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1. Introduction

We first recall the Chebotarev Density Theorem. Let K be a finite algebraic
extension of the rationals Q, and L a Galois extension of K. To each prime ideal P of
K unramified in L there corresponds a certain conjugacy class C of Gal(L/K)
consisting of the set of Frobenius automorphisms ¢ attached to the prime ideals p of

S . : . L/K
L which lie over P. Denote this conjugacy class by the Artin symbol [T] Fora

given conjugacy class C of Gal(L/K) let n(x) denote the number of prime ideals P

L/K .
of K unramified in L such that [—/—] =C and N o P <x. The Chebotarev density
theorem [6, 107 asserts that

C
Te(x) ~ '|G|'L( (1.1

as x — oc. In [ 7] two versions of the Chebotarev density theorem were proved, one
unconditional and the other on the assumption of the Generalized Riemann

Hypothesis (GRH), each of which expressed n.(x) as the sum of the main term
C C
|i—G~[| Li(x)and an error term which is an effectively computable function of x, :G:

the associated field constants ny=[K:QJ, n, =[L:Q] and dy.d, (the absolute
values of the discriminants of the two fields). Assuming the truth of the GRH for
¢;.(s), that paper also proved the existence of an effectively computable constant b
(independent of K and L) such that for any conjugacy class C, there exists a prime

/K
ideal P in K with [%J—] C and

NyoP Sb(logd,)? (loglogd,)*.
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The method of proof showed that we might specify that Ny o P be a rational prime.
Furthermore that paper sketched a proof that sharpened this result to:

NP =b'(logd,)*. (1.2)

The main purpose of this paper is to supplement these results with an
unconditional upper bound for the least prime ideal having a specified Artin
symbol.

Theorem 1.1. There is an absolute, effectively computable constant A, such that for
every finite extension K of Q, every finite Galois extension L of K and every conjugacy
class C of Gal(L/K), there exists a prime ideal P of K which is unramified in L, for

L/K
which [—;—)m] = C, for which Ny o P is a rational prime, and which satisfies the bound

NioP £2d7t. (1.3)

(Note. The 2 in the bound (1.3) is there only to take care of the trivial case L=K
=Q)

The primary technical difficulties in the proof of Theorem 1.1 center around the
possible exceptional zero of {;(s). As an auxiliary step we prove in Section 5 a
version of the Deuring-Heilbronn phenomenon for {, (s), which guarantees that, if
the exceptional zero exists, then the other zeros of {, (s) cannot lie very close to s = 1.
The proof of this auxiliary result involves the use of a power-sum inequality which
is relatively easy to prove and which may be used as a substitute for Turan’s second
main theorem [11] in many L-function applications. A feature of the proofs which
distinguishes them from those of [ 7] is the use of kernels which weight prime ideals
of small norm very heavily. These kernels enable one to obtain good lower bounds
for densities of prime ideals with specified properties at the cost of not being able to
estimate their number accurately. The use of different kernels is related to the
“explicit formulas™ of Guinand [5] and Weil [12].

The proof of Theorem 1.1 uses classical analytic methods, and does not involve
any deep zero-density estimates. In the general case the bound of Theorem 1.1 is
probably the best that can be obtained by current methods, since for K=Q, L
= Q(]/B), p the non-identity in Gal(L/K), the bound (1.3) is equivalent to an upper
bound for the least quadratic nonresidue modulo D, and even for this case no
estimate better than (1.3) is known. However, in special cases, estimates sharper
than (1.3) are possible. For example, Linnik’s theorem [ 2] asserts the existence of an
absolute effectively computable constant B such that for any cyclotomic field L
=Q(exp(2ni/N)), N =3, and any 0 Gal (L/Q), there exists a rational prime p with
[L_/Q

(p)
are needed in all known proofs of Linnik’s theorem. The methods of this paper do
not suffice to prove Linnik’s theorem, but they can be used to obtain improved
bounds in some cases. For example, if Gal (L/K) contains a large abelian subgroup
H, then {, (s) can be factored into Hecke L-functions over the fixed field of H, which
then leads to a better zero-free region for {, (s), and thereby to improvements of the
bound (1.3).

]za and p<(logd,)®. Zero-density results for zeros near the line Re(s)=1
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The proof of Theorem 1.1 uses the known zero-free region of Hecke L-functions.
In addition, we prove a theorem which gives a bound for the least character
nonresidue of a Hecke character y that is an explicit function of the size of a
hypothetical zero-free region near s=1 for {(s) L(s, x, K).

Theorem 1.2. There is an absolute, effectively computable positive constant A, such
that for every finite extension K of Q and every Hecke character y on K the following
holds: Suppose that {y(s)L(s, x, K) has no zeros p=f+iy in the region

I—-d6<p<l,
0<|71 =0 (log A(X) (1 +6(log A(x)'"?),

where
(c,log A(y)) 'S0=4,

and that (4 (S) has no zeros on the segment of the real axis 1 —0=<s=<1. (Here A{y)
=dy Ng,o S0, f() is the conductor of y, and ¢, is a certain absolute, effectively
computable constant given by Lemma 2.3.) Then there exists a prime ideal P of K of
degree 1 over Q with y(P)+ 1 such that

NyoP <(4,810g A(x))° "

Applying this theorem with § =% we obtain the following corollary, which was
first proved in the case K =Q by Ankeny [1].

Corollary 1.3. There is an absolute, effectively computable positive constant A such
that for every finite extension K of Q and every Hecke character y of K, if
Cx(8)L(s, x, K) has no zeros p=f+1iy in the region

1<p<i, (1.4
then there exists a prime ideal P of K of degree 1 over Q with y(P)#1 such that
Ny oP <A;(log A(y)”. (1.5)

It is an open question as to what kind of zero-free region suffices to prove (1.5).
Using the kernel k(s) =x*I'(s), we can show that (1.5) holds if {4 (s) L(s, . K) has no
zeros ind < f <1, [y| <loglog(A(y)). We do not know whether (1.5) could be proved
if we only knew there are no zeros in 3<f <1, || <3.

