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1. Introduction 

On ~", write d = 8 + 8  and dC=i(8-8)  so that ddCu=2i88u,  and let 

fl fin = \ 2 ]  J= 1 dzs A d-zj 

be the usual volume form. We study here the nonlinear Dirichlet problem 

(ddCu)"=ddCuA.. .AddCu=ff l ,  on O 

u plurisubharmonic on ~2 (1) 

u=~b on 00, 

where O is a strictly pseudoconvex bounded open set in ~" and f > 0. The operator 
(d de)" has an invariance property under holomorphic mappings, i.e. if G = (gl . . . . .  g,) 
is analytic, u ~ C 2, then 

(ddC(u o G))" = I G't 2" (dd~u)" 

where G' denotes the Jacobian determinant of G. Furthermore, if G4=(0 . . . . .  0), 
then (d d ~ log h G I) "=  0. Thus, for f = 0, (1) is a natural generalization of the Dirichlet 
problem for harmonic functions in the complex plane. 

Other extended Dirichlet problems were studied in connection with function 
theory in several variables by S. Bergman [2, 3] (on domains with distinguished 
boundary surfaces) and more generally by H. Bremermann [4]. In Section 8 it is 
shown that the solution of the problem discussed by Bremermann actually solves 
(1), in a generalized sense, with f = 0 .  The problem (1) seems to be a reasonable 
candidate for a (nonlinear) potential theory associated with the theory of functions 
of several complex variables. 

The question of uniqueness for the problem (1) is related to the question of 
existence of "inner functions" on the domain O. If h is a bounded analytic function 
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on fa such that [hi = 1 almost everywhere on dr2, then the function u = log �89 ([ h [2 .q_ 1) 
satisfies (1) with n > 2, f = 0  and ~b =0, and u = 4) a.e. on af2. Thus, if it were known 
that uniqueness held for (1) with u~ C~~ and boundary values taken 
almost everywhere, then one could conclude that Ih], and therefore h, must be 
constant. 

Another possible application to complex analysis has been pointed out by 
Kerzman, Kohn, and Nirenberg [15]. They have shown that a regularity theorem 
for (1) would be sufficient to show that a proper holomorphic map between 
smooth, strictly pseudoconvex domains must have a smooth extension to the 
boundary. The regularity theorem desired is that a solution ueC(~)n  C2(f2) 
of (1) with ~b =0, f l / , e  C~(O) must satisfy ue C~~ 

A closely related operator of Monge-Ampere type arises in the asymptotic 
behavior of the Bergman kernel function of a strongly pseudoconvex domain 
(see Hormander [14], Christoffers [8], and Diederich [9]). Also, Fefferman [10] 
has shown how this related Monge-Ampere operator is connected with the work 
of Chern and Moser [7] concerning analytic invariants of hypersurfaces in C ". 

Since 
[ ~2U \ 

(ddCu)"=4"n, det ~ ) f t .  

the operator (ddC)" appears to be a complex version of the Monge-Ampere deter- 

minant det \OxjOx k }. For example, when n = 2 and (z, w) are the variables in II? 2, 

the equation of (1) is 

while the real Monge-Ampere equation for u = u(x, y) is 

2 ux~,ury- uxr = f (x, y). 

The real Monge-Ampere equations have been studied extensively in relation to 
problems in differential geometry, but it seems to be difficult to solve them in a 
completely satisfactory way. A.D. Alexandrov, using the theory of convex 
surfaces, showed the existence and uniqueness of convex (generalized) solutions 
to certain real Monge-Ampere equations (see [19] and the survey article by 
Gluck [11]). Interior regularity of the solution was discussed for n > 3  by Pogo- 
relov [19] and more generally by S.Y. Cheng and S.T. Yau [5]. 

A good geometric interpretation of the complex Monge-Ampere equation 
seems to be lacking, and the techniques used here for the complex case do not 
have the geometric flavor of the work for the real Monge-Ampere equation. 
In particular, there seem be several inequivalent ways of defining generalized 
solutions of (1). For an arbitrary plurisubharmonic function u, it is known that 
dd~u is a positive current of type (1, 1) ([17], p. 70), but it is not clear that the higher 
powers of dd'u are well-defined. In fact (in contrast to the real Monge-Ampere 
operator on convex functions) examples indicate that it is probably not possible 
to define (dd~u) ~ as a distribution for all plurisubharmonic functions u ([22]). 

For the special case where u is plurisubharmonic and u~ C~(s {zo} ), (ddr 
is well defined on s {Zo} and one may define the "mass" of (ddCu)" at zo via 
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integration by parts 

(ddCu)" {Zo} =lim ~ dCuA(dd~u) "-1 (2) 
~ o  Iz-zol=e 

provided the limit exists. This definition, while useful for many purposes, is in 
a sense too general for the Dirichlet problem (1), since uniqueness fails (see Example 
III of Section 4). A method for defining (ddCu) 2 is provided via integration by 
parts (see Proposition 2.1), 

~ q~ A (dd~u) 2 = - ~  ddC c~ A du ^ dCu (3) 

which defines (ddr z as a current of bidegree (2, 2) whenever Vu, the gradient of u, 
is locally square integrable. If u is a bounded plurisubharmonic function, then Vu 
is locally square integrable, and consequently the formula (3) defines (dd~u) 2 as a 
positive current of bidgree (2, 2). 

For bounded, C 2 plurisubharmonic functions u on an open set O in II;", 
Chern, Levine, and Nirenberg have given in [6] the estimate 

(ddCu) "< C([]u ll9)" 
K 

where K is a compact subset off2 and II u 1[o =sup {lu(z)l : z~f2} With this estimate 
(and its proof), it is easy to show that the operator u-+(ddCu) ", thought of as a 
mapping from the C 2 plurisubharmonic functions on f2 to the space of non- 
negative Borel measures on f2, has a continuous extension to the space of continuous 
plurisubharmonic functions. The following "minimum principle" is derived for 
this extension of (d d~) ". 

Theorem A. Let f2 be a bounded open set in IE". I f  u, v~ C(~) are plurisubharmonic, 
and if  (d d ~ u)" < (d d ~ v)", then 

min {u(z)-v(z) :  z~I]} =min  {u(z)-v(z): z~?O}. 

An immediate consequence of the theorem is that continuous solutions of (1) 
are unique. Furthermore, this result shows that the idea of "subsolutions" is 
meaningful for the operator (d dO". The main goal of this paper is to prove existence 
of generalized solutions of (1). We are motivated by the familiar Perron method of 
taking the upper envelope of the family of subsolutions 

~(q~,f) = {v plurisubharmonic, vE C(f]), v < ~b on ~3f2, (dd%)" > f }  

of (1). At this point, however, essential difficulties arise. For instance, it is not a 
priori clear whether (ddCu)" can be defined where u=sup  {v: w f f }  is the upper 
envelope of subsolutions. 

In order to avoid this difficulty another notion of generalized solution, 
introduced in Section 5, is considered. This is the operator ~(u), which is essentially 
(det (Uj~)) l/n, r is obtained from dd~u via a general measure-theoretic construction 
of Goffman and Serrin [12-] and is thus defined for all plurisubharmonic u. 
Furthermore, r is well-behaved under convolution and weak limits. Thus, a more 
natural consideration is the Perron-Bremermann family 

~(~b, f )  = {v plurisubharmonic, r > f, lim sup v(~) < 4~(z), ze Of 2}. 
{~z 
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The following "maximum principle" for (ddC)" is a consequence of the good 
behavior of �9 under convolution. 

Theorem 13. Suppose ueC2(f2), u is plurisubharmonic on f2, and u solves (1) with 
f i / ,  plurisubharmonic on f2. Then if (ajk ) is a nonnegative Hermitian matrix, 

m a x { ~  02u(z) : z ~ }  
OZjO-~--~k ajk 

=max {~, c32u(z) "zEt~Q}. 

OZjO-~--~k ajk 
ajk 

From the "uppersemicontinuity" of q~, one may obtain the following regularity 
result, proved in Section 6. 

Theorem C. Let f2 be the unit ball in ~", and let ~beC2(~Q), g~C2(~), g>=O. I f  
u=sup {v: ve~(~b, g)} is the upper envelope of ~(~p, g), then ue C(~) and the second 
partial derivatives of u exist almost everywhere on f2 and are locally bounded. 

With this regularity theorem, it is possible to use real-variable arguments 
to show that the upper envelope u of ~(~b, g) actually solves (1) with f=g"  in the 
special case where f2 is the unit ball in C ". This allows us to make spherical modi- 
fications and obtain generalized solutions for more general domains. 

Theorem D. Let f2 be a strictly pseudoconvex bounded domain in ff~". I f  (a~ C(Of2), 
f ~ C(f2), f >=O, then there exists a unique plurisubharmonic u~ C(~) such that 

(ddCu) n = f  

O(u) = f l / ,  

and u=dp on Or2. Furthermore, if O0 is smooth, ~beC2(~), and fl/"eLipl(~),  
then ueLip x (0). 

The organization of the paper is as follows. In Section 2, we define the ex- 
tension of (d d0" and give some of its properties. In Section 3 the minimum principle, 
Theorem A, is proved, and in Section 4 several examples, including nonuniqueness 
in the Dirichlet problem, are given. The operator ~(u)=(det (uj~)) 1/" is defined, 
and its properties are given in Section 5. The results involving the family ~,  
including Theorems B and C, are proved in Section 6. Section 7 contains some 
technical details concerning approximations to the Laplacian. The existence 
Theorem D is proved in Section 8. Finally, in Section 9, we discuss the relationship 
with Bremermann's Dirichlet problem, and apply the regularity result Theorem C 
to show some smoothness of parts of the boundary of certain envelopes of holo- 
morphy. 

2. The Operator (d d c u)" 

For [2 an open set in C", let P(O) denote the space of all plurisubharmonic func- 
tions on Q, and C(t2), ck(~2), etc. the usual spaces of continuous functions, k times 
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continuously differentiable functions, etc. If u e C 2 (f2), let ~ ( u ) =  [ ]O2R denote 
the complex Hessian of u. Then L ~ J  

4"n! det J'f~(u) fl.=ddC u ^ ... A ddC u,=(ddC u) ". (2.1) 
n t i m e s  

If u is a plurisubharmonic function on O, then the second partial derivatives 
02u 

- -  of u are Borel measures on f2, and ddCu is a positive current of type (1, 1) 
Ozi02j 
on f2 ([17], p. 70). It is not clear, however, that the higher exterior powers of 
ddCu are well-defined, since their definition involves multiplication of the measure 
coefficients of ddCu. In fact, examples indicate that it is probably not possible 
to define (ddCu)" as a distribution for all plurisubharmonic functions ([22]). 
However, in [6], Chern, Levine, and Nirenberg have given the definition of 
(dd~u)" for continuous plurisubharmonic functions u. Their method is to derive 
norm estimates for the positive measure (dd~u)" when u is smooth and then 
define (ddCu)" for more general functions u by approximation. We need some 
continuity properties of the operator  in our argument, so in this section we will 
recall the arguments of [6] and note some of their consequences. In particular, 
we will prove an inequality for (ddCu) ", Theorem 2.4, which shows this measure 
cannot be concentrated on an analytic subvariety when u is continuous. We will 
use the following formulas (c.f. I-6]). 

P r o p o s i t i o n  2.1. Let l < m < n .  Let  u 1 . . . . .  u,,~C2(f2), and let (a be an differential 
form of type ( n -  m, n - m )  with coefficients from C~ (f2). Then, for m > 2, 

S~b/xdd~ux/x . . . / xddCu, ,=-~ddCda/xdulAdCuz/xddCu3^ . . . / xddCu, ,  (1) 

and 

f ~0 A ddCl,~l A . . .  h dd~u,. =Su,  dd ~ ~b A ddCu2 A ... A ddCu,,. (2) 

Proof  Note that, by Stokes' theorem, 

~0 ^ dd~ul /~ "'"/x ddCu,,= -~d~a A d~ul ^ dd~u2 ^ ... A ddCu,, 

However, the (n - ( m -  1), n - (m - 1)) parts of d ~b ̂  d ~ u and d u ^ d ' q~ are the same, 
so the last integral is equal to 

- I  du, Ad~c~ A ddCu2 ^ ... Add~um=Iu ,  ddCc~ AddCu2 ix ... ^adjure. 

To prove (1), note also that 

- 5dua A d~49 A ddCu2 A . . .  A dd~u~= - I d C u 2  A d [dUl A d~c~ A dd~u3 A. . . /x  dd~u~ 

= -~dd~c~Adul  AdCu2 ^dd~u3 A ... Add~u,,. 

From the formulas of Proposit ion 2.1, we can read off some conditions under 
which (dd~u)" should be defined. For  example, when m = n =2,  we have from (1) 
(with ul = u2), 

~ c~(dd~u) 2 = - S du ^ d~u A dd~dp 
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Thus, when Vu, the gradient of u, is locally square integrable, this equation defines 
(ddCu) 2 as a distribution of order at most 2. Similarly, from (2) we have 

I qS(dd~u) 2 = Iudd~c~ A ddCu 

which defines the left-hand side when ddCu has coefficients which are measures 
and u is locally an L 1 function with respect to these measures. We will only consider 
plurisubharmonic functions here, and the situation when (ddCu)" is a measure. 

Denote by M.,(I2) the class of currents on f2 of bidegree (m, m) and order 0. 
That is, Mm(12) is the class of differential forms of bidegree (m, m) whose coefficients 
are Borel measures. We will suppose that Mm(f2 ) has the usual topology of weak 
convergence in the space of measures. That is, / a j~#  in M,,(f2) if and only if 

~b A #j ~ ~ ~b ̂ /~ for all differential forms (h of bidegree ( n -  m, n -  m) with coef- 
ficients from Co(O), the space of continuous functions with compact support in f2. 
For reference we record the following well-known fact. 

Proposition 2.2. I f  p~,lleM.,(O), then t~j--*It if and only if 

(1) ~bApj--*~bA/~ for all differential forms c~ of bidegree (n -m ,  n - m )  with 
coefficients from C~ (I2) ; and 

(2) for every compact subset K off2, there is a constant Cr such that [I I~j lit < Cr. 

