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1. Introduction 

The main result of this paper concerns the second Hamiltonian structure for the 
Lax equations based on a scalar n th order differential operator 

( l .1)  L=~"+un_2~n-2+...+ul~+Uo, ~=--~/~x 

(see [1, 5]). We show that this complicated-looking structure arises by 're- 
duction'  from a vastly simpler one (essentially just (/~x) on an appropriate 
space of 'modified'  variables. 

We begin by explaining this in the simplest case n=2 ,  so that L is the 
Schr6dinger operator ~2 +u ;  here u is a function of two variables x and t. By a 
Lax equation formed from L we mean an equation of the form 

(1.2) L, = [P+, L] 

where P+ is a differential operator whose coefficients are differential polynomials 
in u, that is, polynomials in u and its x-derivatives u (s~. (The subscript + may be 
ignored at this point: we introduce it so as not to conflict with the notation in 
the main body of the paper.) Since L, is an operator of order zero, for (1.2) to 
make sense P, must be chosen so that the commutator  on the right has order 
zero too; (1.2) is then equivalent to an evolution equation for u, that is, an 
equation of the form 

u,=f{u,u~,u ....... ) 

(no t-derivatives on the right). The construction of such operators P+ is now well 
understood, and is reviewed in Sect. 3. The simplest non-trivial example is the 
operator 

P+=4~3 +6u~ + 3u~; 

the corresponding Lax equation (1.2) is the Korteweg-de Vries (KdV) equation 
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(1.3) u t = G x ~ + 6 u u , .  

Equat ion  1.2 is called the 'Lax  representa t ion '  of the KdV equation. 
Among  the many  remarkab le  propert ies  of  the KdV equation,  we shall be 

specially concernefl  with the following. 

(i) The equation has an infinite sequence Hx ,H  2 .. . .  of conserved densities; 
they are differential polynomials in u, and we have H l = 4 u ,  H ; = u  2, 

1 3 1 2 H 3 - T u  - z G ,  .... 
(ii) The conserved densities satisfy the recursion relation (due to A. Lenard ) 

(1.4) ( � 8 9  6Hq=23 6Hq+l 
6u 6u 

(iii) The equation can be written in Hamiltonian form 

~ H  3 
u , = 2 3  6 u "  

First a few words of  explanat ion for non-exper t  readers. In (ii) and (iii), 0 
means  3/3x: our principle is tha t  in differential opera tors  we write 3/~x as 
when we are thinking of  the ope ra to r  as an algebraic object  in its own right, as 
in (1.1), but  as 3 when it is actually going to opera te  on something,  as in (ii) and 
(iii). In (ii), 0u means  the opera tor :  mult iply by u, then differentiate. 'Conse rved  
densit ies '  means  that  we have identities 

3Hq -3Jq 
& 

which follow formally f rom (1.3); the Jq are also differential po lynomials  in u. 
F o r  example,  for H 2 =U 2 we have 

3/&(u 2) = 2 u(Gx x + 6u ux) = 3(2 u u~x - u 2 + 4 u3). 

Unde r  suitable analyt ic  circumstances,  for example  if all the u (j) vanish as 
x--* +c~,  if follows at once that  the integrals of  the Hq will be constants  
( independent  of  t). In (ii) and (iii), 6/6u denotes  the (formal) var ia t ional  de- 
r ivative (Euler -Lagrange  opera tor )  

6H ~;H Z I-3)' 
i>=o ~u{i)" 

We refer to Sect. 5 for a precise explanat ion of the term ' H a m i l t o n i a n '  in (iii), 
bu t  the idea is as follows: for any differential po lynomia l  H we think of  the 
equa t ion  

6H 
u t=23 6u 
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(or rather the corresponding derivation ~/Ot) as the Hamiltonian vector field 
corresponding to H; we are thus thinking of H as a function on phase space, 
#H/6u as its gradient, and the skew operator 2 ? is playing the role of the matrix 

(01;) in the usual form of Hamilton's equations. The term 'Hamiltonian'  

then refers to the following property of the operator 23: if we define Poisson 
brackets in the usual way, then this map (functions) -~ (vector fields) takes 
Poisson brackets to commutators. 

Let us look more closely at the Lenard relations (1.4). Given an arbitrary 
differential polynomial H, we can form the expression (�89 (?3+ u ? + ~u)6H/6u, but 
in general there is no reason why this expression should lie in the image of the 
operator 2~6/6u; it is thus by no means obvious that, given Hq, w e  can find any 
differential polynomial gq+ 1 satisfying (1.4). However, that is in fact the case for 
the whole infinite sequence of conserved densities Hq. The papers [6, 10] throw 
considerable light on this miracle: it is closely connected with the fact that the 
operator 1~3+ u?+~u on the left of (1.4) is Hamiltonian in the same sense as 
indicated above for the operator 2~ on the right. (Perhaps we should emphasize 
that this property is by no means shared by all skew-adjoint differential 
operators: for example, the operator ~ ~3-u2 ~C -i- (? -~0U 2 is not Hamiltonian; nor 
are any of the operators e02~+~+u(?+?u for r >  1, ~ a non-zero constant.) The 
KdV equation can thus be written in two Hamiltonian forms: 

(~H3 1 ~3 6H2 
u , = 2 ? ~ u - - - ( S c  +u?+~u)  6~u-" 

Furthermore, these two Hamiltonian structures are compatible in the sense that 
for any constants c~, /~, the operator ~(20)+/?( �89 is Hamiltonian. 
(That is not automatic, since the requirement of being Hamiltonian imposes a 
quadratic, not linear, condition on the skew operator.) In [6] (see also [10]) it is 
shown that this is sufficient to ensure that the equation has an infinite sequence 
of conserved densities satisfying (1.4). 

The main question, then, is: why is the operator 2 ~- (?3+ u(? + #u Hamiltonian? 
Our explanation for this involves the relationship between the KdV equation 
and the 'modified' KdV equation 

(1.5) v t = v x x x - 6 v  2 v x. 

This relationship played an important role in the original discovery of the 
properties of the KdV equation (see, for example, [8]). The connexion between 
the two equations, due to Miura, is the following: let 

(1.6) u = v x - v  2. 