Our proof of Theorem 1.1 does not suffice to show that

xc(.x)>£HLi(x) for x>2d}, (1.6)

iGl
for any fixed £ >0. Such an estimate, or even a slightly weaker one, would be of great
interest, but seems unattainable with our present techniques. However, we will
sketch a proof of an unconditional upper bound estimate for n-(x) which is not
difficult to prove and is of interest in some applications.
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Theorem 1.4. There exist absolute, effectively computable constants A, and A such
that if L+Q and

x>exp{A,(logd,)(loglogd,)(logloglogd, ¢*“)},

then

ne(x) S A, %Li(x).

The paper proves Theorem 1.2 first, since it exhibits some essential features of
the proof of Theorem 1.1 with less complications from the possible exceptional
zero.

Throughout this paper ¢,,¢,,... as well as all constants implied by < and O-
notations will denote absolute and effectively computable positive constants.
Background material on properties of Hecke and Artin L-functions is available in

(61, [7]-

2. Least Character Nonresidue

This section presents the proof of Theorem 1.2 on the least Hecke character
nonresidue. We first give an outline. A weighted sum of the values of the Hecke
character at prime ideals is evaluated as an inverse Mellin transform of

1

~z(s, 1, K) times a kernel function. The kernel weights only prime ideals of small

norm. By contour integration this sum is equal to a sum of the kernel function over
the zeros of L(s, y, K), and this is estimated to be small. On the other hand, if y(P) =1
for all small prime ideals P then the value of the Mellin transform is virtually the

. . L G .
same as that obtained by replacing z(s, 1 K) with gZlf(s). This is evaluated by
K
contour integration and is shown to be large, due to the contribution of the pole
at s=1, provided {(s) has no exceptional zero. This then yields a contradiction
which proves the theorem.

Proof of Theorem 1.2. We first introduce our kernel function. If k(s) is an entire
function, say, such that |k(c +it)| is integrable as a function of t for > —1, let

a-+ o

E(u):zim, [ k(s)u=*ds 2.1

a—ix

be its inverse Mellin transform, where the integration is on a vertical line

Re(s)=a> —1. The kernel function we use here is

s—1_ s—1y2
k(s) = k(s: x, y) = (%) . 2.2)
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A simple computation shows that for y>x>1 and u>0,

0 il u>y?,
»?
uMog=— if xy<u<y?
u
k(u:x, y)= . (2.3)
umllog— if x*<u<xy,
x
0, if u<x?.

We next come to the Hecke L-function. Assoctated to a Hecke character y over
a field K is the constant

A= dKNI(/Qf(X)»

where f(x) is the conductor of y. We recall the Dirichlet series expansion,

’

L ~

- LKY=) ) (P APHNP)™ (2.4)
P n=1

where P runs over all prime ideals, and A(]) is the generalized Von Mangoldt

function

logNP if I=P4,
Ay = og if 1 '
0 otherwise,

and NP denotes Ny,,P. We now consider the inverse Mellin transform (with
y>x>1)
1 24P ’
ILy=—— [ =T(.2Kk(s;x.p)ds= Y 2(P") A(PYNP) "K(NP";x,y). (2.5)
2ni, 5. L Pon
Note that the sum only counts prime-power ideals of norm <y, Furthermore
the contribution of those ideals P" for which NP" is not a rational prime is

<ng(logy}log (i) Y o oont

n=p%, 2
x2=p<y2

[\

A2

<ng(logylog <%) (xlogx)~'. (2.6)

Next we evaluate the integral (2.5) by contour integration. Consider the integrand
of (2.5) integrated on the rectangular contour with vertices at —N+iT]
—~N—iT,2—iT, 2+iT. Proceeding exactly as in [7, Sect. 6], the contribution of
the horizontal sides of the box goes to zero as T—co. The contribution of the side
~N+iT, —N—iT goes to zero as N— o through values k+% k an integer. The
contribution of the remaining side has as a limit the integral I, and by Cauchy’s
theorem we obtain

Iy= =2 k(p,ix.p), 2.7

Py

where p, runs over all zeros of L{(s, 1, K).
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We now use (2.7) to bound the real part of (2.5) from above. First —k(p;x, y) is
negative for real p, so we obtain a valid upper bound if we drop the terms
corresponding to peR. This takes care of the trivial zeros and any possible

exceptional zero of L(s, , K). To proceed further we need two zero-density lemmas.
The first is:

Lemma 2.1. ([7, Lemma 5.4]) Let n,(T') denote the number of zeros p=f+1iy of the
Hecke L-function L(s, x,K) in the rectangle 0SS 1, |y—T|< 1. Then

n,(T)<log A(x)+nlog (1 T]+2), 28)
where A(X)=dy NK/Q S @)

Remark. Lemma 2.1 was proved in [7] under the tacit assumption that y is
primitive, since those were the only characters that played any role there. However,
if ' is the primitive character that induces y, then

L(s, ;, K)=L(s,7,K)- |] (1=a(P)(NP)~¥), (29)
P|f(x}
where a(P)=0or y'(P). It follows that the zeros of L(s, y, K) are the same as those of
L(s, ¥, K), except for <log A(y) arithmetic progressions of zeros on the line 6 =0,
which together contain

<{1+4djlog Ay

zeros in any interval of length 4 on the line ¢ =0. Therefore the bound of the lemma

above is true also for imprimitive characters. Furthermore, it is easily seen from
(2.9) that

i !

L L
7 & K)y=7(s%, K)+0(log A(7) (2.10)
for 6 =Re(s) = 1/2, say.