(Here, by [l#][r we mean any total variation norm of l~ on K. For example, if 

#=~#1 , sdz t  Ad2 J, set II~I[K--ZI/m.JII~ 
where II m, J IlK is the usual total variation of the measure/tl, j on the compact subset 
K of O.) 

Using Proposition 2.1, it is now easy to see that (dd~u)" is defined for all 
continuous plurisubharmonic functions u. 

Proposition 2.3. For l < m < n ,  consider Tr,(U)=((ddCu),(dd'u) 2 . . . . .  (dd~u)"), a 

densely defined operator from C(I2) to (-] Mk(f2) with domain C2(f2). Then 
k = l  

(1) T,, maps C(f2)-bounded subsets of C2(O)oP(O) into bounded subsets of  

f i  Mk(O); and 
k = l  

(2) I f  uj, vjeC2(t2), and !im ui=!im vi=u in C(f2), and if both the limits j~oo j~c~ 
lim T,, vj and lim T,,v~ exist, then they are equal. Consequently, T m has an unique 

extension to a continuous operator on all of C(O) ~ P(f2). 

Proof The assertion (1) is a special case of a lemma of Chern, Levine, and Niren- 
berg ([6], p. 125). 

To prove (2), let u i, v~ be as in the hypothesis. For m = 1, the assertion is well- 
known. It also follows from (1) of Proposition 2.1. Proceeding by induction, 
assume the assertion has been proved for smaller values of m > 1. Then we know 
that lim (ddCuj) k--- !im (ddCv.i)k=l.tk for k<m. Let #m= !im (ddCui) m and v,,= 

j ~  j~Qo j~Qo 
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!im(ddCvj) ". We have to show that #m=V,,. That is, s m for all 

forms q~ of type (n - m, n -  m) with coefficients from C~(f2). 
Now, by (2) of Proposition 2.1, we have 

S 4~ A/~,, = !ira S 4} A (ddCu~) " = !im Sujdd ~ ck A (ddCuj) " -~  

and 

S4~ A v,, = !im s dd:(a A (ddCvj) " -~  
J ~  c~ 

By the induction hypotheses, (ddCuj) m-1  a n d  (dd:vj) m-~ both converge to /~,,_~ 
in M,,_ 1(f2 ). Also, u s, vj converge uniformly to u on support q~. Thus, both limits 
are equal to ~udd:c~ A #,._~, as asserted. This completes the proof. 

It is convenient to have a slightly better estimate for (ddCu)" than the one 
given in [6]. We give one in the next theorem whose proof, however, follows closely 
the one given in [6]. 

Theorem 2.4. Let  u be plurisubharmonic and continuous on the closure o f  the 
polydisc 

h(,~"r)= {(zl . . . . .  z.): Iz~l <A"r~, 1 < j < n } ,  

for some 2>  1. Let  09(6) be the modulus o f  continuity of  u on A(2"r); i.e. 

tu(z)-u(~)l<=~o(,~) /f Iz-ffl__<,~. 

Then there is a constant C, depending only on n and )~ > 1 such that 

S {dd u)" =< 
zl(r) 

Corollary 2.5. I f  u is a continuous plurisubharmonic function on g2=C", then 
(dd:u)" has no mass concentrated on any analytic subvariety off2. 

Proof. Clearly, from Theorem 2.4, (dd:u)" has no mass at points. Let V be a sub- 
variety of dimension k < n. The singular points of V are a subvariety of dimension 
< k, which we can assume has (dd :u)" measure zero by induction. Thus, we only 
have to show that (ddCu)" assigns measure zero to the regular points of V. This 
is a purely local question, so we can assume that V = {(z 1 . . . . .  Zk, 0 . . . . .  0)}, near 
0 ~ " ,  and then the result follows by letting rk+ ~ ~ 0  in the estimate of Theorem 2.4. 

Remark. The estimate of Theorem 2.4 cannot be substantially improved. For  
example, in Cz, if u(z~, z2)=max (0, R e & ,  Rezz), then c9(6) is ~, and it can be 
calculated that (ddr 2 is equal to the Lebesgue surface area measure on the 
2-dimensional real subspace Re zt = Re z z = 0. Thus, 

(dd ~ u) z = 4 q r z . 
a(r~, r2) 

We will obtain Theorem 2.4 as a special case of the following (slightly) more 
general statement which will be proved by induction. 

ProPosition 2.6. Let  ul ,  . . . , u ,  be C z plurisubharmonic functions on the closure 
o f  A(2"r), with 

lui(z)-ui(~)l~og(3 ) for  I z - ( l < J ,  and z , ~ A ( 2 " r ) .  (2.2) 
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There is a constant C, depending only on n and 2 > i such that 

S ddCul A ... AddCu,<=CoJ(q)...~o(r,). 
A (r) 

Proof  We will prove the Proposi t ion by induct ion on n. The case n = 1 is an im- 

mediate  consequence of Jensen's formula. For  if w e  set n(r)=~S_ S ddCu, then 
4 

Jensen's formula  is ,~n Iz |<, 

1 ~ 
~ u(re i~ d O -  u(0)= i n(t) dt. 

7~ _ ~ 0 t 

The left-hand side is clearly domina ted  by o~(r). For  the r ight-hand side, the 
s tandard  argument  

in(tO dt  > S >n(r/2) log 2 
0 r / i  

gives us an upper bound  for n(r) in terms (a(2r), as asserted. 
N o w  assume the Proposi t ion has been proved for smaller values of  n. Given 

n - 1 functions vl, ..., v,_ 1, define the coefficients A (i, j) by 

ddCvl A "." Add~v,_l  = ~ A(i,j) �9 (dziAd2j)  (2.2) 
i , j = l  

where ( - - - ~ ) d z i ^ d - ~ j A . ( d z i ^ d 2 j ) = f l , .  Also choose a C ~ function Z of  one 

variable ( e  r such that  Z(() = 1 if I~1 < 1, x(~) = 0 if I(I >_- ;t, and 0 < Z < 1. Set 

fi ~b(zl, ..., z , )=  ~ ~ . (2.3) 
j = l  

Since ul . . . . .  u, are plur isubharmonic ,  d d ~ u l ^ . . . A d d ~ u ,  is a nonnegat ive 
measure ([-17, p. 68) so 

ddCul A ... ^ ddCun< ~bdd~ul ^ ... A dd~u,= I. 
A (r) 

We will estimate I. 
It is no loss of  generality to assume that r~ < rj, 2 < j < n. Define 

fii(zl , zz ,  ..., z,) = ui(O, z z . . . . .  z,). (2.4) 

Writ ing u 1 = ul - fil + fia in the expression for I, we have 

I=~c~dd~(ul - f i l )  Add~uz A ... AddCu,+ S(odd~fil Add~u2 A ... AddCu, 

=11+12. 

By (2) of  Proposi t ion  2.1, we have 

I i=~(u  1 - f i l )dd~(o ^dd~u2 ^ ... Add~u, 

SO 

Ii <oo(q) ~ ldd~dp ̂  ddr ^ ... A ddr u,]. 
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With the notation of (2.3) and (2.4), we see that the coefficients in 
ddC(o ̂  ddCu2.., dd~u, are linear combinations of the two kinds of terms: 

[ ,~/  (zk)] ~Z (zi) OZ (z~) 1 
k ,jZ ~ . ~  ~ ~ ri~A(i,j),i#:j (2.5) 

and 

Because all the forms ddCu2, ..., dd~u, are nonnegative, the n x n matrix [A(i,j)] 
is a nonnegative Hermitian matrix ([17], p. 68). Consequently, 2(rlrj) -1 IA(i,j)l< 
rl-2A(i, i)+rj-2A(j,j) and so for a suitable constant C =  C(n, 2), we have 

ia < Cco(;~q) ~. ~i a!z, A(i, i) dm(z) (2.7) 

where dm is Lebesgue measure. To estimate the last integrals, we will use the 
induction hypothesis. To be specific, suppose i=1.  Let Aa={Zl: Izl l<2q},  
Z2= {(z 2 . . . . .  z,): Izfl<Ars}. Then 

A(i, i) am(z)= j j A(i, i) dm(z2,.. .  , z,,) din(z1). 
A(,~r) A1 A2 

With z, fixed, the n - 1 functions 

(z2, ..., z,)-*uj(z 1 , z 2 . . . . .  z.), 2 < j < n  

all satisfy the hypotheses of the Proposition with r replaced by 2r and n by n -  1. 
Thus by induction, we have for some constant C 

A(1, l)dm(z)< Coo(rz)...co(r,). (rl) 2. 
AO.r) 

Consequently, for some (different) C > 0, from (2.7) there follows 

11 ___< Co,(2rl) E H 
i=1 j~ : l  

Now, it is no loss of generality to assume that o9 is increasing and subadditive, 
because it can be replaced by the maximum of the modulus of continuity of the u~. 
Hence co(2q)<22co(q) for 2>  1 and co(r1) H co(rj)<~o(ri) H c~ because q<ri,  
2<i<n.  Thus s*~ s*~ 

tl < C~o(rO... ~o(r.) 

for a suitable constant C. 
To estimate the second integral I 2 , we write u 2 = u 2 - fi2 + fi2 so 

Iz =~ q~ddC(u2-fi2) ^ ddCfi 1 ̂  dd~u3 ^ ... ^ ddCu, 

+ ~ 4) dd~ fil ^ dd~ fi2 ^ dd~ u3 ^ . . .  ^ ddC u, 

=Sx + Jz. 
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The first integral J1 is estimated exactly as I x was above. If we repeat this process 
on J2, we finally arrive at 

S q~ddCfix ^ ... ^ ddCfi,_ x ^ ddCu, 

= S dp ddC(u,-  fi,) A dd~ fi 1 ̂  ... ^ ddC fi,_ l 

+~qSdd~fil ^ ... ^dd~fi , .  

Again the first integral can be handled as 11 was, while the last integral vanishes 
because fix . . . .  , ft, are functions only of n - 1 variables. This completes the proof. 

Remark. The estimate of Theorem 2.4 can be slightly improved.An examination 
of the proof will show that co(q).., co(r,) can be replaced by 

col(r0.-, co.(r.) 
where each coi is the "modulus of continuity in the i-th variable." That is, for example, 

col (3)= sup {lu(zl, z2, ..., z , ) - u (~ ,  z z . . . . .  z,,)[: Izl -~1<6 ,  Izjl < A"rj}. 

We next verify that the definition of (ddCu)" in the weak sense coincides with 
the classical definition when it exists. 

Proposition 2.7. Let  u eC(Q)c~P(f2) and suppose ddCu= 2 i ~  hi~dzj ^ d2k, where 
the h~  are locally L m functions in 12, 1 < m < n .  Then (dd~u)meM,,(12) has locally 
integrable coefficients and is given by [2 i ~ hjtidzj ^ d2k] m. 

j ,k  

Proof  If u satisfies the hypotheses of the proposition, then we can choose a 
sequence u, of smooth plurisubharmonic functions converging to u in C(f2) such 

O2Ue O2U L m. 
that ~ converges to hj~=Ozja.~k locally in For example, u~=u �9 Z~, where 

Z~ is a usual smoothing kernel ([13], p. 45). The result now follows from the weak 
continuity of (ddCu) ", given by Proposition 2.3. 

Let us now prove two inequalities which are useful in the study of the Dirichlet 
problem. 

Proposition 2.8. I f  u, ve  C(f2) c~ P(f2), then 

(1) (dd ~ [max (u, v)])" > min [(dd ~ u)", (dd ~ v)n]. 

(2) (ddC[u+v])n>=(dd~u)n +(dd~v)". 

Proof  Let # = m i n  [(ddCu) ", (ddCv)"], and first assume that #({z: u(z)=v(z)})=O. 
Then set f21={u<v}, and O z = { v < u } .  We have on f2x, (dd~ [max (u, v)])" = 
(dd~v)">#, and a similar inequality on f22. Since #(~2\(f21uf22))=0, and 
(dd c [max (u, v)])" ~ 0, the assertion (1) follows in this case. 

In general, replace v by v + ~, e a small constant. Then max (u, v + e) ~ max (u, v) 
in C(12) as e ~0.  Thus, (dd ~ [max (u, v + ~)])" ~ (dd  c [max (u, v)])" weakly, by 
Proposition 2.3. Also, since (dd~v)"=(dd~(v+e))", we have 

/~ = min [(dd Cu)", (dd ~ (v + e))"]. 

Thus, by the first case, we know the inequality for max (u, v + e) for all e with 
#{z: u(z )=v(z )+e}=O.  Since this happens for all but at most countably many 
s > 0, we obtain (1) letting e ~ 0, avoiding these countably many values of e. 
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Remark. Example  II, Section 4 shows that  (1) fails when u, v are not  continuous.  

To prove (2), note first that  if u, v~ C2(O)c~P(f2), the differential (1, 1 ) fo rms  
dd c u, ddCv are positive and therefore so are sums of posit ive multiples of powers  of 
the forms ([171 p. 68). Thus,  

n--1 

(ddC[u+v]),=(ddCu) . +(davy), + • (n)  (ddCu) j A (ddCv)"-S>(ddCu)"+(ddCv) ". 
j = l  k / /  

If u, v are only continuous,  let u s = u * X~, v~ = v �9 Z~ where Z~ is a usual smooth ing  
kernel  ([13], p. 45). Since u~, v~ are smooth ,  we have (ddC[u~+vJ)">[ddr 
+ [dd ~ v~]". However ,  u~ --+ u, v~ -+ v and u s + v~ --+ u + v in C(Q), so by Propos i t ion  2.3, 
we obta in  (2) by letting ~ + 0. 

The question arises whether  there is a " n a t u r a l "  domain  of definition for 
(ddr ". As was pointed out following Proposi t ion  1, if Vu is locally in L z, then 
(dd~u) z is a (2, 2)-current. Is there an analogue  of this for n > 2 ?  It is not  hard  to 
show that  a bounded  subha rmonic  function has locally square integrable gradient,  
and  thus (ddr z is a posit ive (2,2)-current for any bounded  p lu r i subharmonic  
function. 

Proposition 2.9. I f  u~Lco(t2)c~P(12) one may define (ddCu) k, l < k < n  inductively 
as follows. I f  z is a ( n -  k, n - k)-form with smooth coefficients with compact support 
in (2, then 

S (dd~u) k/x )~ = S u(ddC u) k-1 Ix ddC x. (2.8) 

Defined in this manner, (dd c u) k is a positive (k, k)-current. 