Then if v satisfies (1.5), u satisfies (1.3). 
Now, the modified KdV equation can be written in the Hamiltonian form 

~H 
(1.7) v ,=(--~0)  6v 
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where H=tA2=(tOx--V2) 2. As we have seen, the KdV equation can be written in 
the form 

6H (1.8) 1 -3 _ _  ut=(sc  +u~+(?u)  6u 

with the same Hamiltonian H = u  2. This connexion between Eqs. 1.7 and 1.8 is 
not an accident involving the particular Hamiltonian H = u  2, but reflects a 
relationship between the two skew operators -• ,, �89 u ?~ + 6u. If v satisfied an 
Eq. (1.7) for any other Hamiltonian H(u, u . . . . .  ), then u = v x -  v 2 would satisfy the 
corresponding Eq.(l.8). That is a simple consequence of the easily verified 
identity 

(1.9) �89 3 + u 6 + ~ u = D ( - } 6 )  D* 

where D = O - 2 v  is the 'Fr6chet Jacobian '  o fu  with respect to v, and D*= - ? - 2 v  
is its (formal) adjoint. It follows automatically from (1.9) that the operator 
1 1 5 ~ 3 + u 0 + 6 u  is Hamil tonian (given that is). We say that the Hamiltonian 
structure defined by the operator �89 3 +u~?+6u is obtained by restriction of that 
defined by 1 - 5 c  (from functions of v to functions of u). (The term ' reduct ion '  
would be appropriate if we were thinking in a geometric, rather than algebraic, 
context.) We refer to Sect. 6 for a detailed explanation of all this. 

We shall generalize everything we have said so far to all values of n. Here we 
just point out the two main clues as to how the generalization is to be done. 
First, if we formally factorize the Schr6dinger operator  

then u and v are related by the 'Miura  transformation'  (1.6). We are not sure to 
whom this observation should be credited, but it is certainly to be found in the 
paper of Adler and Moser [16]. Secondly, the modified KdV equation has a 
matrix Lax representation in which 

~ 0 

In the general case we shall introduce 'modified'  variables v~ . . . .  ,vn x by 
splitting the operator (1.1) into linear factors, and the modified Lax equations 
will be based on a first order operator with n x n matrix coefficients. 

Here are some remarks to orient the reader among the various sections. The 
modified Lax equations are defined in Sect.4; the definition depends on some 
very simple matrix algebra involving 'circulants ' ,  which is set out in Sect. 2. Our 
main theorem on the second Hamil tonian structure is in Sect. 8. The intervening 
sections are of a trivial and/or expository nature. Section 3 reviews the general 
theory of Lax equations (following [-15]) and discusses 'specialization'  of the 
basic operator L. The point is that in the general theory the coefficients of L are 
supposed to be independent variables; but in practice we often want to consider 
operators for which that is not the case. Some parts of the general theory carry 
over automatically to a specialized L, but others cause problems. Sections 5-7 
could be regarded as a quick introduction to the Hamiltonian formalism. 
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Section 5 contains definitions and examples. We have formulated the definitions 
in the minimum generality adequate for our purposes; for example, there would 
be no difficulty in working with, say, C * functions rather than polynomials, 
which would put us essentially in the framework of [11], Chap. 1. Section6 
discusses the process of restricting Hamiltonian structures. We should emphas- 
ize that a structure obtained by restriction is automatically Hamiltonian (pre- 
serves brackets); in Sect. 8 we show that the second Hamiltonian structure for 
Lax equations arises in this way, so we obtain a proof that this structure actually 
is Hamiltonian; this proof is quite different from that of Gel'land and Dikii [5]. 
The compatibility of the two Hamiltonian structures for Lax equations (see [5, 
6, 10]) is a trivial consequence of the fact that the second structure is Hamil- 
tonian (see Sect. 5, Example 6), so we have a new proof of that too. Section 7 
explains why Lax equations have these two Hamiltonian structures. The expo- 
sition essentially follows [l  1], with appropriate modifications to take care of the 
matrix case (which we need). 

Sections 9 and 10 give the proofs of two comparatively technical results used 
in Sect. 8. Then finally, in Sect. 11 we consider what happens if we abandon the 
assumption that the second coefficient u, 1 of the operator (1.1) should vanish. 
The restriction u , _ l = 0  is a natural one for many purposes, but for the 
discussion of the second Hamiltonian structure the general case U , _ l + 0  is 
actually easier (compare Examples 4 and 5 in Sect. 5). In the case u,_ 1 4:0, our 
main result can be formulated very simply as follows. Recall that we are dealing 
with Hamiltonian structures on spaces of coefficients of differential operators. 
Then the second Hamiltonian structure is characterized by the following proper- 
ties: 

(i) for a first order operator { + x, it is just - 
(ii) the composition of operators is a 'canonical transformation'. 
We mention briefly two other applications of the idea of 'modification'. The 

first concerns 'B~icklund transformations': as is well known (see [4]), in the KdV 
case (n=2) these are closely connected with the fact that the modified KdV 
equation (1.3) is invariant under v~--~-v. For general H, our modified equations 
are invariant under vi~-~m~vi, where c0 is an n th root of unity. Second, one 
can discuss systematically the hierarchies of Lax equations based on certain 
specialized operators L obtained by imposing relations among the ' roots '  of 
the basic operator (1.1). The simplest examples would be when n = 3 ;  then we 
should obtain hierarchies of Lax equations based on the operators 

L=~3+u~+~u~,  ~=0,  �89 1. 

(The three values of ~ correspond to the three roots of L vanishing. The 
equations with ~ = 0 or 1 coincide, so there are only two hierarchies.) 

We should like to draw the reader's attention to two recent short papers [17, 
18] which are closely related to our work. We saw these papers only during the 
revision of our manuscript (August 1980). 

This work arose out of conversations between the authors at the Workshop on Non-linear Waves, 
Clarkson College, Potsdam, N.Y. in July-August 1979. We should like to express our appreciation 
to the organizers of that conference for their hospitality. 
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2. Cireulants 

Let A be an associative, but not necessarily commutative,  algebra over ff (in our 
application A will be an algebra of formal pseudo-differential operators). Let 
M ,  = M , ( A )  be the algebra of all n x n matrices with entries in A. We consider 
the map ~p: M,  --. M,  defined by 

(q~ = Xi+ 1.~+ 1, X e M , .  

(Here the subscripts are to be read modn.) It is easy to check that q~ is an 
algebra automorphism: indeed, ~o is just the inner automorphism of M, induced 
by cyclic permutation of the standard basis for A". The matrices left fixed by q~ 
are called circulants (see [-2]). For  example, a 3 x 3 circulant is a matrix of the 
form 

a 

c 

More generally, we want to consider the decomposition of M,  according to the 
different characters of the cyclic group of order n generated by ~o (obviously, ~p" 
is the identity). To make this explicit, we fix a primitive n TM root of unity, say 

co = exp (2 ~ i/n). 

(2.1) Definition. We say a matrix X E M , ,  is an cok-circulant if 

q0(X) = (ok X. 

More explicitly still, X is an (0k-circulant if it can be obtained from a 
circulant by multiplying the i th row (or column) by (0ik (we index the rows and 
columns by the numbers 0, 1 . . . . .  n - 1 ) .  For example, a 3 • 3 co-circulant is a 
matrix of the form 

(0c (0a cob . 

(0 2 b (02 C (02 

(2.2) Proposition. (i) Each X e M .  has a unique decomposition 

X = X o + X I  + ... + X , _  1 

with X k an (0g-circulant. 

(ii) The product o f  an (0k-circulant and an (01-circulant is an (0a+l-circulant. 

Briefly, we have a mod  n grading on M, (as indicated above, the grading 
really takes values in the character group of the cyclic group generated by ~o). 