The second lemma counts zeros in smaller regions. It generalizes known results
for Dirichlet L-functions.

Lemma 2.2 Let n(r; s) denote the number of zeros p of L(s, x, K) with [s— p| <r. Then
for Re(s)=1, and all r>0

n(r;s)<1+r(log A(y) +nglog(s| +2)). (2.11)

Proof. The estimate (2.11) is true for r 2 1/2 by Lemma 2.1. For the case 0 <r < 1/2 it
suffices to prove the result for s=1+it, because n(r;1+it)=n(r;o+it) for any
o=1. We next note

n(r;14+it)y=nQr;(1+r)+it). (2.12)
We now apply the estimate [7, Lemma 5.6]
L o)

- ~ K .
LK)+ FZ Py

[y—tl=1

<log A(y) +nglog(|t]+2), (2.13)
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valid for primitive y, —3<Re(s)<3, and |s| >4, where d(x)=1 il y=y, and 0
otherwise. By (2.10) this estimate (with a different constant implied by the <
notation) holds for any y if Re(s)=1. Let s=1+r+it. Then

L K)= L l ¥, K
Z(S,X’ ) = Z( +7 1, )

’
K

Dy

=

[T

K

(1477, K)‘ <r~'+c, logdy,

the last inequality by the equation following (8.3) in [ 7]. Applying this to (2.13) we
have

’ L,
fr—ti=s1

<log A(y) +nylog (it +2)+r 1. (2.19)

On the other hand, if p=§+i7y,

1 (l+r)—ﬁ> r

Re = = .
s—p Is—pl* Tls—pl?
Consequently
Y : > ) Rel>(2 1++‘z)]
—| ——2n(2r; Ftit)—.
Pl S 2 s—p 4r
ly—ti=s1 fr—tl=1

Substituting this result in (2.14) gives the required inequality for n(2r; 1 +r+if),
which with (2.12) completes the proof.
We also need a zero-free region for Hecke L-functions.

Lemma 2.3. There is an effectively computable positive absolute constant ¢, such that
for all finite extensions K of Q and Hecke characters y on K, the Hecke L-function
L(s, x. K) has at most one zero p=f+iy with

1B >1—(c,log AG) ™!
Il <(c,logA(x)~ " (2.15)

(If L(s, . K)={q(s), we regard this statement as empty.) This zero can occur only if x*
= Yo, and must be real and simple. It will be called the exceptional zero. Aside from
this possible exceptional zero, L(s, x, K) has no other zero p=f+iy with

181> 1—c5 ! {log A(X)+ng log(y]+2)} . (2.16)
Proof. Note first that

f(o)=3+4cos 0+cos20=2(1+cos )’ Z0.
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Let x(P)=exp(if,). Then for 6> 1,

o I /
Re{~3%"‘(0)—4~(o+ir, % K)_£(0+2iT,X2,K)}
QK L L

= Zf(m(?,,—mtlog NP)(log NP)(NP)~ "™ >0,

P,m

By (2.13) (and the remark that follows (2.13)) and the fact that 4 (%)< 4(y), we find
that

! ! L
—3zf(a)—"f%(a+it,x,K)—z(a+2it,XZ,K)
3 44(x) 3(x?) 1
= + - -3 — 2.17
o—1 o—l+it+o’—l+2it E) g—p ( )
vist
4 ) : Y L 0(oga I 2
v Otit—p o O+2it—p (log AGr) +nclog It/ +2)-
ly—tf=1 ly—21]21

Now Re(s—p)~ ' 20 if Re(s)= Relp). Hence if p=f+iy is any zero of L(s, 1, K),
then the real part of the quantity in (2.17) (which is nonnegative) is

3 44 2
<3 L Re M0 o(x%) __Re At
oc—1 o—1+4it o—1+42it o+it—p

+cy(log A(x)+ nyg log (jt] + 2)).
By choosing t =7y, we obtain

3 4 o 400 3(¢*)
o—1 a—p g—1+iy a—142iy
+c;(log A(x) +ng log(lyl + 2)).

0

A

(2.18)

Suppose first that y%+y,. Then d(})=6(3?*) =0, and so

3 4
——tc A 7 +2)).
ST eaog A aclog (1-+2)

Choosing

o =1+(100c,)" ' (log A(y)+nglog (|y|+2)~ 1, (2.19)
say, we obtain

B=1-(1000c;)~ ' (log A(x)+nglog |y +2)~*. (2.20)

Suppose next that y2=y,, but [y|=c5'(log A(x) +ng)~"'. Then (2.18) gives us

3 4
0=—— —;73+6c3(logA(x)+nK10g(Ivl +2),

which gives (2.20) again if we choose ¢ according to (2.19).
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It remains to consider the case y> =y, and |y|<c5 ' (log A(x))~ . Suppose first
that y# o, but L(s, x, K) has 2 zeros p,=f,+1i7y,, 1 <i<2, with

[l <ey t(log A(x) +n) ", 2.21)

B> 1 ~(1000¢,) ' (log A (1) + 1)~ . 2.22)

If we now go through the derivation of (2.18) from (2.17), but keep the contributions
of both p, and p,, we find that for 6 > 1, =0, we have

0= 4 Re 4 R 4 log A
o1 6—p, ea~p ¢ (log () +7g).

If we now choose
c=1+(100c;)" '(log A(x) +ne)

we obtain a contradiction. Thus there cannot be 2 zeros p; as specified above. If
there is a single zero satisfying (2.21) and (2.22), then it must be real, since x> =y,
means that the complex zeros of L(s, ¥, K) come in conjugate pairs.

The only remaining case is y = y,, which is handled in an analogous way. To
conclude the proof it therefore suffices to note that ng ¢, log A(y)if A () # L (i.e., if
L(s. 2. K) & Cqf9).