Proof. The propos i t ion  is true for k = 1 so we proceed by induction. 
Since u is uppersemicont inuous  and bounded ,  u(dd~u) k-z again has measure  

coefficients, and thus (dd~u) k is a (k, k)-current. Positivity can be seen as follows. 
Let X be a smoo th  i n - k ,  n - k ) - f o r m  with compac t  suppor t  taking values in the 
positive cone ~ (see Lelong [17], p. 60). It must  be shown tha t  

~(dd~u)k ^ z>=O. 

Since u is p lur i subharmonic ,  there is a sequence of  functions us~P(~2)n Cco(~2) 
decreasing monoton ica l ly  to u. Again dd~us A Z takes values in ~ ,  and thus by 
induct ion 

( d d  ~ u)k-  1 A (dd  ~ u s A Z) > O. 

The positivity of  (ddCu) k now follows by m o n o t o n e  convergence,  

(ddCu) k A X = ~ u(ddCu) k- 1 Add  c Z 

= lim Sus(ddCu) k-1 A ddCz 
S ~ co 

= lim ~ ( d d  ~ u) k -  1 ^ dd ~ us A ~ >= O. 
j ~ c o  

The difficulty with this definition is that  it is not  clear whether  there is a topo-  
logy on Lco(t2)c~ P(O) for which C(f2)c~ P(I2) is dense and for which the mapp ing  

(dd~)k: Lco (f2) ~ P(f2) ~ M k 

is cont inuous.  
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Another approach to defining the Monge-Ampere operator which does not 
involve integration by parts will be given in Section 5. 

3. The Minimum Principle 

The uniqueness part of Theorem D is an immediate consequence of Theorem A, 
which we prove in this section. We note that for the case of C 2 functions, another 
proof  has been given by Kerzman, Kohn, and Nirenberg [15]. 

The proof of Theorem A is based on the following inequality. 

Proposition 3.1. Let G be a bounded open set in I12 n with smooth boundary, and let 
u, v ~ Ca(G) be plurisubharmonic functions on G. I f  u = v on OG and u >-v in G, then 

(de'u)" < ~ (ddCv) ". 
G G 

Proof. One may factor 

(ddCu)"-(ddCv)"=(ddCu-dd%)A((ddCu) "-1 +(ddCu) "-2 Add% 

+ ... +(ddCv)"-l)=ddC(u - v )  ^ 0 

where 0 is a positive, closed ( n - l ,  n - l )  form. In particular, dp^dCpAO>O 
for all C 1 functions p (see e.g. [17], p. 68). Thus, by Stokes' theorem, 

(dd~u)"-(dd%)"= ~ de(u-v)  A O. 
G OG 

Let pc  C a be a function which defines dG. That is, G = {p <0}, 0G = {p =0}, and 
Vp#O on OG. Then since u - v  vanishes on OG, we have u - v = ~ p ,  where ~ < 0  in G, 
since u>v and p < 0  in G. Thus, on 0G, 

dC(u-v)=d~(otp)=~dCp so S(ddCu)"-(dd%)n= ~ ~dCpAO. 
G OG 

�9 dp , 
But, if a is the surface area on OG, then we have a = ]]-~P II where �9 is the Hodge 

star operator on p 2 , =  C". Thus, if~dCp^ O=fda, then ~dp^  dCp^ O=fdpA * dp 
But since ~ < 0 and dp ^ dCp/x 0 > O, we must have that f <  0. Hence, [I dp II" 

S (ddCu)"-(ddCv) "= ~ fd6_~O 
G OG 

since f___< 0. This completes the proof. 
Our method allows us to prove the following slight extension of Theorem A. 

Theorem 3.2, Let • be a bounded open set in ff~". Let  v be a continuous function 
on ~ which is plurisubharmonic on O. Let u be a plurisubharmonic function on 
such that 

lim inf u(0  - v(0 > 0; (1) 

and 

lim (ddCu~)"<(ddCv)" in f2, (2) 
e ~ O  



The Dirichlet Problem 13 

where u s = u * Z~ and Z~ is a usual smoothing kernel for plurisubharmonic functions 
([17], p. 45). Then u>=v in ~. 

Proof Assume the theorem is false. That  is, there exists z o ~ Q such that U(Zo) < V(Zo). 
Let qo=�89 Then for all 0 < q < ~ / o ,  the set 

G(~I)= {zeQ: u(z)+~<v(z)}~Zo 

is a nonempty,  open ( u - v  is upper  semicontinuous),  relatively compact  subset 
of Q, because of hypothesis  (1). 

Let u s = u �9 X~, v~ = v * X. be regularizations of u, v as in hypothesis (2), so that  
u~, v~ are defined on 

~ = {zE ~2 [distance from z to 0Q exceeds ~} 

(i.e. X~ is supported in p z[ < ~), and u s > u, v~ > v. Since v is continuous,  v, ~ v uniformly 
on compact  subsets of ~2. 

Define 

G(~, a)= {ze ~: u(z)+~<v(z)+alZ-Zol2}. 

There exists a function 6(r/)>0, 0 < t / < t l  o, which is increasing and such that 
G(t/, 6) is nonempty,  open, and relatively compact  in f2 for all 0 < 6 __< 6(r/). We have, 
in fact z o e G(q, 6). Next,  choose a(q, 6)> 0 so small that  0 < e < e(q, 6) implies 

~2~ G(t//2, 6), 0<~/<~/o, 0 < 6 <  6(~/2). 

Then  define, for such ~, q, 6, 

a01, 6, e )=  {z~G(q/2, 6): u(z)+ q < v+(z) + 6 I z -  Zol2}. 

If e is so small that  Iv(z) - v~(z)l < ~//4 whenever z~ G(~l/2, 6) and e < ~(r/, 6), then 

GO/, 6, e) c G(3 q/4, 6)= G01/2, 6) 

because z~ G(q/2, 6)'.. G(3 ~//4, 6) implies 

u ~ ( z ) + , > u ( z ) + 3 , +  ~ z 2 . " 
- -  - -  0 " f - 4  

>v~(z)+alZ-Zol ~-  Iv(z)-vAz)l + 4 

>v~(z)+a[Z-Zol 2. 

In particular,  G(q, 6, ~) is a relatively compact  subset of Q~, so v~ is C ~~ in a neigh- 
bo rhood  of the closure of G(q, 3, ~). 

Finally, choose ~(~/, 6, ~) so small that for q, 6, ~ as above and 0 < T < z ( q ,  6,~) 
we have that  

G(q, 6, e, z )=  {zaG(�89 (5): u~(z)+q <v~(z)+61z-Zo[ z} 

is a nonempty ,  open, relatively compact  subset of Q~. Because u+>u, we have 
GO/, 6, e, ~) = GO/, 6, ~) and because Zo ~ G(q, 6, e), we have z o ~ G(q, 6, ~, ,) when 
is sufficiently small. 

We now want to apply Proposi t ion 3.1 with G = G(q, 6, e, z) and the functions 
defining this set. The only problem is that  G may not  have a smooth  boundary .  
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However, by Sard's theorem, the value - r / i s  a regular value of the C ~ function 
u s ( z ) - v ~ ( z ) - 6 l z - z o [  2 for almost all values of t/. Thus, we can take a sequence 
of numbers % ~ 0 and apply the Proposition to G for almost all values of r/. Con- 
sequently we have by Proposition 3.1 and (2) of Proposition 2.8, 

I [ ddc us]" = S [ ddc (us + q)]" => ~ [dd~(v~ + 61z-  Zo 12)]" 

> I Edd~ v,]" + 6" I [dd~lz- zol2]" (3.1) 
= ~ [ d d  ~ v,]" + 6". 4"n! vol G(r/, 6, e, z) 

where all integrals are over G = G(~/, 6, ~, z). Letting r ~0 ,  the open sets G(q, 6, e, z) 
increase to G(r/, 6, s). If # = lim (ddCu,) ", then we deduce from (3.1) that 

u(G(q, 6, e))> S [dd%~]"+n!4"6"v~ 6 ,0  
G(n,~,~) 

for almost all ~/< no, 0<6<6(~/), and 0<~<s(q ,  6). Now let ~-+0. The measures 
[dd~v~]" converge weakly to [dd~v] ", by Proposition 2.3. Also 

G(rh 6, s)~ {z6G(�89 6): u(z)+ q <v(z)+ 61Z- Zol 2} 

= 6(�89 6) n o(,7, 6 )=  6(~,  6). 

Further, 

0 G(tl, 6, e)cK(q,  6)= {zef2: u(z)+~l< v(z)+6lz-zo[2}. 
~ > 0  

Thus, we have for almost all q, 

#(K(t/,6))> S (dd%)"+n!4"6".volG(rl, 6). 
G(~t, 6) 

Since #_<_ (dd ~ v) ~, this implies, with v = (dd ~ v) ~, 

v(K(tl, 6))> v(G(q, 6))+ n!4" 6". vol G(~/, 6). 

However, t/ --. v(G(q, 6)) is an increasing function of r/, and K(r/, 6)~ G(r/', 6) for 
t/' > q. At points of continuity of this function we then have 

v(G(q, 6)) = v(G(q, 6)) + n ! 4" 6" vol GO/, 6) 

which contradicts the fact that G(~/, 6) is a nonempty, open, relatively compact 
subset of 12. This completes the proof. 

Corollary 3.3. Let [2 be a bounded open set in ~" and c~ a continuous, real-valued 
function on Ol2. The solution, if one exists, of the Diriehlet problem 

u plurisubharmonic in I2 

u continuous in 
u=c~ in Of 2 (3.2) 

(dd~u)~=# in f2 

where # is a given positive Borel measure, is unique. 

Proof If u, v are two solutions of (3.3), we have u > v and v > u in f2 by Theorem A. 
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Finally, we note as a consequence of Theorem 3.2 the following very weak 
regularity theorem for the equation (ddCu)" =0. 

Theorem 3.4. Let  Q be a strictly pseudoconvex bounded open set in ~E ~. Suppose 
that u is a plurisubharmonic function in f2 such that 

(1) lira (ddCu~)"=O, (u~=u �9 ~ as in (2) of  Theorem 3.2) and 
~ 0  

(2) there is a continuous function q~: Of 2 ~ R  with 

lim u(()= ~b(z) 
r 

Then u is continuous in ~2. 

Proof. From Theorem 3.2 it follows u is the upper envelope of all plurisubharmonic 
functions on f2 which are continuous on f2 and are < ~b on Of 2. By a theorem of 
J.B. Walsh ([23], p. 145), u is continuous. 

4. Examples of Nonuniqueness in the Dirichlet Problem 

In this section we give examples of nonuniqueness in the Dirichlet problem (1). 
This is associated with the failure of the minimum principle, Theorem A, and we 
first give simple examples where this principle fails. In all cases, it is of course 
necessary to go outside the class of continuous plurisubharmonic functions. 
We will restrict ourselves to the case n = 2, and the examples given here fall under 
the case 17u locally L 2, which was discussed in Section 2 (or a simple modification 
can be made to bring them into this case). It will be clear how corresponding 
examples for n > 2 may be found. 

We will consider functions of the form 

u(z, w)= �89 ([ f (z ,  w)l z + Ig(z, w)l 2) 

where f, g are analytic. If I f l  + Igl >0,  then we compute 

f O f  +g~3g (4.1) ), 

aau = (fOg - g ~f)  /x ( f~g  - g ~f)  (4.2) 
2([fl  z + IglZ) z , 

Ou/x aOu = - ( f O g - g O f )  ^ Of A dg (4.3) 
4(i f lZ  +lg12)2 ' 

OOu ̂  O~u=0. (4.4) 

However, if f and g can both vanish, it is not true that (ddCu) 2= --4OOUA C3~U 
vanishes. Let F = (f, g) be thought of as a map of t17 2 -~ Ir 2. If F has an isolated zero 
at (0,0)elE 2, then near (0,0), 

(dd c u) 2 = 4 zr 2 p 6 (4.5) 
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where p is the degree of F at (0, O) and 3 is the unit point mass measure at (0, 0). 
This can be seen in a couple of ways. One way is to note that the restriction of the 
form 

co--d c [�89 (]zl 2 + Iwl2)] ^ ddC[�89 (Izl z + IwI2)] 

to a sphere S~={[zl2+[w[2=e 2} is equal to 2e-3da~, where dtr~ is the volume 
form on the sphere S~. The form dCu ^ dd~u is the pullback under F = ( f ,  g) of the 
form o~. Further, S F*(e-3 dcr~)= 2re 2 p, where p = degree of F at (0, 0). Thus, 

dCu A dd~u= 2 ~ F*(e- 3 dtr~)=4 n2 p 
Izl2 +lw(Z=e 2 

which, together with (4.4), gives (4.5). 
Another way to see (4.5) is to notice that dCu ^ dd~u is essentially the Cauchy- 

Fantappi~ form associated to the map F, and the value ofSd~u ^ dd~u follows from 
well-known integral formulas (c.f. [16]). 

Example I. For an example where Theorem A fails, set 

ux(z, w)=�89 (Izl 2 + Iwl 2) 

and 

u2(z, w)= 2 - ~  log (Izl 2 + Iwlr 

By (4.5), we have 

[ d d C u l ]  2 = [ddCu2]  = 4 n  2 6. 

However, there are points inside the unit ball Izl 2 +[w12< 1 where ul >u2 (e.g. 
where w=0)  and points where u2>ul  (e.g. where z=0),  even though ul >u2 for 
all (z, w) with Iz] 2 + Iwl 2 = 1. 

It is also in general false that 

(dd ~ [max (u, v)]) 2 > min ((dd ~ u) 2, (dd ~ v) 2 ) (4.6) 

in contrast to (1) of Proposition 2.8 for continuous functions, as the following 
example shows. 

Example II. Set ul(z, w)=�89 log (IZI 2 -[-IWt 4) and Uz(Z , W)=Ul(W , Z)--�89 (IZIr IWI2). 
Let 

U(z, w) = max (ul, u2). 

If t21= {(z, w): IzlZ+ Iw12< 1, 0< lwl< Izl} and 02= {(z,,w): Iz12+ Iw12< 1, 0<  Izl< Iwl}, 
then we easily verify that U = ui on f2i. 