We introduce the following notation: 

X = (0k-cirC(Xo, Xl, ..., X,_ 1) 
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means that X is the (unique) ~ok-circulant whose first row is the vector indicated. 
Let L be an to-circulant, say 

L=oJ-circ(v o, v 1 . . . .  , v,_ 1). 

For  k = 0, 1,.. . ,  n -  1 we define circulants L k by 

Lk = circ(vo, cok vl ' c92k v2, ... ' ~o~,- 1)k v,_ 1)- 

If f2 denotes the diagonal matrix 

f2 = diag(1, ~0, oo 2 . . . . .  (0 "-1 ) (2.3) 

it is easy to check that 

L=FaLo,  Lk = f2 -k  Lof2 ~. 

Using this, and the fact that  f2" is the identity, we get the next proposition. 

(2.4) Proposition. We have 

L " = L ~ _  1 ... L 2 L  1 Lo. 

This can be regarded as a non-commuta t ive  version of  the well known 
factorization for the determinant  of  a circulant in the case where A is com- 
mutat ive (see [2]). n- 1 

Finally, if X = circ(x o . . . .  , x ,_  1) is a circulant, we set s ( X ) =  ~" x k. 
o 

(2.5) Proposition. The map 

s: (circulants)-+ A 

is a homomorphism of  algebras. 

Indeed, s(X)  is just the eigenvalue of X corresponding to the eigenvector 
(1, 1, ..., 1)'. 

3. Lax Equations and the Problems of Specialization 

Let A now be an associative differential algebra over (E; that is, an algebra 
together with a derivation ~.: A - - , A .  We denote by A[~]  the algebra of  
(ordinary) differential operators  with coefficients in A: thus each element of  

r 

A[~]  has a unique representat ion in the form y aid_ i, aieA,  and the rules for 
0 

multiplying two such expressions follow from the basic one 

(3.1) ~ a = a ~ + ( ~ a ) ,  a e A .  

If A is an algebra of functions of  x and O=•/(?x, then A[~]  is just the usual 
algebra of  differential operators.  We denote by A [~, ~ -~]  the algebra of  formal 
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pseudo-differential operators obtained from A [{] by formally inverting ~. Each 
element X of A [~, {-~] has a unique representation in the form 

(3.2) X = f x i ~i, xi~A" 
- oc  

The rules for multiplying these expressions also follow from (3.1): for example, 
multiplying (3.1) on the right and left by ~-1, we easily find 

{ - m a =  ~( -1 ) i c~ ia?~- i -1 ,  aeA.  
i = 0  

(This rule explains why it is essential to allow infinite sums in A [~, ~- 1].) It 1s easy 
to check that the multiplication in A[~,~ -~] is associative (see, for example, 
[11]). Each element XeA[~.,  ~-1] has a unique decomposition 

X = X + + X _  

where X§ is a differential operator and X_ is an 'integral operator '  (involving 
only negative powers of {). If we write X in the form (3.2), then we have 

r 1 

x+ = Z x _  = Z 
0 - - 3 o  

Finally, the coefficient of ~-~ in the expansion (3.2) is called the residue of X, 
written res X. 

Throughout  this paper we shall be working with differential algebras of the 
form 

B = r [wClJ),..., w~J], j > 0 

(polynomials in independent variables w~ and their 'derivatives'; the derivation is 
defined by OwlJ)=wl j+l~, and as usual w~=wl ~ so that wlJ~=SJw 3. When it is 
necessary to indicate the variables we shall write this algebra as B(w I . . . .  , wN), or 
sometimes just B(w). We write Mt(B ) for the algebra of 1 x I matrices with entries 
in B(w); the derivation ?~ is extended to M~(B) so as to act on each entry 
separately. 

The theory of Lax equations starts out from a differential operator 
LeMt(B)  [g] : 

(3.3) L = U n ~ n - F U n _ l ~ n - l + . . . + u t ~ + U o ,  ui~Ml(B ). 

We assume that the two leading coefficients satisfy the following conditions. 

(3.4)(i) 7he first  coeJficient u, is a constant diagonal matrix 

u .  = d i a g  (c 1 . . . .  , q )  

where the c~ are all non-zero, and c a :4= c~ if ct # ft. 
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(3.4)(ii) 7he diagonal entries in the second coelfi'cient vanish: 

Un_ 1.x~ = 0  �9 

The reason for these assumptions (apart from the fact that they are satisfied 
in all the examples of physical interest) will become clear below. The assumption 
that the c~ be distinct is in fact quite inessential; we make it just to introduce 
some verbal simplifications in what follows. The case when some or all of the c~ 
are equal is treated in [15]. 

In the general theory of Lax equations (for example in [15]) it is assumed in 
addition that the (non-constant) entries u~,~e in L are differentially independent, 
that is, that there are no polynomial relations among the ul!~. In that case one 
might as well start off from the algebra B(u~.~), as is done in [15]. We shall refer 
to an operator (3.3) in which the u~.~t ~ are differentially independent as a 'general '  
L. On the other hand, in practice we often want to form Lax equations from an 
operator L in which the u~.~j~ are not differentially independent; we shall refer to 
such an operator as a 'specialization ~ of the general L. (We prefer this to the 
commonly used term 'reduction'.) Formally, we could define a specialization to 
be a homomorphism of differential algebras 

tp: B(ui.~/3 -~, B(u' 1 . . . . .  WN). 

but since such a homomorphism is determined by its values on the u~.~t ~, and 
these may be chosen arbitrarily, giving q) is equivalent simply to writing down 
an operator of the form (3.3). Perhaps the simplest example of a 'specialized' L is 
the operator 

This L gives rise to the hierarchy of modified KdV equations. But since the 
entries v, - v ,  are not differentially independent, the theory of [15] does not 
apply immediately. 

Let us review the general theory, paying attention to any problems caused by 
specialization. Given an operator L of the form (3.3), the associated Lax 
equations have, by definition, the form 

(3.6) ?tL = [P+, L] = [L, P ] ,  

where PeMI(B)[~,4-t] is an operator  that commutes with L, so that the two 
sides of (3.6) are indeed equal. To describe all such equations we have therefore 
to determine the centralizer Z(L) of L in the algebra M~(B)[~, ~ 1]. That is done 
in [15] for the general L, and the argument is unaffected by specialization. It 
goes as follows: we find an ' integral opera tor '  K of the form K = 1 + Z i ~ - 1 + . . .  
such that K - 1 L K = u , ~  n. It is easy to see that the centralizer of u,~" consists of 
the operators Po each of whose coefficients is a constant diagonal matrix. Thus 
Z(L) consists of the operators P=KPo K-~. The operators P with Po a mo- 
nomial, Po=p~ r (p a constant diagonal matrixL are called homogeneous. The 
reason is that in the general case (ui.~ differentially independent) one can 
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introduce a grading on MI(B)[~,~ -1] in which ~ has degree l and ul!~t ~ has 
degree n- i+j ,  so that L is homogeneous of degree i1; then the operators P just 
described are indeed homogeneous with respect to this grading. (Strictly speak- 
ing, we are using the word 'grading '  a bit loosely, because there are infinite sums 
involved.) In the case of a specialized L there might in general be no such 
grading, that is, if ~o: B(u) --,B(w) is the homomorphism defining the specializa- 
tion, there might not be any grading on B(w) making ~0 a graded homomor-  
phism; however, for the specializations of interest in practice there nearly always 
is such a grading. For the operator  (3.5), for example, we give v degree 1. Thus 
the reader may safely think of 'homogeneous '  as referring to a natural grading 
determined so as to make L homogeneous of degree n. 