To continue bounding (2.7) we divide the zeros of L(s, x, K) off the real axis into
two classes, those with f<1—J and the remainder, which must have
712 8% (log A() (1 +9 (log A(x))''*) by hypothesis.

Consider those zeros p with f<1—4. For those zeros

— 29

X
k(p;x, V) £ 5.
| (p,x,y)l_ip_“z

Their contribution to the sum (2.7) is bounded by
| —1 S )
<x" 2 [ —dn(r;)<x=? (f—n (r:1 ] jfzn(r; 1)dr>,
st r F} 5

which by Lemma 2.2 is
<x" 2072+ og A(x) (2.23)

since ng <log|A (). )
Next consider those zeros p with f=1—3, [y|= 6% (log A(x)) (1 + d(log A (x))'/?).
For each such zero

k(p;x, Mi<(p—1D~%
If n*(r: 1) denotes the number of such zeros with [p — 1] <r, then note n*(r; 1) =0 for

r<0*=Max (8 (log A(x)) (1 +0 (log A(x)'"?), (c; log A(x) ™)
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by Lemma 2.3 and by hypothesis. The contribution of these zeros is bounded by
e e} o 2
<j——dn (r,1)< n(rl]+f —n(r; 1)dt.
ot 5T
Using Lemma 2.2, this becomes
KO* 24 0% tog A(y) + 6% ng(6* +2)
<6* 24+ 6% Mog(d* +2)log A(y).
In fact we will show this is
<62 (2.24)

To check this, note that if d=(logA(x)~"' then 6*26%logA(y)=d while if
d<(logA(y)~"' then 6*=(cylogA(y))"*=c; !5 so that in either case 6* 2
=0(5~?). In order to deal with the second term, we note that §* > 62 (log 4(x)) (1
+d(log A())'7?), so it will suffice to show

1+ (log A(x))* > log (6*+2). (2.25)

If 0*=(c;logA(x)~"'<c;' this is immediate, so suppose 6*=24>(log A(y)) (1
+6(log A(1)*). H5 < 2(log A ()~ then 6* < 1 and (2.25) holds. If 5 2 2(log A (x)) "}
then 6*=4 and 6* <26°(log A(x))*"?, so

log (6* +2) <log 6* < (%) < d(log A(x)'/?,

which again yields (2.25).
Next we introduce the integral

J =—L ZTW (—%(s}) k(s;x,y)ds=}Y A(NPY)(NP) "k(NP"; x, y). (2.26)
K

27”2~ioo P.n

If we now suppose that y(P)=1 for all first degree prime ideals with NP =p < y? for
which (P, f(x))=1, then (2.26) agrees with (2.5) except possibly on those ideals P" for
which NP"+ p and also for primes P|f(x). The contribution of primes dividing the
conductor is

< ) (logNP)x~*log (Z>
Pifln X

<(log A(x)) x~*log (%) (2.27)

and the contribution of the other primes is bounded by the quantity in (2.6), yielding

lo
I —Jo) €ngx! (log )l——:l+x‘zlog ()%) log A(y). (2.28)
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Finally, we compute a lower bound for the integral J. By an argument similar to
that yielding (2.7) we obtain

y 2
J= (]0g;> —> k(p;x,y),
> ”

where p runs over all the zeros of (g(s).
We now bound the contributions of the remaining zeros, by exactly the same
argument as for L(s, 7, K), obtaining

(s

Note that the contribution of the zeros p=/f on the real axis with f<{—J is
actually included in the estimate {2.23), and there are no zeros of {g{(s) with
1—-6<B<1 by hypothesis.

We now complete the proof of Theorem 1.2 by choosing

<x 25 og A(X)+ 62 (2.29)

x=(B¥c¢,0log A(z))** ", y=B¥'x,

and checking that for a sufficiently large value of B (fixed once and for all) the
estimates (2.25), (2.28), and (2.29) are mutually inconsistent. Recall that

(cplog A(0)~ ' §5§%. (2.30)

We must check that
W2 N

(logl) >, %x 25" Nog A(x)+ 0~ 2 +ngx! (log%) (log v){log x)~ !
x )

+x*210g1}; logA(x)}, (2.31)

where ¢5 is the sum of the constants implied in (2.25), (2.28), (2.29). Now (cop !
attains its maximum as a function of & at e C~!, Consequently x is a monotone
decreasing function of 4 on the interval (2.30). In particular

xziBlogA(y) (2.32)
and y<x*2. From (2.32) we conclude
N\ 2
C5X™ 25 Mog A(x) £2¢5 0 < ('5(% log B)~ ! (log i) (2.33)

and also

logy v\
CangX (log )(1o§x)<3 (1og;) (2.34)

with the implied constant independent of B. since

32
<log> when e*<x and xe’<y=x?
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Next

i\ 2
5-2<(logB)! (log%) , (2.35)

and finally

; ) 1\ 2
x-2 (log%) log A(y)<4B~2(log (1) logi»éB*‘ (1og9») (2.36)
) X

if Bz 100, say. The inequalities (2.33)-(2.36) show that choosing B sufficiently large
will guarantee that (2.31) holds. Hence there will be a prime ideal with the required
properties satisfying

NyoP Sy (B¢, dlog A(x)°

We make some remarks on proving a result similar to Theorem 1.2 for Artin L-
functions. By a result of Stark [9, Theorem 3] we can conclude that all Artin L-
functions L(s, ¥, L/K) are analytic at any exceptional zero of {; (s), so this causes no
new difficulties. The problem is in obtaining a good upper bound for the number of

1

singularities Off (s,¥, L/K) in the critical strip. Assuming Artin’s conjecture on the

analyticity of L(s, ¥, L/K), we can get a good estimate from the functional equation,
and immediately prove the analogue of Theorem 1.2, with A(¥}) being the
appropriate constant from the functional equation of the Artin L-function
L{s, ¥, L/K).