We claim that (dd~U) 2 is equal to 4rc26 plus the restriction to Of 21 \ {(0, 0)} 
of the 3-form (d~u~-d~u2) ^(ddCul +ddr That is, if q~ is a C ~ function with 
compact support in Izl 2 + Iwl 2 < 1, then 

~(dd c U) 2 = 4 rc 2 tk(0) + S tk dC(u - v) ^ dd~(u + v). (4.7) 
Iwl=lzl>o 

In particular, (4.6) fails, since by (4.5), rain (dd~u~) 2 = 8 z 2 6. 
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Before proving (4.7), let us note some facts about the various weak derivatives 
of U. The first derivatives of U are functions, and we have 

d U = d u  i, dCU=dCui on ~?i,  i = 1 , 2  (4.8) 

as is easily verified using formula (4.1). Since dcU is smooth except at zero and 
except for the jump across the hypersurface 0<[zl=]wl ,  it is then standard to 
compute that 

ddCU = v + t 1 (4.9) 

where v,t/ are the currents, v=dd~u~ on f2 i, i = 1 , 2  and q is the restriction of 
dr to the part of the boundary of Q1 where 0<]zl=lw[.  That is, for all 
smooth (i, 1) forms ~b with compact support in [z] z + ]w] z < 1 

2 

S4)Add~U = ~ 4)/x(dCu2-dCUl)+ ~, ~ c~AddCu,. (4.10) 
0g21 "- {(0, 0)} i= 1 I?, 

To compute (dd~U) z, we can use either (1) or (2) of Proposition 2.1. 

I r  ~ = - I ddC 4~ A d u  ^ d~U 

=~ Udd~cfl AddCU. 

To be explicit, let us use the first of these formulas. Let Oi@) = Oi c~ {]z] 2 + ]w] 2 > ~2}, 
Mi(g)=O~'~i(g)o {[z[2- -~- [w]2>~ 2} and Si(~)=O~~i(,g)U'~ {Iz12--~-[w]2=~:2}. Then by 
(4.8), 

2 

~dp(dd~U) 2= - Z ~ dd~(~ Ad~u, 
i=1 ~, (4.11) 

2 
=l im ~ ~ ddC(o/~duiAd~ui . 

r~O i=1 12,(e) 

We want to move the differentiations off of r Thus, 

I ddC~9 A du  i A dcui = - f de~9 A du  i A dd~ui 
~(~) Y/de) 

+ ~ d~(oAduiAd~ul 
ea(~) (4.12) 

= 5 d~~ + ~ d~cpAduiAdCui 

= ~ cpd~ui^dd~ui+dCdp^dui^d~ui 
Ogt~ (e) 

since dd~u~^dd~u~=-O on Oi(e). Now use formulas (4.1) and (4.3) to compute 
dCui ̂  dd~ui, dug A d~ui. We find that on Si@), 

]d~uiAdd~ui[<const./e, Idui^dCuil<const./e z 

so that 

I ~ d~ul/xdd~ui+ ~ d'O/xduiAd'uil<O(e2)+O(O "+0" 
&(~) &(a) 
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Therefore 
2 

S q~(dd~U)z=lim Z ~ c/)dCui^dd~ui+d~d~^dui^d~ui 
e ~ 0  i = 1  Mi(e) 

=l im  { ~ [d~ul ^ddCux-d~u2 ^dd~u2]+ ~ d~c/)^dul^d~(Ul-U2)} 
~ 0 Mt  (e) M1 (t;) 

(4.13) 

where the last equality results f rom Mx(e), ME(g ) having opposite  orientations,  
and du I = d u  2 o n  Ml(8), because u 1 = u  2 = 0  defines aO 1 . 

Now, on the manifold {u 1 = u2} \ (0, 0) ~ M 1 (e), we have dCdl) ̂  du 1 ̂  d ~ (u 1 -  u2) 
= -de/) ^ dCul ^ d~(ul - u 2 )  because the (1, 1) parts  of d~dp ̂  du 1 and - d~  ^ d~ul 
are the same so 

d(ul - u2) ^ dC ~a /x du 1/x d~(Ul - Uz) = - d(u 1 - uz) ^ d c~ /x d~ul ^ dC(ul - Uz). 

Thus,  

d~c~ ̂ d u l A d ~ ( u l - u 2 )  = -  ~ dc~ ^d~ux /xdC(Ul-Uz) 
M t  (e.) MI  (e) 

= -  ~ dc~ ^d~ul  ^d~u2 
Ml (e) 

= - ~ d[gaa~ua ^d*u2] 
M 1 (e) 

- ~ ~b(dCu2 ̂ dd~ul -d~ul /xdd~u2)  
M1 (e) 

Together  with (4.13), this implies 

~ck(dd~U)2=lim ~ c~d~(Ul-U2)^ddC(ul +u2) 
~ o  M~(,~ (4.14) 
- ~ d[gadr 

Mt  (~) 

However ,  

-- ~ d[e~d~ulAdCuz] = -  ~ $dCulAd*u2 
M1 (e) OMI (e) 

SO 

l i m -  ~ 49dOul ̂ d~u2=-~b(O) l im ~ d'ua^d*u2 . 
e~O OMl(e) ~ 0  OMa(e) 

f ( x l , . . . ,  x , )=  U(e "1 . . . . .  e x") (4.15) 

then it is easily checked that  

a2u c~2f 
4 Zi'ZJ OZ i 02j -- OXiOX j (4.16) 

Finally, direct computa t ion  shows that [. dCul A dCu2 = - 4 ~ z  2 +0(e2), SO (4.7) 
follows from (4.14). ~MI(~) 

To  construct  an example of nonuniqueness  in the Dirichlet problem, we will 
make  use of a relationship between the complex and real Monge-Ampere  operators .  
Namely,  suppose U(z)= U(z I . . . .  , z , )=  U(lzl [, ..., Iz,[). If we set Jzil = e x' and 
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so 

[ 1 Mf~fde t  LOxlc3xA =4"Is 112 . . .  Iz.I z det [ ~ j .  (4.17) 

With examples of the form u(lz~[ . . . . .  Iz,]) in mind, we will now construct 
a family of functions in two variables such that 

(ddCu)2=c6 on l z lZ+lwtZ<l ,  

u = 0  on Iz12+lw12= 1 

where 6 is the point mass measure at the origin. These will be functions u(Izl, Iwl) 
so that the associated convex functions 

f (x, y)= u(e:', e y) (4.18) 

have M f  = 0 on 

/2* = {(x, y): z=e:', w=e y, Izf z + Iwl  2 < 1} 

but, M f  has some "mass at infinity". 
Fix positive numbers p, q. We will take f in the form 

f (x ,  y)=(pZ +qZ)-l/2 (qx + p y ) - ~ ( q y - p x )  

where q5 is a suitable smooth function. Now, we want f = 0  on dO*. Each line 
of slope p/q intersects 0f2* in exactly one point. Thus, there is a map q~: F, z ~ 0f2*, 
say O(x, y) = (x', y') given by projecting (x, y) along the line of slope p/q passing 
through (x, y) to the intersection of the line with ~3f2". The mapping q~ is smooth. 
The function f is linear with slope + 1 on each line of slope p/q, and 4)(qY-px) 
is constant on such lines. Thus, i f f  is to vanish on Of 2*, we have 

qx' +py' 
c~(qy-px)= (t32 q_ q2)1/2 

o r  

f (x, y) = q(x - x') + p(y - y') (4.19) 
(132 q_ q2)l/2 

We can also compute the derivatives of f To do this, it suffices to compute 
the Jacobian matrix of r This is a direct computation which we omit. The results 
are as follows. Set a=e z'`', b=e 2y', A =(pb+qa) -1. Then with 

t3x' 8x' Oy' t?y' 

oq =pbA, ~2= -bqA,  ct3= -paA,  ~t,,=aqA. (4.20) 

The second derivatives can be computed in the same way. A typical result is 

Ocq = _ 2abp2 qA3. (4.21) 
Ox 

The only important point for us is that each of these second derivatives has the 
form abH, where H is a polynomial in a, b, p, q, and A. 
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Let us note some consequences of formulas (4.20) and (4.21). First, since 
a + b = l ,  we have 0<A <min(p-1,  q-l),  so 

I~il < const, b, i=  1, 2, (4.22) 

lalf < const, a, i=3, 4. (4.23) 

Also, if D2f is any second partial derivative off, we have 

IDafl < const, ab (4.24) 

For later reference, we also want to compute some special derivatives of f. 
Let ~=(pZ+q2)-a/2(q,p) be a unit vector having the direction of lines with 
slope p/q, and-f=(p2+qZ)-~/2(_p,q)  the vector orthogonal to ft. Introduce 
new coordinates (4, r/) on IR z so that (x, y ) -  ~ fi + ~/t. That is, 

x=(p2 +q2)-U2(q~_pr/), y=(pZ +q2)-U2(p~ +qr/). 

In this coordinate system, we find, using the chain rule and our previous cal- 
culations 

~ = 1, O f_qb-pa  (4.25) 
Or~ pb+qa 

Note that if x - o - 0 o  while y remains bounded, then x ' ~ -  ~ ,  y ' ~ 0 ,  so a-o0, 
b ~ 1. Thus. 

lim Of_q (4.26) 
~ _ ~  0r/ p 

y bounded 

Similarly 

lim 0 f =  p_ (4.27) 
r~-oo 0t/ q 

x bounded 

0f 0f 0f ,  Proposition 4.1. LetoO=~xdC~y)-~ya(~x). Then 

I {0--'-- P2 + q2 

~o* Pq 

Proof. The estimates given for first and second derivatives of f show that the 
integral converges. To evaluate ot, transform to (~, r/) coordinates. Then 

,o Of d Of Of Of 

by (4.25). Thus, 

S ~ =  lira Of lim 0 f  
BJ2* x'~-c~,y'~O Ol'] x'~O,y'~--oo O~ 

. q . p p2 + q 2  
which, by (4.26) and (4.27) is equal to - + - =  , as asserted. 

P q Pq 
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Finally, we return to the function u given by (4.18). Let 

B =  {(z, w)~t~2: Izl 2 + Iwl 2 < 1}. 

Proposition 4.2. The function u is infinitely differentiable on B \  {zw=0}. Further, 

(1) u has a continuous extension to a C 2 function on B',. {(0, 0)}; 

(2) if u(0,0)= - o %  then u is plurisubharmonic on B; 

(3) i f y = m a x  (-P,q/, then IdCul<const.(IzlZ +rwl2) -~/2 and IddCul<const. 
(Izl2+lwl2)-3e/2. \q p! 

Proof It is clear that u is smooth o n / ~ \  {zw=0} since f is smooth. From the 
formulas (4.20) and (4.21) together with the formula (4.16) for the derivatives of u 
in terms of derivatives off,  it is easily checked that the derivatives of u extend con- 
tinuously t o / ~ \  {(0, 0)}. In fact, u is infinitely differentiable o n / J \  {(0, 0)}, although 
we don't need this. To see that u is plurisubharmonic on B, all we have to verify 
is that u is uppersemicontinuous and locally satisfies the subaveraging property 
on each complex line. We omit these routine verifications. 

To obtain the estimates of (3) we again use (4.20) and (4.21). First note that 
when [z I > Jwl, we have a Izl- 2 < const. (Izl 2 + Iw12) - x. And, when Izl < Iwl, we have 
a[z[- 2=e2X e- 2X'=e2~X- x')=e2qlr- Y')/P <= lw[ - 2q/p, where we have written Izl=e x, 
[w[ = e y. Thus, a/[z[ 2 <= const. (Iz[ 2 + [w[2) - r. Similarly a/lz[ =< const. ([z[ z + [w[2) - r/2. 

Then for a typical derivative of u we have O~zz =<c~ ~ ----c~ 

const. ([zl/+ [W[2) -y/2. All other derivatives are estimated in the same way. 

Proposition 4.3. Suppose p, q are such that 7= max (-P-,-q] satisfies ~ <4. Then 
\q P! 

(1) dCu/x ddCu is integrable on B; and 

(2) d[dCu A ddCu] = 4 / r  2 p2 + q 2  c5, where 6 is the point mass measure of (0, 0). 
Pq 

Proof From (3) of Proposition 4.2 we have that IdCu ̂  dd~ul =<([zl2+ I wlZ) - 3~/2, 
so the coefficients are integrable so long as 3 ~ < 4. We already know that dd~u ^ 
dd~u=O away from (0, 0), so ddCu/x ddCu=26 for some nonnegative number 2. 
We can compute 2 easily using Proposition 4.1. We have 

2 = S d~u/x dd~u. 
IzlZ+lwl2=l 

A computation shows that on the unit sphere, with x = l o g r ,  y = l o g p ,  r=lzl ,  
p = Iwl, we have 

V Ozf Of OEf X. ]AdOAdq5. dr [ (~J--~x dEfOy 2 dyC3f c?xgy]~2f ~ d Y -  (~y ~x2 ~x c3-~-y) ax 1 
Thus, ~ d~uAdd~u=4n2 ~ 09 where co is the form of Proposition 4.1. 

Izl2+lw[ 2 = l O~* 

Thus we find 2 = 4 n  2 ~ - - ~ !  as asserted. 
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1/5 
Remark. Note that when p = q = 1, we have �89 log ([z[ 2 + [wl2)=~ -~ u. This gives 
another method for computing (4.5). 

z .  

Example III.  Finally, to get the examples of nonuniqueness in the Dirichlet 
problem, consider functions of the form 2u =2up,~, where u=uv, qis as in Pro- 
position 4.3. We have that each such function is continuous on B \  {0, 0} and 
vanishes for Izl ~ + Iwl 2 = 1. Also, 

[ddC(2up, q )]2 m-/~ 2 p2 +q2 6 

Pq 

so different values of 2, p, q can give rise to the same right-hand side. 

5. The Operator r 

We have seen that the operator (ddCu)" has some unpleasant properties when the 
singularities of u are too strong, for instance the failure of (4.6) and Example II 
of Section 4. In this section, we introduce a closely associated operator, ~(u), 
which is essentially [(ddCu)"] 1/". As we will see, it has some advantages over 
(ddCu) ". In particular, it is defined for all plurisubharmonic functions. On the 
other hand, in some cases ~(u) will fail to recognize singularities we wish to take 
into account (c.f. the example after Theorem 5.8). 