(3.7) Remark. The idea of finding an operator K that conjugates L into its 
leading term plays, in some guise or other, a basic role in most work on this 
subject. We can now understand the conditions (3.4) better: given (3.4)0), the 
condition (3.4)(ii) is just what is needed to ensure that we can find the desired K. 
We take this opportunity to correct the incautious remark 2 in Sect. 6 of [15]: the 
condition that all the c~ be non-zero is quite essential for the construction 
sketched above. That  is clear from a glance at the equations determining the 
coefficients Zi of K (Eqs. (5.4) in [15]). 

(3.8) Remark. In the sketch above, we have suppressed the main difficulty, 
namely that the entries in the coefficients of K do not lie in our original algebra 
B, but in a larger one. It is thus not obvious that the entries in the operators 
P =  KPoK -1 lie in B: but it is one of the main results of [15] that this is in fact 
the case. 

To sum up, then: for each constant diagonal matrix p and each integer r, 
Z(L) contains a unique homogeneous operator  P with leading term p ~ ;  and 
Z(L) consists of the linear combinations of these. For each P~Z(L), we can try 
to form the Lax equation (3.6). It is at this point that specialization makes a 
difference. Since P and L commute,  we have 

[P+, L] = [L, P ]  

which shows that this expression is a differential operator of order at most n - 1, 
and also that the diagonal entries in the coefficient of ~n-i vanish. This shows 
that in the general ease each P~Z(L) gives us a sensible Lax equation (3.6). 
But if L is a specialization, these equations will in general be inconsistent. 
In the case of the operator  (3.5), for example, the general theory assures us that 

wi,  a wa s b0 an oper  o  order zero form  )but doe  [P~, L] 

not guarantee that b = - a ,  which we need if Eq.(3.6) is to make sense. In 
general, whatever relations there may be among the coefficients of L, we shall 
not be happy with Eq. (3.6) unless the same relations are reproduced among the 
coefficients of [P+, L]. More formally, we make the following definition. 

(3.9) Definition. Given a specialized L, we say an operator  P~Z(L) (or the 
corresponding equation (3.6)) survives the specialization if there is an evo- 
lutionary (that is, commuting with ~) derivation (?, of B so that (3.6) holds. 

We then have the following basic problem. 
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(3.10) Problem. (First problem of specialization.) Determine which operators P 
survive a given specialization. 

Next we consider the conservation laws. In the general case (see [15], (4.1)) 
one shows that for each QeZ(L), the trace t r resQ is a conserved density for all 
the Eqs. (3.6), that is, ~3, tr res Q~Im& It follows automatically that for a spe- 
cialized L, the t r resQ will still be conserved densities for any Eqs.(3.6) that 
survive the specialization; the problem now is that they may be trivial; that is, 
we may have t r r e s Q e I m &  This is perhaps best viewed in terms of the map 
B(u)- ,  B(w) defining the specialization: there is no reason why the induced map 
B(u)/Im ~--~ B(w)/lm (~ should be injective. So we have another problem. 

(3.11) Problem. (Second problem of specialization.) Determine which conserved 
densities tr res Q survive a given specialization (that is, do not become trivial). 

In studying this problem it is of course helpful to know that (for Q of 
positive order) the conserved densities tr res Q are not trivial to begin with, for 
the general L (except when Q is an integral power of L). This is not proved 
anywhere in the literature (it was conjectured in [15]), but it is a simple 
consequence of the fact that the general Lax equations (3.6) can be written in 
Hamiltonian form. We shall give the argument at the end of Sect. 7. 

Naturally, one can formulate many more 'problems'  associated with 
specialization, but the two above will do for the moment. We do not know any 
general approach to these problems, but we can solve them for most of the 
specializations that interest us in practice. Sections 4 and 8 will illustrate this. 

4. The Modified Equations 

We shall work over the algebra B=B(l: l . . . .  ,r,, 1) of differential polynomials in 
n -  1 variables r i. Combining the trains of thought in Sects. 2 and 3, we consider 
the (specialized) first order differential operator 

(4.1) L=a)-circ(~, v I . . . . .  v, l). 

Thus if 11 =2, L is the operator (3.5). If ~1 = 3, then we have 

L =  ~o ~ + e)r 2 0 ~oz' 

0 \(O2/71 (D2U2 0 / 

As in Sect. 3, let Z(L) be the centralizer of L in the algebra M,,(B)[{, ~ 1]. 

(4.2) Proposition. U L is given by (4.1), then Z(L) contaitls a unique homogelwous 
element P o1" each order r with the properties 

(i) P = I d . { ~ +  (lowerorder terms) 
(ii) P is a circuhmt 

(iii) the Lax equation formed Jkom P is consistent; that is, there exists an 
evolutionary derivation P, oJ B(v) such that (3.6) holds. 

Proof We recall from Sect. 3 that 'homogeneous'  refers to the natural Z-grading 
such that { has degree 1 and vl j) has degree j + t. We know that there is a unique 
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homogeneous P~Z(L) satisfying (i), so we have only to see that this P satisfies 
(ii) and (iii). Now, there is also the modn grading given by the decomposition 
into ~ok-circulants (see (2.2)); in fact it is easy to see that we have a bigrading, 
that is, each operator in M,(B)[~, ~ 1] has a unique deconaposition as a sum of 
components that are homogeneous in both senses. Since L is bihomogeneous, 
when we decompose an element of Z(L) in this way each component will still lie 
in Z(L). Now, an operator is clearly an cok-circulant if and only if each of its 
coefficients is; and a 7Z-homogeneous element of Z(L) is uniquely determined by 
its leading term. Hence a Z-homogeneous element of Z(L) is an ~ok-circulant if 
and only if its leading term is. Since the identity matrix is a circulant, it follows 
that the homogeneous element P~Z(L) satisfying (i) also satisfies (ii). Finally, to 
prove (iii), we note that the consistency condition for the Lax equation (3.6) 
formed from P is just that the right hand side [P+,L] should be an ~o-circulant 
(as is the left hand side ~,L); that is clearly the case if P (hence also P+) is a 
circulant. That proves (iii). Indeed, [P+,L] is an oJ-circulant if and only if any 
non-circulant part of P contributes zero to the Lax equation, so we have solved 
the 'first problem of specialization' (3.10) for this L: only circulant operators 
PeZ(L) give non-trivial consistent Lax equations. 

