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Biinvariant Operators on Nilpotent Lie Groups
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The purpose of this article is to prove P-convexity for biinvariant differential
operators on connected simply connected nilpotent Lie groups. More precisely,
we show that for any compact subset K of a connected simply connected
nilpotent Lie group N, and for any non-zero biinvariant differential operator P
on N, there is a compact subset L>K with the property that whenever the
support of Pu is contained in L for a C* function of compact support u on N,
then the support of u is contained in L. I am grateful to M. Duflo, to A. Cerezo,
and to F. Rouviére for several helpful discussions.

Solubility properties of biinvariant operators have been considered by sever-
al authors. S. Helgason [6] proves local solvability of biinvariant operators on
semisimple Lie groups. Rais [8] proves the existence of a fundamental solution
for a biinvariant operator on a connected simply connected nilpotent Lie group.
Duflo and Rais {4] prove the local solvability of biinvariant operators on a
solvable Lie group and Rouviére [9] proves semi-global solvability for biin-
variant operators on simply connected solvable groups. Finally, Duflo [3]
proves local solvability of biinvariant operators on any Lie group whatsoever.

Semi-global solvability is in general false even for noncompact simple groups
as was demonstrated by A.Cerezo and F.Rouviére [2]. Finally, even local
solvability of left invariant operators is frequently false as was shown by
L.Hormander, c.f. [6] and independently by A.Cerezo and F.Rouviére [1].
From our result and that of Rais [8] or Rouviére [9], we conclude the global
solvability of biinvariant operators on simply connected nilpotent Lie groups,
i.e. that for any C® function f and nonzero biinvariant operator P on a simply
connected nilpotent Lie group N, there exists a C*® function u on N such that
Pu=f. For simply connected abelian Lie groups, this reduces to the theorem of
Malgrange and Ehrenpreis that constant coefficient differential operators on R"
are globally solvable, c.f. [11]. Thus our Theorem2 can be regarded as a
generalization of the Malgrange-Ehrenpreis theorem.

Henceforward N will denote a connected simply connected nilpotent Lie
group, and N its Lie algebra. We write exp: St— N for the exponential map of Nt
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onto N, which is known to be an analytic diffefomorphism and log: N—9t will
denote the analytic diffeomorphism inverse to exp. We recall that the center of
N is connected and simply connected. Since a connected and simply connected
abelian Lie group has a natural translation invariant convex structure, we may
define a subset S of N to be C-convex if its intersection with every coset of the
center C(N) of N is convex or in other words if x~!(Snx C(N)) is a convex
subset of C(N) for every xe N.

The support of a function will mean the set of points where it is non-zero
(this is a departure from the usual usage). When we say a function has compact
support, we mean that its support is contained in some compact set (this is the
usual usage). Supp f will denote the support of f, a complex valued C* function.
Z will denote a central one parameter subgroup of N, and x will denote a
generator of the Lie algebra of Z. Thus « is a biinvariant vector field on N. We
denote a Haar measure on Z by du(z). If f is a C* function of compact support
on N then f will denote the function on N/Z defined by f(xZ)=[f(xz)du(z).

! Z

We note that if =0 then there is a C* function u of compact support on N
such that zu=f. We denote the natural projection of N onto N/Z by = and
remark that the inverse image under = of a C-convex subset of N/Z is C-convex.
P will denote a biinvariant differential operator on N. We shall identify the
algebra of left invariant differential operators on N with the complexified
universal envelopping algebra U(N) of 9. Following Tréves [10], we say that a
subset § of N is P-full if whenever Pu=f is a C® function of compact support
whose support is contained in S, and u has compact support, then the support of
u is contained in S. Since P is biinvariant, any (left or right) translate of a P-full
set is P-full. A C-convex set is #-full for any biinvariant vector field x.

A C* function f on N will be called Z-invariant if f(xz)=f(x) for all xe N
and all zeZ. When P is biinvariant differential operator on N, then the action
of P on Z-invariant functions defines a differential 1 operator on N/Z, denoted P.
By “differentiating under the 1ntegral” we have Pu=Pi for a C*® function u of
compact support on N.

We begin with some preparatory lemmas.

Lemma l. Let Z be a central one parameter subgroup of N, and let » be a
generator of the Lie algebra of Z. Let D be a left invariant differential operator
on N which annihilates all Z-invariant functions. Then D =D, o x where D, is some
left invariant operator on N. If D is biinvariant, so is D, .