To define r we will use a general measure theoretic construction given by 
Goffman and Serrin in [12]. Let 

C ={~: ~ = (l/j) is a nonnegative, n x n Hermitian matrix} (5.1) 

so that C is a closed, convex cone. We will think of C as imbedded in r  R 4"2, 
with the usual Euclidean norm on R 4"~. Consider the function 

7J(r = (det ~)1/,, ~ e C. (5.2) 

Proposition 5.1. The function 7 t is a continuous, nonnegative, concave function 
which is positively homogeneous of degree I on the cone C. 

Proof. All assertions are clear, except that h u is concave. To see this, let ~, r/e C, 
and 0 < t < 1. We have to prove 

~( t  r + (1 - t) 7) = t ~(r + (1 - t) ~(~/). (5.3) 

It is no loss of generality to assume that ~ is nonsingular. Otherwise, replace 
by ~ + el, where I is the identity matrix, and then let e ~ 0. Then since r is non- 
singular, we can write 

tr +(1 - t )  r/=~ 1/: [ t I+ (1  - t )  ~-1/2 r/C-x/2] r 

Because ~(r r/)= ~(~).  T(t/), it therefore suffices to prove (5.3) when ~ = I. Then, 
if#l . . . . .  #, are the eigenvalues o f t / the  inequality (5.3) is equivalent to 

r n "ll/n 
f i  [t+(1 -t)#i]l/">t+(1-t) [I-I #J] �9 (5.4) 

j = l  L j = I  J 
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To prove (5.4), divide both sides by t, set x = ( 1 - t ) / t ,  and consider the function 

f ( x ) =  1~I ( l+xixj)  1/". It suffices to prove that f " ( x ) < O  for x >0 .  A short cal- 
j = l  

culation yields 

. ,  t 
l + x i x j !  - S=l( l+x#g)2J  ' 

and the bracketed term is < 0 by the Cauchy-Schwarz inequality. 
Now, let # be a vector valued Borel measure on O c 117" with values in the cone C. 

That is #=(ixii)where the #ij are Borel measures on 12 and for each Borel set 
E c Q ,  (pij(E))~C. We want to define 7s(ix), as a nonnegative Borel measure on 
12c IlP. This can be done in the following way. Choose a nonnegative Borel 
measure 2 on ~ so that # is absolutely continuous with respect to 2. For example, 
2 = ~l#~gl, where IIx~ib is the total variation measure of #~j. Then by the Radon- 
Nikodym Theorem, d # = h d 2 ,  where h is a Borel measurable function on 12 
with values in the cone C. 

Definition 5.2. 7s(#) = 7S(h) Jr. 

It is routine to verify that this definition is independent of the particular 
Borel measure 2 used in the definition, since ~ is homogeneous of degree 1. 
It is also routine to verify that 7s(#) is a nonnegative Borel measure, because 
7S([a~j]) < const. ~ laljl, and ~u > 0. 
There are several properties of the operator 7 x on Borel measures which are 
immediate consequences of the definition. 

Proposition 5.3. I f  IX, v are Borel measures on Q with values in C, then 

(1) 7s(~#)=~Ts(ix)/f~_->O. 

(2) I f  Ix, v are mutually singular, then 7s(Ix + v) = 7s(Ix) + 7s(v). 

(3) 7s(Ix) is absolutely continuous with respect to Ix. 

(4) 7 s ( t I x + ( 1 - t ) v ) > t T s ( I x ) + ( 1 - t )  7s(v), 0 < t < l .  

We need also two additional facts about the operators ~, ~. The first is the 
continuous analogue of (4) of Proposition 5.3. 

Proposition 5.4. I f  Z >0 is a continuous function with compact support, then 

~r'(Ix �9 Z)->- ~'(Ix) * Z 

on any open set ~7' with 12' + support 7~ ~ 12. 

To prove Proposition 5.4, it is convenient to use an alternate definition of 7s(Ix). 

Lemma 5.5. For all Borel subsets E of  12, 

~(Ix) (E)=inf  ~(Ix(Ej)): E =  Ej, E~ disjoint Borel subsets of  12 . 
j = l  

Proof. This is a special case of [12], Theorem 2, p. 163, with only three slight 
modifications. First, Goffman and Serrin treat subadditive functions, while 71 
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is superadditive. However, the same arguments will work in our case. Second, 
Goffman and Serrin take the infinimum as the definition of ~(#)(E), and then 
prove our definition coincides with the infinimum definition. Third, Goffman 
and Serrin assume that the domain of ~u is all of Euclidean space (or a Banach 
space) instead of just a cone. However, this is not an essential change. 

Proof of Proposition 5.4. If E =  UEj ,  we have 

~((~ * x) (E~)) = ~(~x(x) ~(Ej- {x}) dx)>=~X(x) ~ ( ~ ( e j -  {x})) dx, 

where the last inequality results from the homogenity of ~ and Jensen's inequality 
for concave functions. Summing over j gives 

J J 

_-> Sz(x) ~ ( u ) ( e -  {x}) dx = (~e(u) �9 x) (E) 

where the last inequality follows from Lemma 5.5. Taking the infinimum over 
all Borel partitions E = U Ej of E and applying Lemma 5.5 again, the Proposition 
follows. 

The other fact we need about the operator ~u is a semicontinuity property. 

Proposition 5.6. Let {/fl} be a sequence of Borel measures on f2 with values in C 
which converges weakly to the Borel measure p. Suppose also that the Borel measures 
qJ(#J) converge weakly. Then 

~/'(#)> lim ~u(#~). 
j ~ o o  

Proof This is a special case of [12], Theorem 3, p. 165, with the same slight modi- 
fications observed in Lemma 5.5. 

We now define the operator 4i(u). If u is plurisubharmonic on 12, then the 

matrix of Borel measures - ( t32u / takes values in the cone C since ddCu is a 
positive (1, 1) current. \~zJ ~2k/ 

d2u 

We can now very easily give several properties of ~(u). 

Theorem 5.'/. Let u, v, uj be plurisubharmonic on Q c tl;". Then 

(1) ~(~u)=~(u) ,  ~>0; 

(2) ~( tu+(1 - t ) v )> t@(u)+(1 - t ) cb (v ) ,  O < t < l ;  

(3) I f  x >0 is a continuous function with compact support, then 

~(u �9 x) >= ~(u) �9 x 

for any open set f2' with f2' + support X ~ f2; 

(4) if  u j ~ u locally in L ~, or as distributions on fL and if the sequence of  measures 
�9 (uj) converges weakly, then 

r > !im r 
j ~ o o  
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1 
, >0 is a usual smoothing kernel (e.g. [13], (5) I fu~=u*z~ w h e r e z ~ ( z ) = ~ Z  _ 

p. 45), then 

lira q~(u~) = ~(u). 
e ~ 0  

(6) ~(max (u, v)) > min (~(u), ~(v)). 

Proof Assertions (1), (2) follow from Proposi t ion 5.3. Assertion 3 follows directly 
from Proposi t ion 5.4. To see that (4) follows from Proposi t ion 5.6, note  that the 
opera tor  dd c is cont inuous for the distribution topology,  so ddCuj~dd~u as (i,  1) 
currents on •. However,  just as convergence of positive measures in the distr ibution 
topology implies weak convergence as Borel measures on Q, we have that d d ~ u ~  
dd~u as Borel measures, i.e. Sdp/xddCuj-~c~/xddCu for all ( n - l ,  n - l )  forms 
with coefficients which are cont inuous and have compact  support.  (See e.g. [17], 
p. 67.) Thus, Proposi t ion 5.6 implies assertion (4). 

To  prove (5), we combine (3) and (4). That  is, we have ~(u~)>~(u) �9 X~ by (3), 
and by (4), as e ~ 0, we have 

cb(u) > !im ~(u~) __> !ira ~ ~(u) �9 ;~ = q~(u) 

where the last equality is a well-known proper ty  of the smoothing kernels Z~. 
To  prove (6), first assume u, v are smooth.  Then  on the open  set where u > v, 

we have 

q~(max (u, v)) = ~(u)_> min (~(u), q~(v)), 

and a similar inequality where v > u. Thus, unless u = v on a set of positive measure,  
this case is proved. If u = v on a set of positive measure,  replace v by v + e. For  all 
except countably many  e > 0, the set u = v + e has zero measure. Thus, 

q~(max (u, v + a)) > min [~b(u), ~(v + a)] = min [~(u), ~(v)]. 

N o w  let a ~ 0 ,  and apply (4), to get assertion (6) when u, v are smooth.  
In the general case, replace u, v by u~, v~. Then max (u~, v~) decreases to max (u, v) 

([13], p. 45). Select a sequence a j ~ 0  such that ~ (max(u~ ,  v~)), ~(v~)~(v~) and 
min [<b(u~), ~(v~)] all converge weakly. Then by (4) and (3), 

q~(max (u, v))_>_ Jim q~(max (u~j, v~)) 
j~oo  

>= lim min (q~(u~)), ~(v~)) 
j~oo  

> lim min [~(u) * Z~j, q~(v) * Z~] 
J 

__> lira min [q~(u), ~(v)] * Z~ = rain [~(u), ~(v)]. 
j ~  

This completes the proof. 
We conclude this section by giving some explanat ion of the relat ionship 

between ~(u) and (dd~u) ". 

Theorem 5.8. Let u be a plurisubharmonic function on q~ such that the regularizations 
of u, u~=u * Z~, have the property 

{(dd~u~) "} is a bounded family of Borel measures on each compact subset of O. (5.5) 
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Then 

(1) ~(u) is absolutely continuous with respect to Lebesgue measure, and, if 
~(u)=gdV, where dV is Lebesgue measure, then g is locally n-th power integrable; 
i.e. geL~oc(O ). 

(2) if u is continuous, and if (ddCu)n = fdV+dv  is the Lebesgue decomposition 
of the nonnegative measure (ddCu) ~ into its absolutely continuous and singular parts, 
then 

g<_ fl/~; 
02u 

(3) if dZjd_~k =fj~dV+dvj~ is the Lebesgue decomposition of the Borel mea- 

c92u 
sures ~ ,  then g =4(n !)l/, det [fj~]l/n. 

Proof. Since u~ is smooth, we can write ~(u,)= g~dV, and from (2.1), 

g~ dV= (dd~u,)L (5.6) 

Thus, from (5.5) we find that S g~dV<__M< 0o for each compact subset K of ft. 
K 

Thus, the {g~} are a bounded family in L~oc(fl ). The measures g~dVtherefore have a 
subsequen~ which converges to a measure gdV, with g6L~or ). But we already 
know by (5) of Theorem 5.7 that g~dV~ ~(u). Thus, ~(u) =gdV. This proves (1). 

To prove (2), note first that (g .  X~)dV<= q~(u,), by (3) of Theorem 5.7. Thus, 
from Fatou's lemma we find for all q5 = 0, continuous with compact support in f2, 

S4g~dV<lim inf ~q~(g �9 X~) n dV 
e~O 

< lim inf j" ~b(g~) ~ dV 
e~O 

= lira ~ 4)(dd~u~) ~ 
e~O 

=IepfdV+f4)dv. 
Thus, g~dV<fdV+dv,  so g"<f .  

To prove (3), we use (2)of Proposition 5.3. Thus, 4 (~(~/----.._, ~([f j~dV])+ ~[dvj~]). 

However, by (1), ~(u) is absolutely continuous, and by (3) of Proposition 5.3, 
~[dvj~] is singular with respect to Lebesgue measure. Thus ~[dvj~]=0.  This 
completes the proof. 

In connection with Theorem 5.8, we mention the following example. Ifu -- log I z I, 
then ~ (u ) -0 ,  as a short computation shows. Thus, there can be no minimum 
principle for the operator ~ analogous to Theorem 2. 

Finally, we know of no example where the measure ~(u) is not absolutely 
continuous with respect to Lebesgue measure. 

6. Regularity Properties of Upper Envelopes 

Now we shall define some classes of plurisubharmonic functions which are sub- 
solutions of the Dirichlet problem (1.1). In Section 8 it will be shown that the 
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solution to (1.1) may be obtained as the supremum taken over these classes of 
subsolutions. In this section we show that these upper envelopes have desirable 
regularity properties. First, the upper envelope is shown to lie in Lip ~ if the data 
are sufficiently regular (Theorem 6.2). Next an approximation to the Laplacian 
is introduced which behaves well with respect to the families of subsolutions. 
In particular, it is shown (Corollary 6.5) that if ueP(f2)c~ CZ(f]) and ~(u)eP(f2) 

~32u 
then - -  assumes its maximum on 0f2. Finally, it will be shown (Theorem 6.9) 

that if p and ~b are of class C 2, and if f2 = B" is the unit ball in r then the upper 
envelope of subsolutions actually has locally bounded second derivatives. This 
result is obtained by using the group of analytic automorphisms of B". 

Given ~be C(3f2) and a measure/z on f2, we define three Perron-Bremermann 
families of subsolutions to (1.1) for the operators q~ and (ddC) ". 

~( r  # )=  {vEP(Q): ~(v)_>_# and lim sup v(z)<=r for all Zoe0f2 }. 
Z~Z o 

c ~ ( r  ~) = ~ ( r  ~) ~ c (~) ,  

and 

~(~b, # )=  {veP(t2) c~ C(~): (ddCv)">t~ and V(Zo)<C~(Zo) for all Zoet3t2 }. 

Throughout the remainder of this section the domain Q is assumed to be strictly 
pseudoconvex. 

If #eL~oc(fl), say g = f d V  (dV=Lebesgue measure), then let #"=f"dV. If 
veP(~) c~ C(t2), then by Theorem 5.8, 

�9 (v)" < (rid + v)" 

and consequently, 

C~(r ~) ~_:  (r p"). 

Theorem 6.2 will show that if, in addition, f e  C(t}), then u(z) = sup {v(z): v e ~ ( r  #)} 
belongs to C(/})c~ P(t2), which will allow us to conclude 

sup {v: ve~(r  ~)} =sup  {v: e C~( r  p)} <sup  {v: ve~(~b, #9}. 