Remarks. (i) Of course, if r is a multiple of n, the operator P described in (4.2) is 
just a power of L, so the corresponding Lax equation is trivial. 

(ii) Instead of using the theory of [15], we could also construct the necessary 
operators using the technique of 'fractional powers': the operators P of (4.2) are 
just the admissible fractional powers of L" in the sense of [1 I]. 

The Eqs.(3.6) formed from the circulant operators of (4.2) constitute our 
hierarchy of 'modified Lax equations'. To see why we call them that, define a 
differential operator L with scalar coefficients by L=s(L"),  where s is the 
summation map of Sect. 2. Of course L" is a circulant, by (2.2)(ii); its leading 
coefficient is the identity, hence its second coefficient vanishes, so that L is an 
operator of the form 

L = ~ " + u , _ 2 ~ " - 2 + . . . + u l ~ + U o  

with ui~B(v). (To avoid confusion with the notation of Sect. 3, note that these ui 
are scalars, not matrices.) 

(4.3) Proposition. (i) Let P be the circulant of order r described in (4.2); set 
P = s(P). Then P is the operator of order r in the usual hierarchy formed from L (in 
particular, the coqfficients of P are differential polynomials in the ui). 

(ii) / f  the variables v i satisfy the mod!fied Lax equation (3.6), then the variables 
u i satis]), the (scalar) Lax equation 

a,L = [P~, L]. 

Proof Since s is a homomorphism (see (2.5)), the equation [P, L"] = 0 implies that 
[/~, L] =0;  since /~ is homogeneous of degree r with leading term ~r, (i) follows. 
Part (ii) is also a trivial consequence of the fact that s is a homomorphism. 

Finally, we apply the homomorphism s to the factorization of L" into n 
circulants (see (2.4)) to obtain the relationship between the 'original' and 
'modified'  variables in a more convenient form. 
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(4.4) Proposition. The operator L splits into linear factors 

L = ( ~ + y . _  0 . . .  ( ~ + y l ) ( ( + y o )  
where 

Yk  "= o ' )kVl  -}- (D2R 1)2 ~'- "'" "~- O)(n - 1 ) k V n _  1" 

Thus the variables u i are some kind of 'non-commutat ive  elementary sym- 
metric functions' in the variables vl. 

Examples. In the case n=2 ,  the variables u and v are related by the Miura 
transformation (1.6). The circulant P+ of degree 3 described in (4.2) is 

p+__circ(~3 3 2 3 , -~v 3-~v~, ~v'~ +�88 

The Lax equation formed from 4P is the modified KdV equation (1.5). Also 

P+ =s(P+)=~a +~(v'-v2)~ + 3v"-~vv'=~a +~u~ +�88 

the scalar Lax equation formed from 4P is the KdV equation (1.3). 
In the case n=3 ,  explicit formulas are already quite unenlightening. For 

example, the relationship between the two sets of variables is 

U 1 = ( 1 -  O.)2)V'l + ( 1  - -  (.D)U2 --  3 U1122 

Uo = ~1 + v'; + (v~ + v 2 ) [ ( ~ -  1)~', + (~o ~ - 1 ) 6 ]  + v~ + v~. 

5. Hamiltonian Structures 

Let B=B(w~ . . . .  ,wN) be a differential algebra of our usual kind (see Sect. 3). We 
first recall the definition of adjoint operators. The adjoint Q* of a (scalar) 
differential operator QeB[~] is characterized by the two properties (i) .  is an 
ant i-automorphism of B[~] ( 'anti- '  means that (QR)*=R* Q*) (ii) if feB, then 
( f ~ ) * = - ~ f  If l is a matrix of differential operators, then l* is defined by 
(l*)ij=l* i. The main property of l* is the following: if F, G are column vectors 
of elements of B, then 

(5.1) (I*F)'G=--U(IG) m o d I m &  

(As usual, the superscript t denotes the matrix transpose.) Intuitively: the 
' integrals '  of the two expressions in (5.1) are equal. 

Now let l be an N x N skew matrix of differential operators (l* = - l). We are 
going to use 1 to assign to each f e b  an evolutionary derivation c3 I of B. We 
write w for the column vector (wl,...,wfl, and similarly 6f/6w for 
(6f/6w1, ...,6flOwN) t. Here 6/6w i is the partial variational derivative 

af  _ Y , ( -  O)J ~ w0Jij ~ . aWl j 

Then given feB,  we define O I to be the evolutionary derivation of B whose 
values on wl, ..., w~. are given by 
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The value of c~ I on any function g~B is then given explicitly by the chain rule: 

(5.2) asg = ~ ~a w ~J~ ag t f iJ (j) 
i , i  ~wi 

We think of c~ I as the H a m i l t o n i a n  vector  field corresponding to J~ though the 
term ' H a m i l t o n i a n '  is not justified unless l satisfies the extra condi t ion for- 
mula ted  below (5.5). 

Given  f , g ~ B ,  we define their Poisson bracket  (with respect to l) by 

(5.3) {f 'g} = \awl " 

Since the var ia t ional  derivatives vanish on the image of c~, the derivat ions (3I and 
the brackets  {f, g} depend only on the class of  f,  g in B/OB. We regard the 
brackets  too as taking values in B/~?B; it then follows from (5.1) that  the bracket  
is skew-symmetr ic .  The  Defini t ion (5.3) is justified by the next lemma,  which 
follows at once f rom (5.2) and ' in tegra t ion  by parts ' .  

(5.4) L e m m a .  In B/~B, we have 

{f ,  g} = g = - a .  f .  

Now we can formulate  our  ma in  definition. 

(5.5) Definition. We say the skew ope ra to r  l is Hamihonian if for all J~g~B we 
have 

a=]. 

Before giving examples,  we should like to c o m m e n t  on the intuitive meaning  
of our  set-up. We think of  B, or  possibly BlaB, as being like the a lgebra  of  
smooth  functions on a manifold;  we then think of  #I as a vector  field and the 
m a p  f~-~6f/bw as the exterior  derivat ive or  'g radient ' .  It is then natural  to think, 
more  generally, of any  N- tuple  x=(x l ,  ...,x~,)' of elements  of  B as a 1-form, and 
assign to each 1-form x the vector  field 0 x defined by 

c3xw=lx. 

Thus  the basic s tructure we are s tudying is a m a p  from 1-forms to vector  fields 
(satisfying certain conditions). Our  skew matr ix  l should therefore be thought  of  
as ana logous  to a skew form on the co tangent  bundle  (not the tangent  bundle) of  
a manifold.  1 This is something  rather  more  general than  what  is usually 
encountered in Hami l t on i an  mechanics ;  there one is given a 2-form, that  is, a 
skew form on the tangent  bundle,  and it is necessary to assume that  it is non- 

That is, 1 is like a skew tensor of the opposite type from a 2-form. It is for this reason that we 
avoid the term 'symplectic' 
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degenerate in order to invert the corresponding map (vector fields) ~ (1-forms). 
The best finite-dimensional example of our situation is provided by the dual of 
a Lie algebra (see [7], Chap. 2, Sect. 15). There one has a natural skew form on 
the cotangent bundle, and it is not non-degenerate. As is well known, this form 
induces a symplectic structure in the usual sense on each co-adjoint orbit, but 
for our present purposes that is an unnecessary refinement. We refer to [6] for a 
more detailed discussion along these lines. 