3. L-Functions and Mellin Transforms

The following sections give the proof of Theorem 1.1. As was the case with the
previous proof, this proof also relies on estimates of inverse Mellin transforms

1 2 +ioe

T 2}“ Fo(s)k(s)ds (3.1)
where k(s) is a kernel function and F¢(s) is a certain Dirichlet series which counts
prime ideals whose Artin symbol is the conjugacy class C. We use two different
kernel functions, one in the case that {; (s) has no (exceptional) zero on the real line
segment 1 —(logd;)~?<s<1 and the other when it does. We first show that F(s).
defined as a sum involving Artin L-functions, can be expressed as a sum involving
Hecke L-functions, thus eliminating Artin L-functions from the proof. In order to
get better error estimates for (3.1) if an exceptional zero of {, (s) occurs in the range
1 —(logd,;)~ ! <s< 1, we show that its presence implies the existence of an enlarged
zero-free region near s=1 (for other zeros), a result of the kind usually called the
Deuring-Heilbronn phenomenon. To do this we give a simple direct proof of a power-
sum inequality which may be used instead of Turan’s second main theorem in many
L-function applications. Our second kernel has the property that it drops off very
rapidly as we move to the left of o=1, thus attenuating the contribution of the
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exceptional zero, at the cost of not dropping off so rapidly as we move vertically,
thus necessitating a larger zero-free region to get good error bounds.

Start of Proof of Theorem 1.1. We define

Fo(s) = \G‘ s n/z(g (5.9, L/K). (32)
where ¥ runs over the irreducible characters of G and L(s,, L/K) is the Artin L-
function attached to the character . The orthogonality relations for the characters
i 1imply {see [6. Sect. 3]) that for Re{s)>1,

Fos)=Y, Z 0(P") (log NP)(NP)~* (3.3)

P m=1

where for prime ideals P of K unramified in L,

L/Km
it [F] e
0(P™) =
(P7) {0 otherwise,

and 0 0(P™ <1 if P ramifies in L.

Our first reduction uses a method due to Deuring [3] to obtain an expression
for F.(s) which involves Hecke L-functions rather than Artin L-functions, and
which eliminates Artin L-functions {rom the subsequent proof. We choose ge C and
let H={g) be the cyclic group generated by G,E the fixed field of H. Then [6,
Lemma 4]

C
Fo(s)= JlG:Z/ g)--(s. . L/E), (3.4)

where y runs over the irreducible characters of H, which are I-dimensional since H
is cyclic. By the fundamental theorem of class field theory the Artin L-function
L(s., 7. L/E) is a certain Hecke L-function L(s. x. E) attached to the field E, and y isa
certain primitive Hecke character, which satisfies

i)

for all prime ideals P of E unramified in L. Hence (3.4) becomes

C I
161 7(g)— (s, 0. E) (3.5)

Fels)= =g L8

for certain Hecke L-functions L{s, y, E).
We now discuss the kernel functions. The two kernels we shall use are

X —X

I uw2
1"1(S)Zk[(s;x):k(s;x\xl): (' ) .

s—1
ky(s)=k,(s;x)=x"""
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In these kernels x 22 is an adjustable parameter whose value will be selected later.
The dependence of the kernel on x will be suppressed in what follows for notational
convenience. The inverse Mellin transforms k,(u) for u>0 of these kernels are:

x4
u tlog— x*<usx*
u

ki) = ullog u, x?gu<x®, (3.6)
X2
0 otherwise,
2
(0¢7)
k,(u)=(4mlogx)~ *exp [——x—] (3.7)
2 | 4logx | ’
The sums we will estimate are
24ix
1,:27;2’[“ Fu(s)k,(s)ds  (i=1,2). (3.8)

Using the uniform and absolute convergence of the Dirichlet series (2.4) for
Re(s) > 1, and the absolute integrability of the kernels on vertical lines, we find that

L=y 3 0(P™)(log NP)k,(NP™), (3.9)
P m=1
where the outer sum is over all prime ideals of K.

We next prove a series of three lemmas which bound the contributions to the
sums in (3.9) coming from the ramified primes, the terms for which NP™ is not
prime, and (in the case of the kernel k,) prime ideals with large norms. These
estimates could be easily improved, but this is unnecessary for our purpose, since
other error terms will be larger.

Lemma 3.1. Let ZR denote summation over the prime ideals of K that ramify in L.
Then

x 1
TR Y ()(P'")log(NP)El(NP'")<%gzllogd,, (3.10)
P m=1
SE N 0(P™log(NP)k,(NP™ <(logx)t logd,. (3.11)
P m=1
NPm < x10

Proof. We have

YR f 0(P™)1og(NP)k;(NP") <Y Rlog(NP)logx Y (NP)™
P P

m=1 mz1
NPm2x2

logx

log x
5—logd,,

o
RlogNP
<2 ; ogP <
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since all the ramified primes divide the different 6(L/K) so the product of their
norms divides d,. Similarly

YEOY  0(P™)log(NPYK,( P’")<<ZR log(NPy Y (logx)~*
P m=1 m
Npm g x10 NPm<x10

<(logx)* Y Rlog(NP)<(logx)*logd,.
P

Lemma 3.2. If ) ” denotes summation over those pairs (P, m) for which NP™ is not a
rational prime, then

2
TP 0(P") log (NP) K, (NP™) < nK(loi X (3.12)
SPO(P)log(NPYk,(NP")<nex'*, (3.13)

Proof. 1f q is a positive integer, there are at most ny distinct prime power ideals P™
with NP™=g4. Hence

Z”O(P"’)log(NP)El(NP"’)<nK(logx) Z p_h
ph
pohz

P.om

= u/\
NH/\

(log x)*

<nK(10gx}2 Z m <y

h 2 x2
hz2

For the other kernel,

S PO(P")log(NPY k(NP <y 3. log (") K (p")

P.m h22

<nkm[log )k, (u)dS (1)
2

where S(u) counts the number of perfect h-th powers, h=2, which are =u. To
complete the proof we use the fact that S(u)<u'’? and integration by parts.