In Theorem 6.9, these three envelopes will be shown to be the same if g2 is the unit 
ball, and then in Section 8 it will be established that these envelopes coincide 
and solve the Dirichlet problem (1.1) for all strictly pseudoconvex sets f2 when 
r and d#=fdV are continuous. 

Note that in case the measure p is not absolutely continuous with respect 
to dV, the class C~(r  #) is empty, by Theorem 5.8, part (1). 

The following proposition justifies the terminology "subsolution" for the 
families C ~  and ~ .  

Proposition 6.1. Let 1"2 be a bounded domain in C" and suppose ueP(f2)n C(~) 
satisfies (ddCu)"=(r ". I f  C ~ = C ~ ( r  ~(u)) and ,~=~(c~,(ddCu)"), where 
r  then sup {v: ve~,~} =sup {v: veCg$}=u. 

Proof From Theorem 5.8, part (1), we deduce that 

u=<sup {v: ve C~} =<sup {v: c e ~ } ,  
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so it suffices to show that 

sup {v: veo~}<u. 

However, if v~f f ,  then by Theorem A, u - v  attains its minimum on f] on the 
boundary of 12. Thus, since u>v on Of 2, we have u>v in f2 for all v e f f ,  and the 
proposition follows. 

We next discuss Lipschitz regularity of the envelope. By Lip'(X), 0 < ~ <  1, 
we mean the functions on X which satisfy a Lipschitz condition of order ~, 

l u ( z ) -  u(w)l < C l z -  wl =. 

If ct = 0, Lip ~ (X) = C(X), the continuous functions on X. If ~ > 1, say k < ~ < k + 1, 
then by Lip'(X) we mean the class of functions which have continuous partial 
derivatives of order <k  on X, and whose k-th order partial derivatives satisfy 
a Lipschitz condition of order ~ - k .  

The following proof is modeled on a Proposition of J. B. Walsh [23]. 

Theorem 6.2. Let I2 be a strongly pseudoconvex, bounded domain in ff~" with C 2 
boundary. Suppose that for some ~, 0<=~< 1, we have ~beLip2~(~12) and d p = f d V  
with f~L ip"  (f]). Then the upper envelope u of ~((a, I~), 

u(z) = sup {v(z): vr #)} 

belongs to Lip" (f2) and is plurisubharmonic on 12. 

Proof The upper envelope of a family of plurisubharmonic functions is pluri- 
subharmonic if it is continuous, so we only have to show u6Lip'(O). We will 
first prove that given ~0f2 ,  there exists v ~ ( q ) ,  g ) ~  Lip" (f]) such that v(~)= q~(~). 
We do this assuming ~ > 0, since the case ~ = 0 (i.e. qS, ~ continuous) was treated 
by Bremermann ([4], p. 250). It is sufficient to prove that there exists a constant 
C, depending only on f2, such that for all ffr and all ~b~Lip2"(Of2), there exists 
a function h~Lip ' (f2)  c~ P(f2) such that 

h~(z)<q~(z), z6Of2 (6.1) 

h~(~) = ~b(~), (6.2) 

IIh~h < CII4~112~ (6.3) 
where by IIhL, IIq~L we mean any convenient norms on the Banach spaces 
Lip" (0), Lip" (00), e.g. if 0 < ~t < 1, 

Ilhll~=sup {[h(z)[: z~f2} +sup  ~lh(z)-h(w)l z, w E ~ }  
[ I z - w l  ~ : 

Because, if (6.1)-(6.3) are proved, then we first choose K 1 so large that ~(K 1 Izl 2) 
= Kx c~([zl2)~l~ and then K2 = K ~ Iffl 2, $(z)=4~(z)- Kx [zl z + Kz and the function 
h = h~ so that (6.1)-(6.3) hold with ~b replaced by q~. The function v~(~b ,  #) c~ Lip'(O) 
is then 

v(z) = h(z) + K a [zl 2 - K 2 . 

We also obtain a bound 

IlvL < C(ll4~ll~=+g0 
for some constant C (different from the constant of (6.3)). 
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To prove (6.1)-(6.3), make a holomorphic change of coordinates so that the 
boundary is given by xl=yZ+[z21Z+ ... +lz,12+a(z), where a(z)=o(Izl 2) and 
is the origin of coordinates (z 1 . . . . .  z,). We may assume that 4,(0)=0 and, if 
2 ~ - 1 > 0 ,  dq~(0)=0. Thus, for ze~2,  z near 0, (o(z)>-clzl 2~, where c>0.  Set 
h ( z ) = - 2 c ] x l l t  Observe that, since 0 < ~ < 1 ,  h is plurisubharmonic and that 
for ze0f2 near 0, 

h(z) = - 2c(yl z Av[Z2 [2 ..~ . . .  + [Z.[2 + ff(Z))a ~ __ r ~ (O(Z) 

while h(0)=0 = ~b(0). Now h, via the inverse change of coordinates, is given as a 
function h plurisubharmonic near ~e00. The norm lib[I, is determined by the 
mapping function giving the analytic change of coordinates. Further, by choosing 
a function 

h~(z) = max ( -  2t, 22 h(z)) 

where 22__>1 is large and 21 >0  is small, we obtain properties (6.1), (6.2), (6.3). 
The constant C in (6.3) is seen to depend only on O. 

Next, we assert that there exists v~(~b,/ t)c~Lip'(~) such that v(0=q~(0 
for all ~e?Q. We have just proved that for each ~eOO, there is a function v~e~(q~, #) 
with v~(~) = ~b(~) and II v~ [I, < C for some constant C independent of ~. Set 

v(z)=sup {v~(z): ~e?O}. 

Then from_ Ivy(z)- v~(w)[ < Clz -  wl ~, we deduce that [v(z)- v(w)[ < C[z- w[ ~, 
so veLip'(~2)c~ P(~), and clearly v(0= q~(~) for all ~eOf2. It then follows from (6) 
and (4) of Theorem 5.7 that also ~(v)>/l, so v e ~(q~, #)c~ Lip'(O), as asserted. 

By a similar construction there exists a plurisuperharmonic function w e Lip'(~) 
such that w(z)=c~(z) for zeO. Thus for zeO 

v(z)<u(z)<w(z), and so if ze(2, ~e~[2, (6.4) 

[u(z)- u(()l < KIz - ~1 ". (6.5) 

Now we must show that (6.5) also holds for ~eO. 

Let u*(z)=limsupu(z+Az) be the upper regularization of u. Then u* is 
Az~0 

plurisubharmonic ([17], p. 26). Because of (6) of Theorem 5.7, ~(4), #) is closed 
under the operation of taking finite maxima. Thus, we can choose a sequence 
ufi~(~b,#) with u 1 < u z < . . .  and uj~u almost everywhere. Since u=u* almost 
everywhere, we have that ui~u* locally in L ~, so that dd+uj converges weakly 
to dd~u *. From (4) of Theorem 5.7, it follows that 

�9 (u*) > !im ~(u~)> #. 

Then, by (6.4), u*e~t(~b,/~). Since u<u*, we must have u=u*, so u is plurisub- 
harmonic and ue~(~b,/l). 

For any small vector ze~",  define 

V(z, ~) = ~u(z) zq- Z6~, 
(max (u(z), v(z)), z, z+veO 

where 

v(z)=u(z + ~)+ K31~l ~ Izl ~-K+I~I'-K~ I~1 ~ 
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and 

K 3 =  [l#l[~= [I f 11~, g4>Kalzl~lz l  z 

for all z ~ f2, and K s is the constant  K of (6.5). Observe that for all z, z---, V(z, z) e P(f2). 
For,  by (6.5), v(z)<u(z) ifz~f2, z+z~df2. F r o m  the choice o f K  a and K 4, we have 
V(z, z)~(q~,#).  It follows that for all z~f2, V(z, z)<u(z). If z + z ~ f ] ,  this yields 

u(z + z ) -  u(z) < K Ivt = 

for a suitable constant  K. Reversing the roles of z + z and z, we obtain 

l u(z + z ) -  u(z)[ < K [z[', 

whence u ~ Lip ~ (f]). If ~ = 0, only minor  modifications need be made in the argument  
to show that  u is continuous.  This completes the proof. 

Remark. If ~b ~Lip z" (Of2), p c  C ~ then in general u r Lip T M  for e > 0. This is easily 
seen for the real Monge-Ampere  equat ion in the unit disc in IR 1 with ~b(0)= 0 z" 
and p = 0 .  

For  any ue  C(f2) and any vector ~ " ,  I~1 = 1, define 

2n 
ue(z)=ur ~---~ ~ u(z + eei~ ~) dO 

and 

T~, ,u(z) = e-  2 [u~. ~(z) - u(z)]. (6.6) 

Further ,  let 

Proposition 6.3. For ue C(f2), 

~32u 
lim T~ ~u 
~ o  , =~( 

in the following senses: 

(1) / fu~  C2(f2), the limit exists in C(f2); 

(2) if ue C(f2), the limit exists in ~'(12); 

(3) I f  ueP(f2), the limit exists in the sense of weak convergence of measures; 

(4) if u~L~ (i.e. has second partial derivatives in L~ then the limit 
exists weakly in L~oc(12 ). 

Proof. These facts are all well-known. We will only outline the proofs. Statement 
(1) may  be seen if u is written as a Taylor  polynomial  with remainder.  Then  (2) 
�9 follows from (1), since for all ~b~(12),  

(~,~u,  4 , )=  ~ ~.,u(z) 4~(z) dV(z)= ~ u(z) (~,A~) (z) dV(z)=(u, ~,,4~)--,(u, Ad~). 
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To establish (3) it is sufficient to show that the D-norms of T~, ~u remain bounded 
as e ~ 0 .  If u~P(Q) it follows from Jensen's formula in one variable that 

+ ~ 2 u  

~.+u(z) dV(z)<= .zrJr+ ~ <  ~ ( z )  dV(z)  
I z l ~ _ r  = 

2 
. . . .  ~ U 

and so T~, +u has a weak hmlt m the space of measures, whmh must be ~ by (2). 
The statement (4) follows in a similar way from Jensen s inequality. ~ ~ 

Theorem 6.4. Let • be a bounded open set in C". Suppose that u r  C(~) 
and that 

(ddCu)" =fdV, ~(u) = f ' / n d V  

where dV is Lebesgue measure, O< f ~L]o~(Q), and f l / , e p ( ~ ) .  Then for e > 0  and 
~ C", I~1 = 1, the function T~,~ u is defined on the closure of ~2 ~ = {z~ ~2: dist. (z, 00)> e} 

and 

sup {(T~,+u)(z): z e ~  ~} =sup {(T~,+u)(z): z~O~2~}. 

Proof It is clear that T~,~u= T~u is defined on the closure of Q~. Suppose that T~u 
has a strict interior maximum, i.e. for some ~/>0 and some Zoe~2 ~, 

T~u(zo) - t/> sup T~u(z) = C. 

Then we may define the function 

v(z) = u+(z)- ez(C + tl). 

By Theorem 5.7 and the fact that q~(u)~P(~2), 

~,(v) > r > ,p(u). 

Set q~'= ulo~. Then we have 

v~ c~(4~ +, [~(u)]", o~), 
since for zr  +, 

v ( z )=u~(z ) -  e2(C+,7) 
<__ u+(z)- ~ n - ~ T~u(z) < u(z) = 4~+(z). 

On the other hand, 

V(Zo) = u~(zo)- ~ ( C  + tt) 

> u~(Zo)- ~Z(<U(Zo))= U(Zo), 

which contradicts Proposition 6.1. 
We can now prove Theorem B by the same method. 

Proof of Theorem B. Define 

- ~ ~Zu 
H(a, z) - (z) ajk, Z ~ ~. 

j,k=l aZjO'Zk 
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After a unitary change of coordinates, the expression for H(a, z) becomes 

c32u 

where the ).j>0 are the eigenvalues of a=(ajk). Setting ej=(0, 0 . . . . .  1, 0, ..., 0), 
we see from (1) of Proposition 6.3 that 

LU= f 2jTe,.eu 
j = l  

converges to/-)(a, z) uniformly on ~ as e ~ 0 ,  since ue Cz(~). Therefore, if/~(a, z) 
has a strict interior maximum in ~, then ~u  also has a strict interior maximum 
in f2~ when e is sufficiently small. However, the proof of Theorem 6.4, with T~,~ 

n 

replaced by ~ and u~ replaced by ~ 2j uej, ~ shows that ~ u cannot have a strict 
j = l  

interior maximum. Thus,/~(a, z) and H(a, z) must attain their maximum on 0f2. 

Corollary 6.5. I f  u satisfies the hypotheses of Theorem 6.4 and for some 2>  0, 

ess sup {Au(z): z~f2, dist (z, 0f2)< 2} < oc, 

then IlAullL~tn)< oo. 

Proof Since AueL  | near 0f2, it follows that f Tej,,u converges weakly to �88 
j = l  

in L| dist (z, Ol2)< 2). Thus the set T~,, u is bounded on {z el2: dist (z, 8f2)< 2} 
j = l  

for e > 0 and by the proof of Theorem B, the same bound holds on all of f2. It 

follows that f Tej, ~u converges weakly to �88 A u in L ~~ (f2). 
j = l  

Proposition 6.6. Let Q=B"  be the unit ball in fig". Suppose qSe C2(~3B"), d # = f d V 
with f e C2(B"), f >O. I f  

u = s u p  {v: ve~(~b, p)} 

is the upper envelope of ~((o, la), then for every rl >0,  there exists a constant A(tl) 
such that 

u(z + h) - 2 u(z) + u(z - h) < A(rl) lh 12 (6.7) 

for all Izl _-< 1 - t / a n d  thl <rl/2. 

Proof. For a~B", let TaeAut (B") be defined by 

z - a  
T.(z) = F(a) 1 - 5' z 

where 
at~l 

F(a) =-1 - v(a) v(a) I 

and 

v(a)=l/i-Zq-d7. 
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Here we are following the notation of [18], p. 6, and points of tl?" are thought 
of as n • 1 column matrices, so that F(a) is an n x n matrix. Note that T,~(a) = O, 
T a = Ta -1, and T~(z) is analytic in z, and a smooth function ofa~B". 