Now we give some examples of Hamiltonian structures. 

Examplel. Let l be any skew matrix of differential operators with constant 
coefficients. Then l is Hamiltonian (see, for example, [11], Chap. 1, (7.13)(a)). 

The rest of the examples are motivated by the theory of Lax equations (see 
(7.13) below). 

Example2. (First Hamiltonian structure for Lax equations, case un_ 1 +0). We 
take B=B(uo, . . . ,u ,_ 1). Let L be the differential operator 

L = ~ " + u . _ I ~  " - 1  + . . .  + u  o. 

We assign to each ' l - f o rm '  x = (x o . . . .  , x,_ 1) the (formal) integral operator 

X=g,-mxo+C--2Xl+. . .+g-"xn 1. 

Then the vector field ?~x corresponding to x is defined by 

(5.6) '?x L = [L, X]  + 

where as usual (?x is understood to act coefficient-wise on L. It is clear that the 
mapx~--~?~ is given by a certain matrix of differential operators l, which we shall 
not write out explicitly. This matrix is Hamiltonian. 

This Hamiltonian structure has the following, rather silly, properties: (i) ?~x 
does not depend on the last 'co-ordinate '  x,_ ~ (ii) we always have ~?~u,_ 1 =0 ;  
intuitively, all the Hamil tonian vector fields are tangent to the 'sub-manifold '  
u,_ 1=0. It is thus more sensible (as is usually done) to restrict this structure to 
the submanifold u,_ 1 = 0. 

Example3. (First Hamiltonian structure for Lax equations, case u,_ 1=0). We 
take B = B(u o . . . . .  u,,_ 2). Let L be the differential operator 

L = ~ n  + U n _  2 ~ n -  2 q - . . .  + h i  O. 

We assign to each 1-form x = ( x  o ... .  ,x,,_2) the integral operator 

X = ~ - 1 x 0  + - , . - ~ - ~ - ( n - 1 ) x n  2" 

The vector field ~x is defined by the same formula as before (5.6). The matrix l 
implementing this map x ~--~x is Hamiltonian. 

The fact that the operators of examples 2 and 3 are Hamil tonian has been 
proved many times, originally by horrifying computat ions (see [11]): better 
proofs can be found in [1, 6, 9]. The present paper incidentally provides yet 
another proof, because the fact that the second structure is Hamil tonian implies 
trivially that the first is too (see the discussion of Example 6 below). 
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E x a m p l e 4 .  (Second Hamil tonian structure for Lax equations, case u,_ 1 4:0.) We 
take B, L and X as in Example 2, but now ~= is defined by 

(5.7) a x L = ( L X )  + L - L ( X L )  + = - ( L X )  _ L + L ( X L )  _. 

(The first expression shows that  OxL is a differential operator, the second that it 
has order at most n - 1 ,  so the formula makes sense.) Again it is clear that the 
map x w-*0x is given by some matrix 1 of differential operators, more complicated 
than before; the interested reader will find it written out explicitly in [5]. 

Notice that now we do not always have 8~u,_ 1 =0,  so this structure cannot 
be restricted to u,_ 1 = 0 as easily as before. 

E x a m p l e  5. (Second Hamil tonian structure for Lax equations, case u,_ 1= 0.) We 
take B and L as in Example 3, but we can not quite take X as in Example 3, 
because we want to define 8x by (5.7) as before, and this expression may still 
have order n -  l, not n - 2  as we need. We proceed as follows. It is easy to check 
(from the second expression) thal the coefficient of r 1 in (5.7) is res [X, L]. So 
given a 1-form x = (x o . . . . .  x ,_ 2), we set 

(5.8) X = ~-~Xo + ... + ~-~"- l~x,_ 2 + ~ - "x ,_  1 

where x,_ ~ is determined by the condition res [X, L] = 0, or, explicitly, 

(5.9) c?x,_ 1 = (l/n) res [3-1Xo + . . .  + {-~ , -  1)x,_ 2, L]. 

Since the right hand side here is in Imc~ (see [11], Chap. 2, (3.3)), this equation 
does indeed determine an element x,_ 1 eB (uniquely if we agree that it is to have 
zero constant term). Also, it is clear from (5.9) that x,_ 1 is a linear combination 
(with coefficients involving the ui) of derivatives of x0, ..., x ,_ 2. It follows that if 
we define X by (5.8) and (5.9), and c~ by (5.7), then the map  x~-~?~ is still given 
by a matrix 1 of differential operators, this time so complicated that even 
Gel 'fand and Dikii [5] do not care to write it out explicitly. 

The fact that the operators I in Examples 4 and 5 are Hamil tonian was 
conjectured by Adler [1] and first proved by Gel 'fand and Dikii [5], essentially 
by direct calculation. We shall give a different proof  in Sects. 8 and 11. 

E x a m p l e &  (Compatibility of first and second Hamil tonian structures for Lax 
equations.) Let l~, l 2 be the skew operators of Examples 2 and 4 (or 3 and 5). 
Then for any scalars a, fl, the operator c~l~ +/}I 2 is Hamiltonian. 

This is a trivial consequence of the fact that I 2 is Hamiltonian. For if in the 
expression ( L X ) + L - - L ( X L ) +  (see (5.7)) we replace L by L + 2  ()~ a scalar) the 
effect is just to add on a term 2 [ L , X ] + .  That  implies that if in the operator 12 
we replace u o by Uo+2, we get 12+211: this operator is therefore Hamil tonian 
(given that 12 is). (That could be regarded as a very special case of (6.1) below, 
the Fr6chet Jacobian here being the identity.) Finally, given that the operators 
12+2/1 are Hamil tonian for all 2, it follows at once that 11 is too. 

N o t e  on signs. Our definition of the second Hamil tonian structure has the opposite 
sign to that of Gel 'fand and Dikii [5]. Changing the sign would improve 
our main results (8.6) and (11.5), but then a minus sign would appear in (7.13)(ii), 
which seems unacceptable. 
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Perhaps an explicit formula would be helpful at this point. Let us calculate 
the matrix l of  Example 5 in the simplest case n =2 .  So we have L =  ~2 q-b/, 
X =  ~-  1 Xo + ~-2 Xl ; a short calculation yields 

( L X )  + L -  L ( X L )  + =(~2x o - 20xl)  ~ + ~33x o - c92xl + 2u?,x  o + Ou. x o. 

