So, the ~" define canonical elements in the derived category Db(QUk(P)), where 
QU k is the category of quasi-algebraic unipotent group schemes over k, and the 
symbol (p) denotes the subcategory of elements annihilated by p. Let us denote 
these elements by 

(3.7) ]H'(X,A')=C'(U'(A'))[lJ,  
]I-I" (X, A" o)= (2" (V'(A')). 

Suppose now that k is a perfect field. Then we also write ttq(x, A') and 
Hq(X, A "~ for the cohomology of the above complexes. These are the elements 
of QUk(p ) which represent the functors Rql~f,p,A" and Rql[f.p,A "D o n  Sperf. In 
particular, if k is algebraically closed, then we have 

Hq(X, A') = F(S, ttq(X, A')) 

Hq(X, A" o) = F(S, Hq(X, A" 0)). 

The group ~ ,  is an injective object in QUk(P), and so [ ~ ,  ~-F ,G , ]  is a 
resolution of Zip. Therefore the pairing (3.4) and the trace map (3.6) define a map 

(3.8) lIT(X, A ' ) ~ R  HomQu~(p)(IH'(X, A" o), Z/p)[2]. 

On the other hand, the complex IH'(X, A') is made up of finite-dimensional 
i l / v ~ _  k-vector spaces, and if V is any such vector space, then Extov~(v) (V, Z/p) = 

Homv.,p.(V, k) if i=  1, and is zero otherwise. The isomorphism of Ext ~ with the 
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linear dual V v is given by using the resolution [ ~ ,  t - v ~ ~ ]  and identifying V v 
with the subgroup of HomQv~{p~(V, (~a) of linear maps. Therefore we have a quasi- 
isomorphism 

(3.9) g HomQv~tp)(lH" (X, A" D), 7l/p)-, IH" (X, A" D) v [ 1]. 

(3.10) Theorem. Let k be a perfect field. 7hen the map (3.8) is an isomorphism. 

Proof We may assume that A" has only one non-zero term. Then we have to show 
that the map induced from (3.9): 

(3.11) H'(X,A)-+Hi(IH'(X,A~ 

is an isomorphism, for all i. We go back to the complexes U'(A), V'(A~ They give 
rise to distinguished triangles 

IH'(X, A ) [ -  1] -+ IH" (X, U~ U') 

and 

~'(x, A~)~IH'(X, V~ V~). 

The pairing (3.4) V ~ • U ~ -~ ~2~ is the pairing of Serre duality. So is V ~ x U~ Q~, 
if we identify a | Q~, with a (p) @ t2~ by the map ~ | co',~ ~ | (3'. Using these 
pairings, the maps (3.11) fit into a long exact sequence, and the theorem follows 
from Serre duality and the 5-1emma. 

4. Interpretation of Duality in the Category of Sheaves 

Using a recent theorem of Breen, we can generalize the results of the previous 
section, by dualizing in the category of sheaves. Let S be a perfect scheme, and let 
Sperf be the site on S introduced in the previous section. The result we use is 

(4.1) Theorem (Breen [2]). For all i>0,  Ext i (~a ,~a)=0 ,  where Ext denotes 
extensions in the category of sheaves of Z/p-modules on Sperf. 

It follows from the Artin-Schreier sequence 

O___,TZ/p~a 1-v ~ a ~ O  

that for any complex E of locally free sheaves, the linear dual Home(E, (9) is 

(4.2) E = R  Hom~/p(E,Z/p)[-1] ,  

in the derived category of sheaves on Spere (cf. [14]). 

Let n: X ~  S be a smooth projective curve with connected, non-empty geo- 
metric fibres, as in Section 3, and let A" be a complex of finite group schemes on X 
of height 1. As was seen in Section 3, R n ,  A" and R n ,  A" o can be represented by 
complexes IH" (3.7) of locally free (gs-modules, if S is affine. Hence the formula 
(4.2) can be applied. 

The pairing A" | A" ~  #p induces by cup product a pairing 

(4.3) R n ,  A" |  l~e, 
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and since R21t, ptp=7Z,/p and Rqn,/~p=0 if q>2 ,  there is a map in the derived 
category: 

(4.4) R n ,  pp--,(TZ/p)[2]. 

As in the previous section, Serre duality and the 5-1emma imply 

(4.5) Theorem. Let S be a perfect scheme, and X ~ , S a smooth projective curve 
with connected, non-empty geometric fibres. Let A" be a complex of finite flat groups 
of height 1 on X. Then the cup product pairing 

R nuA" |  ~ 

is a perfect duality on Sperf, i.e. the induced map 

R n,  ,4" ~ R Hom~p(R n ,  A" D, ;E/p) [2]. 

is an isomorphism, where R Hom is taken in the derived category of sheaves on Sperf. 