Proof. Let z,,%,,...,%, be a basis of the Lie algebra of N/Z and let
Ty, @y, .ee» &y, # DE a basis of the Lie algebra M of N such that the projection of
z; onto the Lie algebra of N/Z is z;. The Poincaré-Birkhoff-Witt theorem
1mp11es that monomials of the form x“‘ 2% ...z 4, with a,,a,,...,a,, k non-
negative integers form a basis of the vector space of left invariant differential
operators on N so that we may write

D= Y Cupurinn@t -z

(a1...an, k)

where the sum runs over (n+ 1)-tuples of non-negative integers, and all but
finitely many of the C,, ., ,, are zero. The action of D on Z-invariant functions

a1 ...
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defines an operator D on N/Z and we have

Y ~ayp a2 . an
0=D= Y Cq . . n&td%. .. zm
(as ...a,, k)

The Poincare-Birkhoff-Witt theorem now implies that C
ever k=0 so that we may write

an iy =0 when-

(a1, a2, ...,

— ay an k
D= z Cirap g @1 - Zn' %
(ay ...apn,
k>0
— z C a1 an k—1 =D.o
= (@1 ...an, ) L1 === Ty % EF=Uy 0%
(a1 ...an,k)
k>0
— ay an, k-1
where D, = Z C(al...an,k)$1 i S
(ay...an, k)
k>0

Now suppose D is biinvariant and let p, denote right translation by geN.
We then have

Dyox=D=p,D=p,(D;o)=(p, D)o (pyx)=p,D; o x

so that (p,D; —D;)ox=0.
But the universal envelopping algebra has no divisors of zero and x40 so
pD;—D,=0and p,D,=D,. Therefore D, is biinvariant.

Lemma 2. If u has compact support on N, then 7 Supp zu=mnsupp u.

Proof. Since supp xucsupp u, clearly nsupp xucnsuppu. Now let x esuppu so
that n(x)ensupp u. Define

¢: Z->C by ¢(z)=u(xz).

¢ is a non-zero function on Z of compact support so x¢ is non-zero of compact
support on Z. But zu(xz)=x¢(z) so zu is not identically zero on xZ so
n(x) esupp zu.

Proposition 1. If K is a P-full set in N/Z, then L=n"1(K) is a P-full set in N.

Proof. Let b be a smooth function of compact support on Z with {b(z)du(z)=1.

4

Let 6: N/Z— N be a continuous map satisfying noo=Idy ;.
For any complex function f of compact support on N define f*: N-»C by

[*X)=f(x)—f@(x)-b(x- (c(x(x)").
Then
[f*(x2)du@)={f(x2)dpu(z)— [ f(r(x2))- b(xz - (o(n(x2))~ ") dp(z)
=J(r(x) - [ () b(xz(o(n(x)))~ ") du(z)

=f@(x) ~f (n(x)) f bx2(a (n(x))~ ) dp(2)
=0,
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Therefore, there is a function f* of compact support on N satisfying «f% = f*.
Let f be a function of compact support on N whose support is contained in L.
Let Pu=f, where u is also a function of compact support. Define inductively u,
=u and u,, ;=u. We have nsupp Pu,, ; =nsupp Puf =nsupp « Pul =nsupp P
Ul =nsupp Puy cnsupp Pu,usuppd,. If nsupp Pu,=K then suppi#i, =K since
then K >supp Pu,=supp Pii, and K is P-full. Therefore if wsupp Pu, <K then
nsupp Pu,, , < K and also suppii,c K. But nsupp Pu,<= K so by 1nduct10n onn
we have nsupp Pu, <K and suppii,c K, for all n.

Furthermore 7 supp (u} —u,)csuppii,c K and nsuppu,, , =nsuppzu,,,
=7 supp uF.

Suppose now that x¢ L. On the set xZ we have

w¥(xz)=u,(xz) and zu, (xz)=uf(xz)

since x Z is disjoint from L=n"'(K). So on xZ we have ~u,, , =u, and +"u,=u,
=u. Therefore, if ¢,(z)=u,(xz), then ¢, is a function of compact support on Z
such that for arbitrary n there exists a function ¢, of compact support on Z such
that »"¢,=¢,. Applying the Fourier transform to ¢,, we see that ¢, is a real
analytic function on the dual Z of Z with a zero of arbitrary high order at O Z.
Therefore ¢, =0 and ¢,=0. Therefore u(xz)=0 for all z and x¢suppu. QED.

Theorem 1. Let P be a non-zero biinvariant differential operator on a simply
connected nilpotent Lie group N. Then any compact set of N is contained in a
compact C-convex P-full subset of N.

Proof. The proof is by double induction on the dimension of N and the degree
of P, the assertion being trivial if the dimension of N or the degree of P is <1.
We, therefore, suppose the theorem true whenever the dimension of the nil-
potent group is <n=dim N or the degree of the operator is <p=degree P.

If Z is a one parameter central subgroup of N, the action of P on Z-invariant
functions gives rise to a differential operator P on N/Z satisfying Pf(x)
=Pf(n(x)) whenever f(x)=f(n(x)) where f is a function on N/Z and x:
N—N/Z is the natural projection. If P=0 it follows from lemma 1 that P=xo P,
where # is a generator of the Lie algebra of Z and P, is a biinvariant operator on
N. Since degree P, =p—1 any compact set of N is contained in a P,-full compact
C-convex subset K of N which is also «-full since this is the case for any C-
convex subset of N. Now if Pf=u where f and u are compactly supported
functions on N with suppucK, then Pf=x0P, f=u so P, f is supported in K
since K is x-full and f is supported in K since K is P;-full. Thus the induction is
valid whenever P annihilates all Z-invariant functions. Thus we can assume that
whenever Z is a one-parameter central subgroup of N, the differential operator
P on N/Z induced by the action of P on Z-invariant functions is non-zero and,
therefore, by inductive hypothesis that any compact subset of N/Z is contained
ina P-full compact C-convex subset of N/Z.