For a~B(O, 1 - r / ) =  {a: lal< 1 -r/}, set 

L(a, h, z)= Ta-+~ T~(z) 

and 

U(a, h, z)=u(L(a, h, z)), 

F(a, h, z)=f(L(a,  h, z)), 

(a, h, z) = 4) (L (a, h, z)), z e t3B". 

It follows that F~C2(B(O, l -q )xB(O,  rl)xB"). Similarly, since U(a,h,z)= 
~(a, h, z) for zeOB", we conclude that Us C2(B(O, 1 -r/)  x B(0, r/) x 0B"). Conse- 
quently, for a suitable constant K1, depending on r/> 0, we have 

�89 (U(a, h, z)+ U(a, - h ,  z))-  g l [hi 2 < U(a, 0, z)= ~b(z) (6.8) 

for all [a[ < 1-r/ ,  Ih[ <t / /2 ,and zeOB". For example, take K 1 to be the supremum 
over the set B(0, 1 - r/) x B(0, t//2) x t?B" of the norms of the second derivatives 
of U. If it can be shown that z ~  v(z)eM(q3, p) where 

v(a, h, z)=�89 [ U (a, h, z) + U (a, - h ,  z)] - K  1 lh] 2 

+Ka(Iz] 2 -  1)Ihl 2 

then it follows that v(a, h, z)<u(z). Thus, if we set a=z,  we conclude that 

1 [U(Z -b h) -.~ u ( z  - h)] "(u(7,) .-~ ( g  1 q- K2) ]h t 2 

which proves the proposition. 
Let JL(a, h, z) be the Jacobian matrix of the holomorphic mapping z ~ L(a, h, z). 

Then, by the chain rule, we have 

OzU [ �9 ] [JL(a,h,z)] 
[ ~ ]  = [JL(a' h' z)]~ l Oz, O2m I 

where the multiplication on the right hand side is matrix multiplication. It then 
follows that 

~(U) = ~(u) Idet JL(a, h, z)l 2/" (6.9) 

where ~ is applied to the plurisubharmonic function, z ~ U(a, h, z). By Theorem 5.7, 
is superadditive (since ~ is concave and homogeneous of degree 1), so 

q~(v)>�89 {~(U(a, h, z)) + cP(U (a, - h, z)} + 4(n !)1/, K2 jhl2 dV (6.10) 

where the last term results from 

~(]zl2)= 4(n !)1/, dV. 

Thus, by (6.9) and (6.10), if we want to show v~(~b,/a), it is sufficient to prove 
that for K 2 large enough, 

�89 {F(a, h, z)j(a, h, z)+r(a, - h ,  z)j(a, -h , z ) }  +K21hI2>V(a,O, z)=f(z)  (6.11) 
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for all l al < 1 - t/, I h l~  t//2, and z e B", where j(a, h, z) = I det JL(a, h, z)l 2/". However, 
L(a, O, z) is the identity mapping, so j(a, 0, z) = 1. Since the function G(a, h, z) = 
F(a, h, z) j(a, h, z) is of class C 2 on a neighborhood of l al ~ 1 - r/, I hl < t//2, I zl < 1, 
there exists K 2 such that 

�89 {G(a, h, z) + G(a, - h, z)} + K 2 I h [ 2 > G(a, O, z) 

for }a} < 1 - r/, [hl < r//2, I z I < 1. This proves (6.11) and completes the proof of the 
proposition. 

We can now prove a stronger regularity theorem, essentially Theorem C. 

Theorem 6.7. Let f2=B" be the unit ball in ~". Let ~)~C2(OBn), and d#=fdV,  
with f e C2(~). I f  u is the upper envelope of ~(c~, It). 

u(z)= sup {v(z): ve~(qS, It)} 

then u 6L~162 i.e. u has locally bounded second partial derivatives. 
0 2 U  oo n 

Proof We will first show that for each ~'IE", I~1 = l, ff{-~r ). To see this, 

we use the operators T~.~ of (6.6). If 0 < t / <  1, and }zl < 1- t / ,  e<t//2, then 
2n 

e-2 So [u(z +e~ei~ dO (~, ~u) (z) = T~ 

- 2  2 n  

= 2 ~  ! {�89176176 dO. 

Since u is plurisubharmonic, and by Proposition 6.7, it follows that O<T~,,u(z)< 
02 u 

A(q) for Izl< l -r / , /3<q/2.  Thus by Proposition 6.3, lim T c , , ( u ) = ~  where the 
e ~ 0  

convergence is in the weak sense of measures. Now because of the bound for 
02u 

T z,u, we then have that ~ L z ,  ~or (Izt < 1 -  q). In particular, the Laplacian of u 
is locally bounded. 

02t /  n 
Next let us show that ~XZk~L~o~(B ), where z j = x f + i x , + j  are the underlying 

real coordinates of C'. Since the Laplacian of u is locally bounded, all the second 
0Zu 

order partial derivatives of u, ~ are locally in L p for every p < 0o. If e~ = 

(0 . . . .  ,0, 1, 0. . .  0) is the j-th standard basis vector, then 

/3 - 2  
2 [u(z + e e j) + u (z -  e e j ) -  2 u(z)] 

02 U . 
converges to ~ m L p, p < ~ ,  and thus a subsequence converges almost every- 

c~2 u 
where. Then again, by Proposition 6.7, it follows that ~..2(z)<�89 for almost 
all Iz[< l - q ,  and k = l ,  2, ..., 2n. 

But, if ~ = ej, zj = xj + ix,+ j, we have 

0Zu 1 [-~u 0Zu (z)]<A(r/) 
o< ~-~-~ (z)=~ LOx]-(z)+~ 
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~2 u (~2 u 
which implies that (?x~. 2 are also bounded below a.e. on [z[ =< 1- t / .  To see 

' ~Xn+ j 

that the mixed derivatives ~ are bounded, let X = ~ . + ~ - y .  Then by the 

above argument X2u is locally bounded, and 

26~2u c32u (~2u 
X2u 

c~xjOxk ? x  2 Ox 2 

so ueL~ lot(B"), as asserted. 

Remark 6.8. Following through the details of the proof of Theorem 6.7, one may 
obtain the estimate 

~2u(z) < C Iz l< l  (6.12) 
OxjOx k =(1- lz [ )  2' 

on the second derivatives of u; where C depends on the derivatives of q~ and f 
up to second order. The same argument yields uniform estimates for second order 
tangential derivatives of u, if in the proof of Theorem 6.7 the automorphisms 

0 
L(z, h) are replaced by unitary maps. That is, if L j, k =-~; OZ----~k---~k OZ---j' then 

ILjkL~,qul < C 

where again C depends on second order derivatives of ~b and f. It is possible to 
refine the argument and improve the estimate (6.12) to 

O~u(~) < CC 
Oxj,~xk = 1 - I z l "  

It seems reasonable that the factor (1 - Iz l )  - ~  can be eliminated if C is allowed to 
depend on derivatives of q5 and f up to fourth order. 

7. Approximations to the Laplacian 

The regularity Theorem 6.9 allows us to reduce the proof of existence of solutions 
of the Dirichlet problem to functions with locally bounded second derivatives. 
In this section, we show in Theorem 7.3 that a standard approximation of the 
Laplacian will essentially allow a further reduction to the C | case. In analogy 
with the operators T~,~ of Section 6, an operator T~ is defined which converges to 
the Laplacian A as e ~ 0 .  The result is much in the same spirit as Littlewood's 
principle that a measurable function is "almost continuous" and shows that 
a function u with bounded second partial derivatives behaves "almost everywhere" 
as though it were of class C 2. The approximation T~ and all the arguments are 
quite standard although somewhat technical. Also, since this is a purely real 
variable result, we shall work in IR m, setting 1112"= tr" when the Theorem is applied 
in Section 8. 

Let O be a bounded open set in IR m. Let u be a locally integrable function 
on Q, i.e., ueL~oc(O ). For e>0,  define a smoothing of u that is different from the 
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one used in Section 6, 
1 u,(x)= ~ u(x+~)dV(~) 

"~,. 13m I~l_~e 

where dV is Lebesgue measure on IR", and r , ,=  S dV(r is the volume of the 
unit ball in IR". Define [~1-<1 

2(m + 2) (u~ - u) 
T~u= e2 (7.1) 

If u~ C2(O), an easy calculation using the second order Taylor polynomial of u 
shows that 

lira T~u(x)=Au(x), u~ C2(I2) (7.2) 
n~0  

and the limit is uniform over compact subsets of O. It is well known that the 
operators T~u converge to the Laplacian of u, Au, in the distribution sense. For  
our purposes we need a more refined version of the limit relation (7.2) which 
applies to functions with bounded Laplacian. The precise version is Theorem 7.3. 

We need to use the following fact about the operators T~. 

Proposition 7.1. I f  Au~L~oc(f2 ), then 

lim T~u=Au in Lt~or 
E~O 

This proposition is well known. We omit the proof. 
We also need an estimate on the Lipschitz norm of T~u for small e > 0  when 

AueL]or 

Proposition 7.2. Let K be a compact subset of O of distance greater than Co from Og2. 
There is a constant C>O such that for all x, y~K and O < e < e  o, 

I T~u(x)- T~u(y)t < C M i x - Y l  
g 

where M = ess sup {[A u(~)[: distance from { to K is at most ~o}. 

Proof. We shall use the familiar Jensen formula 

1 
u(x + r a)da(~)= u(x)+ i d t 

O'm-1 l a l = l  0 

where da is the surface area measure on the unit sphere S, . - i  = { a e R ' :  I~1= 1} 
and a,,_ 1 = ~ da is the area of S "-1.  The quantity n(t, x) is given by 

Sra - 1 

1 
n(t,x)= ~ Au(x+r (7.3) 

O'm-1 I~l<t  

Combining the Jensen formula with the definition of T~ gives 

2(m + 2) m ~ n(t, x) 
(T~u)(x)= ~-fiT~ o ~ r ' - ~ [ i ~ d t ] d r  

(since a,._ 1 = m z,,). 
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We will show an appropriate estimate for n(t, x ) -n ( t ,  y). First, note that we 
always have In(t, x)l < Mt "~ so 

In ( t , x ) -n ( t , y ) l<2Mt  m, t<eo. (7.5) 

If t > 2 l x -  yl,set E(t)= {~ elRm: I~-  xl < t a n d l ~ -  y[ > t, o r l ~ -  xl > tand l~-  yl> t}. 
Then measure (E( t ) )<Clx-yb  t m-l, since t>21x -y l .  From the formula (7.3) 

M 
for n(t,x), we see that In(t, x)-n(t,y)l<-m-L-i_ 1 [measure (g( t ) )]<C'Lx-yl  t m-i, 
that is, 

< , t m -  1 In(t, x ) -  n(t, Y)I = C I x - y l  if 2 I x - y [  <t<eo.  (7.6) 

If e < 2 [ x - y l ,  a<eo, the estimate of the proposition follows by using (7.5) in 
formula (7.4). If 2 1 x - y l  < e < a 0, then again use the formula (7.4), except this time 
use (7.5) to estimate n(t, x ) - n ( t , y )  when t < 2 1 x - y l  and (7.6) when t>=21x-y[. 

We can now prove the exact convergence result we need for the T~ and u,. 

Theorem 7.3. Suppose u is a function such that Aue~or ), where 12 is a bounded 
open set in IR m. Let t l > 0  and let {e j} be a sequence of positive numbers converging to 
zero. Then there exists a compact set F ~ [2 and an integer jo such that 

(i) measure (f2 \ F) < tl; 

(ii) the restriction of A u to F is (almost everywhere equal to) a continuous 
function on F, 

(iii) for all x ~ F and j > Jo, we have tT~ju(y)- A u(x)] __< rlfor all y with l Y -  xl < ej. 

c 32 u 
Moreover, if all the second partial derivatives of u, Oxl ~x~' are in I21~c(f2), 

then we can also choose F so that 

02u 
(iv) the restriction of ~ to F is a continuous function; and 

(v) for all x e F  andj>jo ,  we have 

02 u~j 02 u I aE, (x) <. 

for all y with l y - x [ < e j .  

Proof. Let t/1 >0,  and let {e j} be a sequence of positive numbers, e~--* 0. By EgorofFs 
Theorem ([21], p. 75) and Proposition 7.1, we can find a compact set F i e f2  
such that measure [ ( f2 \  F1) ] < r/, and 

lim T~u(x)=Au(x) uniformly for x e F  1. (7.7) 
J~O 

Note that since all of the T~ju are continuous, this limit defines A u as a continuous 
O2u 

function on F 1 . If the second partial derivatives - -  are in Eliot(f2) (or just inte- 
Ox~Ox~ 

grable functions, which follows from AueL~ then by Lusin's theorem 
([21], p. 56), after possibly shrinking F~ slightly, we can assume also that the 

02u 
restriction of each ~ to F~ is a continuous function. 
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Now consider the functions 

measure {~: I~- xl<t, 4r 
~bs(x} = sup 

O <t< s Tra tra 

From the differentiability theory of L 1 functions, (see e.g. [21]), it follows that 
~bs(x ) converges almost everywhere on g2 to the characteristic function of ~2"-. F 1 . 
Since the sequence 4>, is monotone in s, it follows that there is a compact subset F 2 
of F 1 such that m e a s u r e  ( ~ 2 \ F 2 ) < r / 1  , and a number to>0  such that ~b~(x)<r h 
if x~F 2 and s<  to. That is, 

measure {4: 14-xt <t, 4(EF} <th Zm t"~, xeF2, 0< t< to ,  (7.8) 

We set F = F2. 
The condition (i) holds, if we assume, as we may, that t/1 < t/. Also, we have 

already verified (ii). To prove (iii), introduce 

~o(e, fl)=Co(e) =sup {IAu(y)- Au(x)l: Ix-  yl <4e, x, y6 F1}. 

Since F~ is compact and AuIF~ is continuous, o~(e)--.0 as e~0 .  Suppose e > 0  is 
such that 4e<to. Then if xeF=F 2 and ly-xl<e, there exists weF t such that 
Iw-yl<2tl~/'e. For, if not then the entire ball {4: I~-Yl<2q~/me} lies inside 
{4: I~-xl<2e, 4r Then, by (7.8) t h z,,(2e) '<measure {4: I r  ~r < 
t/I r,, (2 e) m, a contradiction. With this choice of w, we then have for x ~ F, l Y - x[ < e 

IT~u(y)-Au(x)l<lT~u(y)- T~u(w)l+lT~u(w)-Au(w)l+}Au(w)-du(x)l. (7.9) 

By Proposition 7.2, the first term on the right hand side of (7.9) does not exceed 

cMlY-WI<2CMtI~/m. The last term on the right hand side of (7.9) does not 
g 

exceed o~(e). And, if e = e j, we have from (7.7) that lira I T~j(w)- A u(w)l = 0 uniformly 
for w~F 1 . The assertion (iii) therefore follows from (7.9), provided 2 CMtl~/m< tl. 