Proof The only point which has to be checked in order to apply Serre duality, 
is that the explicit formulas (3.4) agree with the cup product (4.3). Now the formulas 
(3.4) on X/Sp~rf were used to define a pairing by cup product on t~ech cochains, 
and it is known that the (~ech cup product agrees with the cup product induced 
from injective resolutions. So, it suffices to show that they agree with cup product 
for the map f :  X n ~ X/Sp~rf of diagram (3,1). In other words, we have to prove. 

(4.6) Lemma. The diagram 

R f ,  A , R H o m ( R f ,  A ~ R f ,  ltp) 

U'(A)[1] -  ,R Uom(V'(A), U'(#p))[1] 

commutes, where the top map is induced "by cup product"from the pairing A | A ~ 
~ #~, and the bottom arrow is defined by (3.4). 

Proof. Let 0 ~ A - *  Z'(A) denote the resolution (2.2), and consider the diagram of 
pairings on Xfl: 

A x A ~ 

(4.7) Z'(A)  • A ~ , Z'(~p) 

U'(A)[1] x V'(A) , U'(pp)[1], 

where the middle pairing is determined by Lemma (2.2), and the bot tom one by 
(3.4). We will check that this diagram commutes, from which it will follow that the 
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induced diagram 

Rf,  A 

R f ,  Z" !A) 

d 

R f ,  U" (A) [1] 

also commutes. 

, R Horn (R f ,  A',  R f ,  Pv) 

, R Horn (R f ,  A ~ R f ,  Z" (~p)) 

, R Horn (R J, (V" (A), R f ,  (U" (#p) [ 1 ]) 

Since A-~Z'(A) is a quasi-isomorphism for all A, the maps 
b, c are quasi-isomorphisms. Moreover, since U'(A) and V'(A) are complexes of 
smooth groups, Rf,  U'(A)=f,U'(A), which we denote by U'(A) on X/Sperf, 
etc . . . . .  It follows from (1.1) and (2.4) that the maps d, e are also quasi-isomorphisms, 
and the lemma follows. 

The commutativity of the upper part of (4.7) is just Lemma (2.2). The lower 
part, when decomposed, leads to two diagrams which have to be checked: 

Z'  x i D --~ Z 1 (/gp) 

U ~ x V ~  U~ 

and 

U 1 x V 0 ~. Ul(~/p). 

Both verifications are the same. The bottom square expands to 

Hom(A o, ff~X) X A ~ __~ Q1 

a |  1 x~% ,O1, 

where the pairings are the obvious ones, and the left vertical arrow is the isomorph- 
ism [-15] used in (2.2). It is clear that this commutes. 

Suppose now that S=  Spec k, where k is a perfect field. Then any finite flat 
group scheme A on X which is p-torsion has a filtration whose successive quotients 
are either of height 1, or have Cartier duals of height 1. It can be shown by formal 
arguments [14] that 

R Hom~p(~ ,  Z/p)~ R Hom~(~-, Q/Z) 
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for any sheaf of Z/p-modules ~ on  Sperf. Therefore the above duality (4.5) can be 
restated by saying that the canonical map 

(4.8) R n . A ' - ~ R  Homz(Rr%A" o, ~ / Z ) [ 2 ] ,  

defined by the pairing A" | an isomorphism when A has height 1, 
and the previous statement allows this to be extended to all finite groups. 

(4.9) Corollary. Suppose S= Speck where k is a perfect field, and let A be any 
complex of finite fiat groups schemes on X. Then cup product induces a perfect 
duality 

R r% A" x R n, A" o___~ Q / z  [2],  

in the category of sheaves on Sperf. 

5. Duality for p-Cohomology of Surfaces 

In this section X ~ ~S will denote a smooth proper algebraic surface over S = 
Spec k, where k is a perfect field. As an application of our results we will describe 
a "Poincar6 duality" for p-cohomology on X, i.e., an isomorphism 

(5.1) R~Z, ppv ~ ,R Hom(R~,ppv ,~ /7 / )  [4] 

in the derived category of sheaves on Sperf. The pairing will be described in terms 
of a Lefschetz pencil on X and is based on ideas developed in joint work with 
Mazur on arithmetic surfaces. For  an invariant treatment of flat duality on sur- 
faces, we refer the reader to [14]. 