To make  this have order zero we must  take x t =�89 o, and then 

0xL = ~03x0 + 2u0x  o + cqu .x o = lx0, 

where I is the opera tor  �89 + u~, + {?u. This is therefore the operator  defining the 
second Hamil tonian  structure for n = 2. 

Before leaving the examples we comment  quickly on the generalization to 
the case where L has matrix coefficients. Examples 2 and 3 present no problem, 
and in Example 4 the definition presents no problem. However,  more  work 
would be needed to prove that  the skew opera tor  arising in Example 4 is 
Hamil tonian.  We conjecture that it is, and we see no obstacle to proving it 
either by our method or  by the method  of Gel ' fand and Dikii [5] ;  but we have 
not  checked the details. (To use our  method,  we should start off from an 
opera tor  of the kind (4.1), but now each entry would be a matrix block. This 
me thod  would not be any use in the case where L has order 1, but  in that case it 
is easy to check directly that the relevant skew opera tor  1 is Hamil tonian,  for 
example using the criterion of  Gel ' fand and Dor fman  [6].) 

If however  we try to generalize Example5  to the matrix case, we meet  a 
different problem. Let L be a matrix opera tor  of  the form (3.3), satisfying 
condit ions (3.4). Let us try to imitate the procedure of  Example 5. To a 1-form x 
we shall now associate an opera tor  

X = ~ - l X o + . . . + ~ - " x , _ l ,  

where the diagonal  entries x ,_  1,~ have to be determined so as to make  Eq. (5.7) 
consistent. As in the scalar case, this condit ion gives equations ~x,_ L ~ , = . . . ,  but  
now the three dots are not necessarily in Im c9. The reason is that in the matrix 
case it is only the trace of the residue of a c o m m u t a t o r  that is in Im 0, not  the 
individual entries. It follows that  in the matrix case with u,_ ~,~ =0 ,  the second 
Hamil tonian  structure does not  exist, at least in the (admittedly rather narrow) 
sense we have been discussing (one would have to let the matrix l involve 
' integrat ions ' ,  a possibility we prefer not  to contemplate  here). 

6. Restriction of  Hamiltonian Structure 

In this section we should like to discuss the functorial properties of  Hami l ton ian  
structures, that  is, how they behave with respect to h o m o m o r p h i s m s  of  differen- 
tial algebras 

q) : B ( u  t , . . . , u r ) - - -~  B ( v  l . . . .  , G ) .  

Unfortunately,  since derivations, like vector fields on manifolds, are not func- 
torial, Hami l ton ian  structures will not  be either. However,  the case when q~ is 



420 B.A. Kupershmidt and G. Wilson 

injective is easy to analyse. Suppose that is the case (so that r<s: in the 
examples that will interest us r=s) ;  we shall use q~ to identify B(u) with a 
subalgebra of B(v). Let l be a skew matrix defining a Hamiltonian structure on 
B(v). Then under certain circumstances l will induce a Hamiltonian structure on 
B ( u ) .  

(6.1) Proposition. Let D denote the Fr~chet Jacobian of u with respect to v 
(defined below). Set r=DID*. In general this will be a matrix of differential 
operators with coefficients in B(v); suppose however that 1 and (p are such that all 
the coefficients lie in the subalgebra B(u). Then 

(i) fdefines a Hamihonian structure on B(u) 
(ii) for feB(u) ,  the Hamiltonian vector field ~f on B(u) determined by ~`is just 

the restriction to B(u) of the Hamihonian vector field O ocl) on B(v) determined by 1. 
(ln particular, all the derivations do(l) preserve B(u).) 

We naturally say that the Hamiltonian structure defined by the opera tor / ' in  
(6.1) is obtained by restriction of the one defined by I. The simplest non-trivial 
example of this situation is the one discussed in the introduction" let r =s  = 1, 
and let q~' B(u)--,B(v) be defined by (p (u )=Sv-v  2 (the Miura transformation). 
Let l=  -�89 Here D = O - 2 v ,  so an easy calculation gives 

D l D * = ( O - 2 v ) ( - � 8 9 1 8 9  +uc?+c~u. 

Proposition (6.1) therefore shows that this operator is Hamiltonian: as we have 
seen, it is the operator of Sect. 5, Example 5 in the case n = 2. 

Proof of (6.1). If f eB(u )  we shall write f instead of q~(J') (thus f is just f regarded 
as a function of the variables vl). First recall that the Fr6chet Jacobian is the r x s 
matrix of differential operators with entries 

D/i= ~ ~ 0  k 
' k > o ~ V j  " 

Its main properties are the following. 

(a) Let (?t be any evolutionary derivation ( f  B(v)," then 

Otu =DOry. 

(b) Let feB(u) ,  and let f as above be the corresponding element of B(v). 7hen 

6 f  _ D , b f  
6v 6u" 

Property (a) follows at once from the definition of D, and justifies the term 
'Jacobian' .  Property (b) can be deduced from (a), or, better, from the fact that 
the ' total variation operator '  6 (see Sect. 7) is functorial (commutes with q~). 
Property (b) holds for any homomorphism % not necessarily injectivej 

Now let feB(u).  Then using (a) and (b) above, we have 

a~ u = D c?l v = D l ~vb f --_ D l D , 6 f 6u = l ~u,~b f 
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which proves (ii). The operator/ ' is  obviously skew; to see that it is Hamiltonian, 
note first that for any f, geB(u) we have 

so that 

That proves (i). 

{f,g} =asg =ay g= b(g}, 

als, g} = a{s,~l IB(u)= [@ ag]l B(u)= [a s, a~]. 

7. Hamiltonian Structure of Lax Equations 

We start off from the usual algebra of differential polynomials B = B(wt,..., wN). 
We let f2=OI(B) denote the free B-module on the symbols 6wl j>, j > 0 ,  with 
'universal derivation' (total variation, exterior derivative on the jet space) 
6: B~g21(B) defined by 

6f=y aw? 
i, j (~ !A~ i "1 

We extend ~3 to a derivation of f2, commuting with 6; then the variational 
derivatives 6f/6wf are characterized by 

(7.1) 3 f - ~ 6 f 6 w  m o d I m &  
i ~t4 ' i  

We denote by M the algebra Mt(B)[~,~ -1] of l xl  matrices of formal pseudo- 
differential operators with coefficients in B, and by M(f2) the M-bimodule of l x l 
matrices of operators with coefficients in f2 ( 'bimodule' means that we have 
(obvious) right and left actions of M on M(f2), and these actions commute). We 
extend 0, 6 to act coefficient-wise on matrices of operators; then we have a 
commutative diagram 

M ~ M(g2) 

+1 1 ++ 
M ~ M(f2) 

in which all the maps are derivations (in appropriate senses). 
If CEM, D~M(O), we can form the 'commutator '  

(7.2) Lemma. We have 

[ C , D ] =  CD- DC~M(f2). 

tr res [C, D] e0fL 

(Here as usual res singles out the coefficient of ~-1.) 
Now let LeM be a differential operator of the form (3.3), satisfying the 

conditions (3.4). The description of the centralizer Z(L) of L in M given in Sect. 3 
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can be rephrased as follows. Let X~ 1 denote the (unique) homogeneous element 
of Z(L)  with leading term E , , f f ;  that is, if K is the operator  of Sect. 3 that 
conjugates L into its leading term, we have 

X~ "~ = KE=~ ff  K -  1. 