Lemma 3.3. We have

o

Y S (P (log NPk, (NP™)<ngx~'C. (3.14)
P m=1]
Npmgxlo

Proof. We have

o0

Y Y 0(P™)(log NP)K,(NPM<ng Y. (logq)k,(q)
P m=1 gzx'?
Npmzx10

< f (loguyk(u)du<ngx1°.

x!()
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We define

P(C)=<P;P a prime ideal of K, unramified in L, of degree one over Q, and

)<}

The results of the last three lemmas show that

logx)® log)>
L= Y (og NPk, (NP} <ny o8 108X 1004,
PeP(C) X X
<x~*logd, (3.15)

and

L— Y (logNP)k,(NP)

<ngx~ ' +(logx)t logd, +nx7*

<x"*logd,. (3.16)

The next step of the proof consists of evaluating the integrals I,, 1, in (3.9) by
contour integration. In view of the identity (3.5) expressing F.(s) in terms of Hecke
L-functions it suffices to evaluate integrals of the form

1 2 +ic I
H=g | —[GrBkeds (3.17)

— i

where y is a primitive Hecke character.
In order to evaluate J;(x) we will consider
Jx, T) : | L( EYk.(s)d 3.18
LT)=5— | ——(s, 1. E)k;(s)ds, :
J ){ znlB(T) L /( J ( )
where B(T) is the positively oriented rectangle with vertices at 2—iT, 2+iT, —%

+iT, —45—iT, and where T >0 does not equal the ordinate of any of the zeros of
L(s, , E). By Cauchy’s Theorem

T T =0 k(1) —a(k(0)— ¥ k;(p). (3.19)
=T

where the last sum is over the nontrivial zeros p=ff+iy of L(s, %, E), counted with
multiplicity, and a(y) is the order of the zero of L(s,y, E) at s=0. From the
functional equation of L(s, x, E) we deduce that a(y)=<n,.

On the line segment from —%+i7T to —1—iT we have [7; Lemma 6.2]

<log A(y)+nglog(ls| +2),

=)
(5.1,
TARL:

so that for j=1 or 2,
[ —%-iT

o | Z(S’ % E) kj(s) dsj<k(—%) {log A(x)+ng}. (3.20)
— 3 +iT
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On the two segments from 2+4iT to —4 +iT we use the method of Landau [8],
[7; Sect. 6] to obtain the estimate

<Jk;(iT)|(log A(y)+nglog T). (3.21)
If we now combine (3.18)—(3.21) and let T— sc, we obtain

J;(0=46(7) Zk (p)+O0(npk;(0) + O (k;(—3) (log A(x) +np)). (3.22)

The definition of F-(s) together with (3.22) and the conductor-discriminant
formula:

Y log A(x)=logd,
X

now show that

1 2 +in ‘C\ !C\

2t | ORI = k(=G D70 ke
i, S
+0(c m k01 k(—loed, ). (3.23)

where p, runs over the zeros of L(s, . E} in the critical strip. From (3.23) we
obtain a lower bound for [;:

Gl
cl Lizk (1)~ Z k() = colny k;(0)+ ki( —3) logd, 1, (3.24)
where p runs over the zeros of {;(s) lying in the critical strip.

To complete the proof we need good lower bounds for the sum

K(h=Y 1k (=12

where p runs over the nontrivial zeros of ¢, (s). This requires additional infor-
mation on the location of the zeros of , (s). The sum over the zeros could have a
single large term coming from the exceptional zero (if it exists) and in that case
we need an enlarged zero-free region to show the contribution of the other zeros
is small. This enlarged region, and a lower bound on the distance of the
exceptional zero from s=1 are the subject of the next two sections.

4. A Power-Sum Inequality

In this section we prove a power-sum inequality (Theorem 4.2 below) which will
be used in the next section to derive an enlarged zero-free region. This result
may serve as a substitute for Turan's second main theorem [11] in many
situations.
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Lemma 4.1, Let

J .
J i .

P(r,0)= > 1——~—) r cosji.
(r, 0 I( T 1’ cosj

j=

Then
(i) P(r,0)2 —1 for 0<r<1 and all 0,

. J
(i) P(L,0)=5.
(iii) |P(r, 0)| =37 for 0Sr<3.
Proof. 5+ P(1,0) is Fejer’s kernel, and hence =0 for all 0. But if z=re”, then
(r,0) is a harmonic function of z, and hence z —% for |z|£1, proving (i).

Assertion (ii) is trivial. For 0<r g1,

PO Y P<dr
j=1

Theorem 4.2. Let s,,= Y b,z" and suppose that

n=1
() lz,|Slz)) for all n 21,
(i) the b, are real,
(iii) b, =0 for those n for which |z,| |z, £z,

Set
=(b, 1z, 21 b, 2.

Then there exists j, with 1 <j, <24 L such that

b
Res; =~ lz 4.
Proof. By homogeneity we may suppose |z,|=1. Let z,=r, exp(id,). In the
notation of Lemma 4.1,

J ] e J .
( )Re(sj)(1+cosj01)= ; Z ( —j——) (cosjf,)(1+cosjl,)ri

¥ (1-72+

j=1 J""]

= Z b,{P(r,,0,)+1P(r,,0,—0,)+1P(r,,0,+60))}.