A Lefschetz pencil on X gives rise [10] to a diagram 

X 

S ~ Y =IPI'  

where a is the blowing-up of the base points of the pencil, and where f is smooth 
except on a finite set of points, at which the map has an ordinary singularity and 
the fibre has a single node. Let A denote the finite set of points of Y above which 
f is singular. We will work with the scheme X 1 , and will omit the proof that the 
duality of Xt induces one on X. Let us therefore replace X by X~. 

The duality will be described as a cup product arising from a natural pairing 

R f ,  ~,~ | R f,/~r--*/~r 

of sheaves on Y. We can compute R f ,  I~pv from R f ,  ~,, .  The relevant values are 

(5.3) f ,  113 m = 113,, 

Rl f ,  ~m = Pic X / Y = J  | 7Z, 
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where J is the family of generalized jacobians of X/Y,  and Z measures degree of a 
line bundle on a fibre. This group Z is split off using a chosen section s: Y~ X. 

It is known that Rqf, fil m is uniquely divisible if q_>_ 2, for any proper map 
X f > Y of relative dimension ~ 1. Therefore, multiplication by p~ in (5.3) shows 
that 

I #p~ q=O 

(5.4) Rqf, l%v: P, q = l  
( Z/p v q = 2, 

where P~ denotes the kernel of multiplication by pV in J. Moreover, the sheaves 
pp, and Zip ~ can be split off of this complex by using the section, i.e., 

(5.5) Rf,#pv~#p~OP~[1] OZ/p[2 ] .  

The main part of our discussion will be to show that the natural pairing P~ | P~/~,v 
induces by cup product a perfect duality 

(5.6) R g ,  P , |  P--~II)/Z[2]. 

Since R g,  #,v and R g, 7Z,/p ~ are also dual (4.9), this will provide the duality 

by Lemma (5.5). Unfortunately the sheaf P~ is a quasifinite, flat group scheme on 
Y which is not finite above the set A, and so the results of Section 4 can not be 
applied directly. 

Let us recall the theory of autoduality of the jacobian for N6ron models. 
(This theory is not yet completely published, but see [2, 12].) Let Z s > Ybe any 
proper map of a smooth surface Z to a smooth curve Y, such that the geometric 
fibres are connected and the general fibre is smooth. Assume that f has a section. 
Let J denote the N6ron model of the jacobian of the general fibre, and let jo 
be the open subgroup whose fibres are the connected components of the fibres 
of J .  Then j / j o  = ~ is an 6tale skyscraper sheaf which is concentrated at the points 
of Y above which the fibre o f f  is reducible. The autoduality on the small smooth 
site Y~mooth is a pair of natural isomorphisms 

(5.7) jo ~ ,Ext ' (J ,  ~3m) 

(smooth top) 

d ~ ,Ext l(Jo, ~im)" 

Moreover, the maps (5.7) induce an isomorphism 

(5.8) ~ ~--~Ext2 (e, ~m). (smooth top) 

If we pass to the flat topology, the maps (5.7, 8) are of course still defined, but they 
are no longer isomorphisms. 

There are no reducible fibres for our map X f > Y. Hence J---J~ Multiplica- 
tion by p~ in the map (5.7) induces the required pairing 

(5.9) P~ | P ~ p v ,  
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and to show that cup product via this pairing induces an autoduality, it is enough 
to treat the case v = 1. Let us write P for Pt, and p for #p. 

We need to consider a second surface fibred over Y, namely the minimal re- 
gular model 7( for the fibration Y • r ~  X~p~ = V over Y. The map f~P~: X~P)-~ Y(P~ 
is a Lefschetz fibration like f, and so V is smooth except above the points yeA. 
A local analysis at the singular points o f f  shows that V has a single Ap_ 1 singularity 
[11] above yeA. Let f"  X---, Y denote the resolution of the singularities of V. 
Each singular fibre of f has a graph of the form 

f~ 
(5.10) s . ,  

~ O  / J O  

where there are p - 1 vertices o corresponding to rational curves, and s corresponds 
to a curve of genus g - 1, the normalization of the nodal curve X ~p~. All components Y 
have self-intersection - 2. 

Let J denote the N6ron model on Y of the jacobian of the general fibre of f.  
The form of the degenerations (5.10) shows [-2] that e = j / j o  is a skyscraper sheaf 
having stalk Z/p at each point of A : 

(5.11) e=@(7l/p)y. 
y~d 

Now the fibres of V/Y are the p-th powers of the fibres o f f :  

X ~ ' =  Vy. 