The remainder of the proof is divided into two cases, viz.

Case 1. The center of N has dimension 1.
Case 2. The center of N has dimension >2.
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We deal with Case 1 first. Let Z be the center of N, and let » be a generator
of the Lie algebra of Z. Since the center of N/Z is non-trivial, we can find a
vector e N, the Lie algebra of N such that for all 2 € N, we have [, 2] =¢(2) »
where ¢ is a non-zero linear functional on R. Also [y[z,,z,]]1=[[y, =] =,]
Lz ly 2. 1=19(@) 2 2,] + [24, §(2,) ]1=0 s0 $([z, z,1)=0 and ¢ van-
ishes on the derived algebra of $R. The kernel M of ¢ is, therefore, a codimension
one ideal of M and we let M =expIM which is a simply connected nilpotent Lie
subgroup of N with Lie algebra M. We pick «eM with ¢(ew)=1. Leti: UM)
—-U(M) be the inclusion of envelopping algebras induced by the inclusion of Mt
in N.

By the Poincaré-Birkhoff-Witt theorem we can write P uniquely as P
=w*oi(pg)+e*toi(p)+ - +ewoi(p,_,)+i(p,) where the p’s are elements of
U (M) then

0=[y, PI=[ke!" oi(po) +(k—1) 20 i(p,)+ - +i(p,_ )]0 %

This implies, again by the Poincaré-Birkhoff-Witt theorem that O=p,=p,
=...=p, , and, therefore, that P=i(p,). It follows that any subset S of N such
that x~'(SnxM) is a p,-full subset of M for all x is a P-full subset of N.
Furthermore, since the center of N is contained in M, if x " }(SnxM) is a C-
convex subset of M for all xe N, then S is a C-convex subset of N.

We pick a continuous M-equivariant projection y: N— M for instance

Y(x)=x[exp p(—logx)«].

Now let K be a compact subset of N. By inductive hypothesis ¥ (K) is
contained in a compact C-convex p,-full subset L of M. Also ¢(logK) is
contained in a compact connected interval I of R. Now exp ¢~ *(J)ny (L) is
a compact C-convex P-full subset of N. This completes the proof of case 1.

Case 2. The center of N has dimension greater than 1. Let », and «, be vectors
in the center of : which are orthonormal for a Euclidean metric p on . Let Z,
=expIR =, respectively Z,=expR x,, and let n, respectively n, be the pro-
jections of N on N/Z,, respectively N/Z,. Also let P, respectively P, be the
differential operators on N/Z, respectively N/Z, induced by the action of P on
Z -invariant respectively Z,-invariant functions on N. We can assume that
neither P, nor P, is the zero operator. Let K be a compact subset of N. Then
n,(K) and n,(K) are compact subsets of N/Z, and N/Z, and by inductive
hypothesis we can choose F,>n,(K) and F,>n,(K) such that F, is a P-full
compact C-convex subset of N/Z,. Then n;!(F) is a C-convex P-full subset of N
for i=1,2 by Proposition 1 and, therefore, Q== *(F,)nn;*(F,) is a C-convex
closed P-full subset of N containing K.

We assert Q is compact, or equivalently that logQ is compact. Let p, and p,
be the Euclidean metrics induced by p on R, = +7 and N, = +3, the Lie algebras
of N/Z, and N/Z,. We can find a real number r such that the p; distance of
log F; from the origin of N, is <r for i=1,2. Then if v elog(n] *(F))nn; *(F,)
we have p(v,R%()<r and p(v,Rx,)<r so we can choose ¢, and t, such that

ple,tix)Sr and p(v, t,2,)Sr. Then ptyxq,t,2,)S2r so Yi2+2<52r so
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t2<4r? and p(t;%4,0)=|t;|<2r. 1t follows that p(v,00<3r for all
velog(ny *(F) nn; 1 (F,)). Thus log(ny '(F,)n=n; 1(F,)) is a closed bounded sub-
set of M and, therefore, compact. Therefore, ny ' (F,)nn; *(F,) is a compact C-
convex P-full subset of N containing K. This completes the inductive step in
Case 2 and concludes the proof of the theorem.

Corollary. If K is any compact set in N, then there is a compact set L such that
whenever Pu=f is a distribution supported in K and u is a distribution of compact
support on N, then the support of u is contained in L.

Proof. This follows immediately from the theorem upon convoluting with a
smooth approximate identity of N. Here L can be any compact P-full set
containing a compact neighborhood of K.

Theorem 2. Any non-zero biinvariant differential operator on a connected simply
connected nilpotent Lie group is globally solvable.

Proof. Semi-global solvability of such operators is contained in results of Rais
[8] or Rouviére [9]. But by theorem 1.9 in the book of Tréves [11], global
solvability follows from semi-global solvability and the P-convexity result
proved above.
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