. . J 3 J+1 .
The term with n=1 contributes = (Z__) b, (%—3;’1) b,. Each term with
r,>% contributes = —b, = —3r,b,. Each term with r, <% contributes = —3r,|b,|.
Thus
J .
J . J+1
=Z (1 —-m) (RCSJ)(I-f-COS]Ol)gTbI—3b1L (41)
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Let J=[24L]. Then the right side of (4.1) is >

J
cosjf))=0 and 8

J
b But (1—-21—)
‘ u( J+I)(+

J .
Z (1*A) (1 +cosj0,) <2P(1,0)=J,

T . b
which implies that there is at least one j <J such that Re s}ggl.

5. The Deuring-Heilbronn Phenomenon

The Deuring-Heilbronn phenomenon refers to the fact that if {;(s) has a real
zero f, close to s=1, then {;{s) can have no other zeros nearby. The precise
result is:

Theorem 5.1. There are positive, absolute, effectively computable constants
¢4 and cg such that if {;(s) has a real zero po>0 then {(o+it)+0 for

lo ( ¢ )
g (1—py)logd, 1"
logd, t"" ’

o21—cq

(5.1)

where 1=[t|+2, with the single exception ¢ +it=J,.

Proof. Since (s—1){,(s) is an entire function of order one, we have the Ha-
damard product

(s=D{sy=s"em 2] (1 ~i> e, (5.2)
®

w

where  runs through all the zeros of { (s), @=+0, including the trivial ones.
Differentiating {5.2) logarithmically yields

= =Y (o)

Cr s—1 ~“\s—w w/ s

The Euler product for {,(s) gives

—SL(s)=Y Z (log NP)(NP)~"™
Sp P m=1

for Res> 1. Equating these two expansions and differentiating 2j—1 times, we
obtain

x 1
Y (log NP)(log NP™)»~'(NP)™" -y

Py =607 Ze_wpr Y

(21—1 'g
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where @ now runs also over the r trivial zeros w=0, and this is valid for
Res>1, j= 1. Therefore if s=0+it, we have

(2’_1 Z Z lOgNP) lOgNPm)ZJ INP ma(1+(NPm n)
P m=1

o [ 1 1 X
R R T T N Ty R >4

n=1

where the z, are of the form (6 —w)~? or (s—w)~ 2. The real part of the left side
of (5.4) is nonnegative, so if we take ¢ =2, then

x I 1 1 )
Re 1 R g g SR 69

Suppose that p=f+iy+f, is a zero of {,(s). Set r=y in (5.5). We now apply
Theorem 4.2 to the left side of (5.5). First note

lz,)22-p*
so that
1 O | x ]
L<(2-p)* ( ) - dn(u +
<2=p % ol T 2tir—ap <<£u2+1 ”Hi ety
<logd, ", (5.6)

using the zero-density estimates for the number of zeros n(f) of {,(s) from
Lemma 2.1. By Theorem 4.2 there exists some j, with 1<j,<24L such that

i o2 12— f) o= Lexp(~2jo(1— ).

Combining this with (5.5), we find that

%eXp('zjo(l =B <jo(1—P).

Since j, <24 L, which is bounded by (5.6), the desired bound follows.
From Theorem 5.! we immediately obtain a bound on how close the
exceptional zero f, can be to s=1.

Corollary 5.2. There is a positive, absolute, effectively computable constant ¢,
such that any real zero f, of {,(s) satisfies

1—Bozdp .

Proof. Choose ¢, so large that whenever n; > 1,

C10

¢, df )
. —_— d, 2"r).
¢slog (logdL'2"L >3log(d, 2)

This is possible since n, <logd; by discriminant bounds. If we had 1-f,
<dg“, then by Theorem 5.1 {; (o) would not vanish for ¢z —2, except at o
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=f}. However {,(s) always has a trivial zero at s=0 or s=—1, so this gives a
contradiction.

Stark [9; Lemmas 8, 11] has given upper bounds for the exceptional zero
that are better than the one of Corollary 52 in the special case that there is

a sequence of fields L,=Q<cL,<...=L, =L such that L,, ,/L; is normal.

6. Final Estimates

In this section we complete the proof of Theorem 1.1 by obtaining good lower
bounds for the sums

(=Yl (=1,2)

where p runs over the nontrivial zeros of {;(s).

The possible exceptional zero ff; plays a special role in our estimation. To
simplify the notation, we define f3, to be the exceptional zero of {; (s) if it exists,
and f,=1—(c,logd;)~" otherwise. In either case

k(=Y k(o Zk (D) =ki(Bo)— 2 ko)l (=12) (6.1)
p p* fo

By using the Taylor series expansions for k;(s) about s=1. we find that for
0<f,<land x=2,

Ky (1) =k, (Bo)=(log x)? - (ﬁ/s g )Zz“‘)fox’z Min {1,(1 — fig) log x}
and ’ (6.2)
k(D —ky (o) =x? —xlfw*@g%mm (1.(1 = Boylog x}. (6.3)
First suppose that
1—Bo2c2(logd, 37y 2.

In this case we use the kernel k, (s). The contribution of the zeros p of {; (s) with
[p—1]21 is bounded by

N2
Y kil Fdnii<logd, (64)
i

by Lemma 2.2. Next suppose jp—1|<1 and p=B+iy#f,. Il an exceptional
zero fi exists with

L
l*‘ﬁoé‘lg('z(’gﬂogdl_) !
then, since d; =3"* for n, 22, we have

- Cq > 1. 1— 1 AV l/2§
o legd 3 2 e = Bollogdy}
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and therefore by Theorem 5.1

lo {_“CL__}
lT—pologd, 3™ | logl(he,)1 —Bo)(logd,)} "

<i— <
Psl=c logd, 3™ =1"‘u logd,

On the other hand, if
1 2 —1
1 _ﬁogﬁczca(l()gdl,) )
then the zero-free region of Lemma 2.3 gives
Bs1—(c logd,) .