Also, of course, the jacobian of X ~p) is J~P~. Therefore the relative Picard scheme Y Y 
Pi___cc ~ V/Y is Y • r~,,J ~p~. On the other hand, we may relate Pi__cc ~ V/Y to J via the 
resolution X---, V, and this shows Pic ~ V/Y=J ~ Thus jo  = y • y~,~j~p~, and so 
the relative Frobenius defines a map J r ~ jo. Let A denote its kernel, which is a 
finite flat subgroup of J of p-rank g. 

Lemma.  The above groups form a row-exact diagram (5 .12)  

0 - -  
' A~-~ i ~ A i -  ' e-- ~ 0 

,A ~ d  r ~  j ' e  ' 0 ,  

where the top row is se!fidual in the sense that the diagram of pairings 

A _ it  .____~ p 

| | 
Ao~_ v p 

\ /  
commutes. 
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We defer the proof  of the lemma, and proceed to show that (5.6) is a duality. 
Let E denote the complex 0 ~  A-*  P ~ A ~ ~ 0 ,  which we view as a resolution of 
e. The autoduality of E defines a map 

and hence by cup product a map 

(5.13) Rg,  E 

Rg , e  

/5 I-2] -~R Homz/p(E, kt), 

, R Horn (/~g, E, Z/p) 

R Hom(Rg.e,  Z/p) 

in the derived category of sheaves of Z/p-modules o n  Sperf. 
It is enough to prove that this map is an isomorphism. For, we know by (4.9) 

that R g . A  and R g . A  ~ are dual, and so it will follow that 

R g . P  ~ , R H o m ( R g . P , Z / p ) ,  

as required. 
Since e is an 6tale skyscraper sheaf (5.11), we have 

R g, e=g ,  e= (~ Z/p. 
yEA 

What has to be checked is that the obvious pairing on this group is induced by 
(5.13). The fundamental class is in H2(Y,/t) = Ext 2 (Z/p, #), hence we can interpret 
the image of the cup product map (5.13) as 

Ext 2 (e, #) ~ , Horn(g .  e, Z/p), 

where these are viewed as sheaves on Sperr. Let us replace Ext2 p(g, ~) by the iso- 
morphic sheaf Ext,(e, (;,,), and work with extensions of Z-modules. We may 
compute Ext2(e,~, .)  locally at the points yea  since e is a skyscraper sheaf. 
Choose such a point y. Then the map (5.13) can be described this way: Let e e A  ~ 
be a local section which maps to the canonical generator i of er. Then the upper 
exact sequence of (5.12) may be pushed out via ~ to obtain an element e 
Ext 2 (e, 113,,). This is the image of i. Thus we have to show that e generates Ext 2 (e,~m), 
locally at y. We pass to the lower sequence of (5.12), in which ey is interpreted as 
the group of connected components  of the fibre Jy, and so we view ~ as a section 
of J which passes through the component  of J~, corresponding to l. By (5.7), J 
maps to Ext 1(]~ ~3,,), and the extension corresponding to e is of course obtained 
by push-out from the sequence 

O --~ A --~ J -+ ]~ -~ O. 

The fact that e generates Ext 2 (e, ~ )  now follows from (5.8). 
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(5.12) Proof  o f  Lemma. The lower sequence is exact by construction. Consider 
the diagram 

P ,B 

0 ,A , j  r ) j  ,~ ,0 Lv 
J ~ J  

where V is the extension of Verschiebung on the general fibre, which exists by the 
Ngron property of J, and where B - -ke r  V. Since the columns are exact when zeros 
are added at both ends, the serpent lemma defines an exact sequence 

O --,, A -~, p -~ B --~ ~ -+ O , 

and it remains to show that B = A ~ Presumably, this fact follows from the duality 
(5.7) applied to the maps F: j ~ j 0  and V: J ~ J .  In any case, (5.7) defines a map 
B ~ A O = H o m _ ( A ,  II3=). Moreover this map  is an isomorphism at all points at 
which J and J are abelian schemes, i.e., except possibly at y e A .  It is easily checked 
that B is a finite, flat group scheme. Therefore it suffices (1.2) to show that the map 

o is an isomorphism when y e A .  Now the group scheme Jy is an of fibres B r ~ Ar 
extension of an abelian variety J~ of dimension g - 1 by ~3=, and so is jo. We have 
a diagram 

B o , A  ,o 

t 
~ , .  ,yo , y , o  

~m ' J 'J' 

where all terms are to be supplied with subscripts y, B ~ = B c~ jo,  and A' is the kernel 
of F on J'. Therefore 

B~ c B  

A '~  ~ A ~ 

The cokernels of both inclusions are Z/p. Hence B ~ An. This completes the proof. 
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