The set F has already been chosen so that (iv) holds. To prove (v), write 

[ 02U 02/,/ 1 
02U~ 02U (x)=z-~[J<_~[OxiOxg(Y+~)-OxiOxk(X)JdV(4). (7.10) 0x,0s (y) ax, 

Set 

02U 0211 : 2e, i k<mt &(e)=ess sup [ ~ ( y )  8x~Ox~(X) Ix-yl  < x, yeFa, <i, ~" 

Then if xeFcF~ and y + ~ e F  x, the integrand in the right hand side of (7.10) 
does not exceed tb(e). Thus, 

O2u~ 82u 2M[measure {4: 4r Ix-~t_-<2e}] 
(Y)- 0x~ 0x~ (x) _-< a,(0 + ~,. ~ 

02u 
But, ch(e)-o0 as e-o0, since each function ~ is continuous on F~. Thus, the 

assertion (v) follows from (7.8) provided r h >0  is chosen small enough. This 
completes the proof. 
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8. Existence of Generalized Solutions 

The results of the preceding sections can be combined to show the existence of 
solutions. The method is to solve progressively more general versions of the 
problem. The main step is the first step where it is shown that solutions exists on 
the unit ball in C" if the data are sufficiently smooth. The reason for starting with 
the ball is that our regularity Theorem 6.9 can be applied there, and allows us to 
show that the upper envelope of solutions is actually a generalized solution. 
We then proceed by making spherical modifications (analogous to the Poisson 
modifications in the Dirichlet problem for the Laplacian) to solve the problem 
for more general domains and more general data. 

We first treat the following special case. 

= B " =  unit ball in C" 

dt~=fdV, f>O,  fx/"s Cz (~ )  (8.1) 

4) s C 2 (~B"). 

Under these hypotheses, it follows from Theorem 6.2 (with a =0) and the regularity 
Theorem 6.9 that the upper envelope to the classes ~(4), #), C~(4),/~), and ~(4) , /0  
all coincide. Denote this upper envelope by u. 

Theorem 8.1. Under hypotheses (8.1), we have 

~b(u)= f~/" dV, (8.2) 

and 

(ddCu)" = f d V  on [z[ < 1. (8.3) 

Thus, u solves the Dirichlet problem (1). 

Proof By Theorem 6.2, us C(B") and u=~b on ~?B". By Theorem 6.8, the second 
partial derivatives of u are locally bounded, so from Theorem 5.8, qb(u)=gl/"dV, 
g>0 ,  and (ddCu)"=gdV. Thus, it suffices to prove either (8.2) or (8.3). We will 
prove (8.3). 

Now u is the limit of a sequence ujs~(4), #), with u 1 <u 2 <.. . ,  u j ~ u  in C(B"), 
since us  C(B") and ~(4),/~) is closed under finite maxima. Thus, by (4) of Theorem 
5.7, u s ~(q~,/0. Thus, the locally bounded function g satisfies g > f  If g - f ,  we are 
done, so we may assume that for some small constant c > 0, the measure of the set 

{z: tz[<= 1 - c ,  g(z)> f ( z )+c}  

is greater than e > 0. Set 

,f ~ (z) } M=Mc=ess sup  (lozic~2j : [ z [ < l - c / 2  . 

We have M < ~ ,  by Theorem 6.9. 
Now, choose positive numbers a, t/> 0 such that 

a < c4 -" [2 n !(1 + riM) ~] - 1 (8.4) 

and 

tl < a [4(2 n + 1)] -1 (8.5) 
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Let {e j} be any sequence of positive numbers tending to zero. Let F be the compact 
set and Jo the positive integer given by Theorem 7.3. We can also assume that Jo 
is so large that 

t f (z)- f(w)[<c/4 if Iz-wl<~j, J>Jo. (8.6) 

If we write uj for u~j, then for z ~F and j > Jo, Theorem 7.3 yields 

I T~u(w)- A u(z)[ e } < q e} (8.7) 

and 

O2uj OEu 
OziO.ek(w)=~(z)+~i~, I~ikl_-__~ (8.8) 

for z E F and all w with l w - z l < ej. 
Now, because the measure of the complement of F does not exceed r/< c/4, 

there exists at least one point z~F for which g(z)>f(z)+c. This point z will be 
fixed for the remainder of the argument. 

Consider the functions 

vj(w)=uj(w)-alw- z[2 + nq Iw-  zl 2 

[ (Au)(z) ,] 2 
- -  2 n ~ ( ~ j )  2 . 

- 12  (2  n + 2)  ej 
(8.9) 

Then for j > Jo, we assert that vj has the following five properties. 

vj is a C 2 function on Iw-z[<ej. (8.10) 

vj is plurisubharmonic for [w - z [ < ~j. (8.11) 

vj(w)<u(w) if [w-zl=ej  (8.12) 

(ddCvj)n>fdV if [w-zl<e~ (8.13) 

vj(z) > u(z) (8.14) 

If these properties are all verified, then we may find a subsolution larger than u 
at z, namely, 

V (w) = ~max (vj(w), u(w)) Iw-  zt < ~i 
~u(w) Iw- zt >= ~j. 

Then by (6) of Theorem 5.7, and properties (8.10)-(8.13), V is a subsolution: 

v~ c~(4,,  ~) = ~ ( r  ~). 

But, by (8.14), V(z)>u(z) which contradicts the maximality of u. The theorem 
therefore follows from (8.10)-(8.14). 

It remains to verify (8.10)-(8.14). Now (8.10) is clear, since uj~ C z. To prove 
(8.11), let I denote the n • n identity matrix. Then write, using (8.9) and (8.8), 

2vj -I O2u 
+n,, ,  ,8,, ,  
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For [w-zl  < e j, j > Jo, the inequality of (8.8) shows that [Cqk ] + n q I is nonnegative. 
We claim the first matrix on the right hand side of (8.15) is also nonnegative. 

[ (~2U ] 
For, if 0<21 <22 <.- .  <2 ,  are the eigenvalues of [ ~ ( z )  , then we have 

" " 

2j<=~2j<=nM so 2j<=(nM) "-1. However, 4"n! 1-[2~=g(z)>f(z)+c>c>O, so 
1 j=2 /=1 

F ~2U ] I 
;~1 > c4-"(n !)-1 (nM)1 - ,  > a by (8.4). Thus, [ ~  (z)l - a is a positive matrix 

and (8.11) follows. Note that (8.13) also follows because, from (8.15) we now have 

F ~2V. 1 n n 

= 4-"(n !)- 1 g(z) - a(1 + nm)" 

> 4-"(n !)- 1 [g(z)-  c/Z] 

>4-"(n  !)- 1 I f (z)  + c/2]. 

However, from (8.6), f (z) + c/2 > f (w) if I w - z t < e j, so (8.13) follows. 
To prove (8.12) and (8.14), consider the identity, 

1 
vj(w)- u(w) - 2 (2 n + 2~) [ T~ju(w)- d u(z)] e~ 

2 - ( a - n q )  lw- z l  2. +(a-2nq)  ej 

If we set [w-z[=ej,  then (8.7) yields 

vj(w)-u(w)<2( 2) nqe2 <O 

which proves (8.12). If we set w=z, then again, by (8.7), 

[ vj(z)-u(z)>e~ a -2n t ;  2(2n+2) 

which proves (8.14). This completes the proof of Theorem 8.1. 
Next, we will relax the smoothness conditions on q~ and f 

Theorem 8,2. Suppose Q=B" is the unit ball in ~", cb~C(OB"), and dl2=fX/"dV 
where f > O, f ~ C(B"). Then the upper envelopes of the families g$(fa__, #), C~(c~, #), 
~ (qb, I~") coincide. I f  u is this common upper envelope, then u~ C(B") and satisfies 

@(u)= fl/" dV in B", 

(ddCu)"=fdV in B", 

u = c~ in 8B". 

Proof Choose a_sequence of functions f~ with f y " ~  C2(~), and fj decreasing to f 
uniformly on B". Also, choose a sequence of C 2 functions thj on B" such that ~j 
increases to ~b, uniformly on OB". Let uj be the unique plurisubharmonic__solution 
to the Dirichlet problem (ddCuj)"=fjdV in B", ui=~b i in 8B", uj~C(B"). The 
existence of uj is given by Theorem 8.1, and the uniqueness by Theorem A. Also 
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by Theorem A, the sequence u~ is increasing. We can choose positive numbers 
r/j tending to zero so that 49j + q~ > 49 on 0B". Further, since (dd c [u k + e ([ z [ 2 - 1 ) ] ) " >  
(ddCuk)"+e"(dd~lzl2)"=fkdV+e"(dd~lzl2)", and since f k ~ f  uniformly, we can 
choose positive numbers e~ ~ 0 such that (dd ~ [u k + ej ([ z l 2 - 1)]" > (dd~uy for k > j. 
Therefore, by Theorem A, if k > j  we have 

Uk+ei(lzl2--1)<uj(z)+rlj for z6B". 

Thus, since u~(z)< Uk(Z), we find that lim uj = u exists uniformly on B". It follows 
j~oo 

that ueP(B"). Further, (dd~uj)"~(ddCu)" weakly, by Theorem 2.3, so (dd~u)" =fdV. 
Further, by (4) of Theorem 5.7, Cb(u)>fl/"dV, and then by (2) of Theorem 5.8, 
Cb(u)"<(dd~u)" so we have ~(u)=fl/"dV. 

It then follows from Proposition 6.1 that the upper envelopes of C~(49,fdV) 
and ~(49,f"dV) coincide with u. Further, from Theorem 6.2 (with ~=0), the 
upper envelopes of ~(49,fdV) and C~(49,fdV) coincide. This completes the 
proof. 

We can now prove an existence theorem for more general domains. 

Theorem 8.3. Let f2 be a bounded open set in IE". Let q~  C(~O) and d#= f d V  with 
f > O, f e  C(f2), dV= Lebesgue measure. I f  

(i) ~(c~, g) is nonempty, and 

(ii) the upper envelope u = sup {v: v ~ M(49, #)} is continuous on 0 with u = 49 on ~0, 
then u is a solution to the Dirichlet problem 

(dd~u) " = f dV in ~2, 

u~P(O) c~ C(~), 

u=49 on ~0. 

Also, q~(u)= fl/" dV. 

Proof We only have to prove that (dd~u)"=fdV in f2. To see this, fix Zo~f2 and 
choose e > 0 so small that the ball B(zo, e)= {Iz-z01< e} has its closure contained 
in f2. By Theorem 8.2, there is a function v(z) on B(z o , e) such that 

v6 P(B(zo, e)) n C(B(zo, e)), 

v(z)=u(z) o n  ~B(zo, ~), 

~(v)=f l / "dV on B(zo,e), 

(ddCv)"=fdV on B(zo,e). 

By (2) of Theorem 5.8, we have (dd~v)" < (dd~u)" in B(zo, ~). Thus, by the minmum 
principle, Theorem A, we have v>u in B(zo, e). 

Set U(z) = v(z) if zeB(zo, e), and U(z)= u(z) if z e l i \  B(zo, e). Then U~ C(f]) c~ P(O) 
and U = ~  on ~I2. We also have ~(U)>f~/"dV. Therefore, Ue~(49,fl/"dV). Then 
U<u. But, U>u by our construction, so U=-u. in particular, u=v on B(zo,~), 
so (dd~u)" = f d V  and ~(u)=f l /"dE This completes the proof. 

Finally, we can complete the proof of Theorem D by showing the existence 
of a solution. 
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Proof of Theorem D. By Theorem 8.3, we have to verify that ~(~b, #) is not  empty 
and its upper  envelope u s C(O), and u = q~ on 9f2. When [2 is strictly pseudoconvex,  
this is a consequence of the a = 0 case of Theorem 6.2. Thus, 

u = s u p  {v: vs~(q~, ~)} 

is the solution of the Dirichlet problem (1.1). 

9. The Bremermann Dirichlet Problem and Regularity of Envelopes of Holomorphy 

In [4], Bremermann int roduced the family A~ [2) of all p lur isubharmonic  
functions v on [2 such that lim sup v(z)< ~b(~), ~ E 0[2. In our  notation,  AP(q~(z), [2)= 

z ~  
M(~b, 0). Bremermann proved that the upper envelope u of 5r assumed the bound-  
ary values ~ cont inuously when ~bs C(012) and [2 is strictly pseudoconvex. It was 
later shown by J.B. Walsh [23] that u s C(~). It is a consequence of the min imum 
principle Theorem A and the existence theorem that u is the unique solution of 
the Dirichlet problem 

(ddCu)"=O in [2, 

u = ~b in ~[2, 

us  C(~) and u p lur isubharmonic  in [2 

when [2 is a strongly pseudoconvex set in G". 
Bremermann also proved ([4], p. 270) that i fK is the set of all points (z, w ) s G  "+~ 

such that zs~[2 and Iwl<e-*m or zs[2  and Iw l<e- ' ,  r e = s u p  {14~(z)]: z ~ [ 2 } ,  
then the envelope of ho lomorphy  of  K is 

R =  {(z, w)s~"+ t : lwl < e -"~), z s~} .  

Consequently,  the regularity results, Theorem C and Theorem 6.2, yield the 
following regularity of  part  of the boundary  of / s  

Theorem 9.1. If[2 = B" is the unit ball in C", and if c~ ~ C 2 (6B"), then {(z, w)s 0/~ : zs[2} 
={(z,w)sC"+l : zs[2, log ]wl+u(z)=O}, where u is a plurisubharmonic function 
on #2 with locally bounded second partial derivatives. More generally, if[2 is strictly 
pseudoconvex with C 2 boundary, and if (a ~ Lip ~ (012), then u s Lip "/z (~), 0 < ~ < 2. 
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