Hence

5 — —1
i, {‘ﬂz)(llogﬁ;z(log d)}

(6.5)

for an effectively computable positive ¢,,, and we may require that ¢,,<c¢,,.
Hence {6.5) holds in all cases. Let

log {(5¢,)(1—Bo)(logd,)} .

B=c¢, logd, (6.6)
From (6.5) we conclude
ki (P <x*P=Vp—1"2<x™ 2P |p—1]72.
By Lemma 2.2,
1
1
Y k(I Ex"2Bf Sdn(t;1)<x"*B{B~*+ B 'logd,}
fp—1]<1 B t 2B o1
p¥ o <x~**B~'logd,,
since B> (logd;)~!. Using (6.6) this becomes
2e12 log x
Y. lki(p)l<(logdy)® {(1e ) (1= Bo)logdy)} lesdr. (6.7)

lp—1]<1
p¥*Bo
We have thus shown that

ky (1) =2k (p) 2 5 Min {(log x)?, (1 — B) (log x)°}

log x
12 ———

2¢
—cy3logd; —cy 4 (logd;)* [(3¢,)(1—Bo)logd, ] loed. (6.8)
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We now complete the proof in the case 1 —f,=c?(logd, 3")~ 2. Combining
(6.8) with (3.15) and (3.24) we have

Y (logNP)k{(NP)=—: u(1ogx) Min {1,(1 = 8,)log x}
PEFC) 10 |G

Cl 1a oo

(’131G| logd Gl logd [(2 2)(1_ﬂ0)10gdL] @'_615xu%logdl"

We choose logx=c¢,¢logd; with ¢, a sufficiently large absolute constant. Then
the right side above is bounded below by

19

|
ifﬂﬁ

: C

(logd,;)* Min {],(l—/30)c16logdL};(*lgﬁ(logdL),

since 1 —f,> (logd;) 2. In particular there is a PeP(C) with
NP <x* <dbas.

Now consider the remaining case, when 1—8,<c2(logd, 3"*)~°. In that case

¢q _
1 >los(l—
8 ([ jiogd, 32 ORI Th0
If p=f+iyisa zero of {,(s) with |y/<1, and p#f,. then by Theorem 5.1
log(1—po)"
<1 —¢ = T
Pel=co= 100

In that case

lky(p)] SxP P x40

log x

—1 g B
(log x)log (1 —f,) ]:xz(l —Bo)  Toxdn,

logd,

<x?exp [_('19

For zeros p=pf+iy with || =1 we have
lkz(ﬂ)l§x2ﬂvzs
and, by Lemma 2.1, these zeros contribute

Y Iky(p)l<xlogd,.
lv\p> 1
We have shown that
ky(1) Z|k “Mm{ (1= fo) log x}

log x

_c,'20>clog(1L—~c21 x2(1—=Bo) " oedrlogd, .
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From (3.16) and (3.24) we have
x?|Cl

) (log NP)K,(NP) 2" " Min {1,(1 — o) log x}
PEP(C) 1016
NP < x!0 og x
—cyoxlogd, —cyy x3 (1= ) " oedr logd, ~ ¢y, x*logd, . (6.9)

We now choose x=dy* for a sufficiently large absolute constant ¢,,. We note
that by Corollary 5.2 we have then

|Gl x"* (log x?)? logd, <x?(1—f,)
and hence the right side of (6.9) is

[
>"24&5 172 Min {1,(1— o) ¢y logd,} > ¢pp

Hence there is Pe P(C) with

€|
Gl "

e
NP<x!0<dl o,

Choosing 4, =Max(4c¢,¢,10¢,,) completes the proof of Theorem 1.1.

7. Proof of Theorem 1.4

In this section we sketch a proof of the unconditional upper bound for the
density of PeP(C). This time we use the kernel

k(s)=x"e",
where x> 1, for which

k(uy=(4m)~ 1" exp { —L(logx—logu)?}.
Since k(1)=1/10 for ue[x/2,2x], we have

1 24io )
I=— [ E(9)k(s)ds=Y Y 0(P")(log NP)-k(NP™
2mis S P m=1
logx
=75 Ane(x)—me(x/2)}. (7.1)
On the other hand, by shifting the line of integration to Re(s)= —1/4, we find
that
., 2 ICl e ICl
— ) %(g) ””+0( " og d)+0(* ) 7.2
16 TG 2182 G 61" (72

where p=p, runs over the nontrivial zeros of L(s, y. E), the last term comes from
the singularity at s=0, and the penultimate summand is due to the integral along
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Re(s)= — 1/4. We wish to prove that [[}<|C}x/|Gl. Now if x=d,, then

n, <logd, <x, {7.3)
x~'*logd; <1. (7.4)

The exceptional zero (if it exists) gives
Ix? e”’| S xe < x.

By Lemma 2.3 any other zero p={+iy satisfies
BS1—(c,logd, (171+2)") ",

and so if 7] <loglogd,, then
BE1—c,s(logd,) ! (logloglogd, ¢*®)!

Therefore

Yixte’l<x+x Y eV
4

Iv12log logdy,

+xexp{ - —'_('ZSIng } Z e’

" logd, logloglogd, ¢*°

o
7] < log log dy.

) ¢55logx
<x+x(logd,) '+ x(logd,)exp { “logd loigilqojgl:)\gﬁ} {71.5)
L L

If
logx=c, (logd,)(loglogd,)(logloglogd, ¢*"), (7.6)

then the right side of (7.5) is <x. Combining this with (7.1)-(7.4), we find that

ICl x
”c(ZX)“ﬂ(~(X)<|‘5$" fogx (71.7)

if (7.6} is satisfied. Now for any x =2,

nc(x)érz,‘n(x)«n,‘lo (7.8)

Therefore if A, =10c¢,,. and

xlogx = A, (logd,)(loglogd;)(logloglogd, e*°),

then (7.7) and (7.8) yield the assertion of Theorem [.4.
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