(Here and below, E=~ denotes the matrix with 1 in the place (g, fl) and zeros 
elsewhere.) Then Z(L)  consists of the linear combinations of these elements X~'l; 
and an element of Z(L) is homogeneous of degree r precisely when it is of the 
form V n X tr~ z., . . . .  p, scalar constants. We write X~ instead of X~ u. If r is positive, 

then X~ 1 is just X~; for r < 0  that is not strictly true, since X,  is not invertible. 
However, we have the following. 

(7.3) L e m m a .  For any integers r, s, we have 

X~ X~ - X ~  

(ii) / f~=f l ,  then ~ , l r E ~ l _ n  

Both parts of the lemma follow at once from the corresponding assertions for 
the operators E=,ff, conjugate to 1(E~1 

In the next few lemmas we shall use the following notation: if R and S are 
elements of M(~), we write R -  S to mean: R -  S is a sum of commutators  of the 
form [Xtd~,D], DeM(s Lemma (7.2) shows that this use of the symbol - is 
compatible with our previous one, in the sense that if R -- S then tr res R = tr res S 
(mod 0fl). 

(7.4) L e m m a .  I f  R =- S, then for any ~, r, we have X~t~l R =- X~I S and RX~L'I =- SX~I. 

Proof  This follows at once from the fact that all the X~ ~j commute with each 
other, and the relation a[b, c] = [b, ac], valid if a and b commute. 

(7.5) L e m m a .  For any integer r, we have 

aX~ ~ - r X~'- u aXe. 

Proof  Suppose first that r > 2. Since 6 is a derivation, aX~ is a sum of r terms of 
r - i - 1  the form X~, 6X=. X ,  . But each of these clearly differs from X;-1  r by a 

commuta tor  of the desired form. 
Now let r =  1, so we have to prove that a X ~ - X ~  ~ Applying 6 to the 

relation Eol X~=X~ X,,  we get 

6x~ = x~ ~ ax~ + 6x[  ~ x~. 

In view of (7.4), it is thus enough to show that 6X~m-=0, which is the case r = 0  of 
our lemma. To prove that, we apply 6 to the relation ~o1_ Eo~. X= - (X=  ) to get 

6X~ ~ =- n X~ ~ 6X~ ~ for all n > 2. 

Hence 6Xt~ ~ - O. 
It remains to prove the lemma for r < 0 :  we omit this argument, since we 

shall use (7.5) only for r > 1. 
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(7.6) Lemma. For any integers r, s, we have 
[rl ~ h i - -  �9 Is] - [r] (i) rX~ ~X~ = s  X ~  OX~ 

(ii) (f o~ 4= fi, then X~['] aXle" [q - 0 .  

Proof From (7.5), it follows that the two sides in (i) are both congruent to the 
expression 

r s X~+S-l[ ax~. 

Part (ii) also follows at once from (7.5) and (7.3)(ii). 
The next lemma is the crucial one that we have been aiming at. Our proof, 

like everything in this section, is modelled on the treatment of the scalar case 
(/=1) given in [-11]. 

(7.7) Lemma. Let P, Q~Z(L) be homogeneous of degrees r, s, respectively. Then 

r P 3 Q - s Q 3 P .  

Proof This follows from (7.6), since P and Q are just linear combinations of the 
elements X~ ~ and ~(~] respectively. 

(7.8) Corollary. Let P~Z(L)  be homogeneous of degree r. Then 

~5(LP) ==- (n + r)/n {SL. P. 

Proof Using (7.7) with Q = L, we find 

6 ( L P ) = 6 L .  P+ L.8P=(~L.  P +(r/n)6L. P. 

If P~Z(L)  is homogeneous of degree r, we set 

((n/r) tr res P, r > 0 
(7.9) HI" =),; 0, r<0 .  

If PeZ(L)  is not homogeneous, we define H e by adding (7.9) over its homo- 
geneous components. Then (7.8) and (7.2) imply the following. 

(7.10) Corollary. Let PeZ(L).  Then 

6HLe =- tr res(aL. P) rood Im ~?. 

This corollary can be used to calculate the variational derivatives ~SHL~,/6w ~ 
in terms of the coefficients of P .  Let us do this in the case of the 'general' L, 
that is, the u~,~p are differentially independent, so that we can work over the 
algebra B(u~.~p). For H~B(u~.~t~), let 6H/6u~ denote the matrix whose (~,fl) entry 
is 6H/6u~,~ (note the transposition of ~ and fi). 

(7.I1) Corollary. Let P~Z(L), L general. Let H=HLv  (defined as above). Then 

I 6 H  2 6H 6H 
p - + . . . .  
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(In the case ol the coeJficient of ~-~, since we are assuming tin_ 1,~=0, this has to 
be interpreted as meaning that the of[Zdiagonal entries are those indicated.) 

Proof We have 

i ,:qfl 

so (7.11) follows at once from (7.1), (7.10) and the obvious fact that 

�9 ~ . .  ( a b  if i=j, ~=~, fi=7 
(7.12) t r res (aE~i .~  -~ 1L ~o)=< 

;'~ (0  otherwise. 

(7.13) Corollary. (i) For general L, the Lax equations 

? , L = [ L , P  ] 

can be written in first Hamiltonian Jbrm (as in Sect. 5, Example 3) with Hamil- 
tonian HLp. (ii) In the case of scalar coefficients (l= 1), they can also be written in 
second Hamiltonian form (Sect. 5, Example 5) with Hamiltonian Hp. 

Perhaps (ii) deserves some explanation. In view of (7.11) it is clear that to 
have any chance of finding a Hamiltonian form for ~t L =  [ L , P ]  with Hamil-  
tonian Hp we must rewrite the equation in terms of Q = L- 1 p. That  is easy: 

~,L=[L,(QL)_]=[L,(Q L)_]. 

Since Q and L commute, we can also write this as 

?~tL=L(Q_ L)_ -(LQ_)_ L=(LQ_)§ L -L (Q_  L)+ ; 

we have arrived at the strange-looking expression (5.7) (with Q_ for X). The last 
expression shows that ~ L  in fact depends only on the first n coefficients of Q . 
Since the first n - 1  (right hand) coefficients are the c~Hp/bUi, and the n th 
coefficient obviously satisfies the consistency condition (5.9), part (ii) of (7.13) 
follows at once from the definition of the second Hamil tonian structure. 

For want of a better place, we indicate here how (7.11) implies that if P has 
positive order the conserved density H e for the general Lax equations is non- 
trivial (except when P is an integral power of L). For simplicity we give the 
argument in the scalar case ( l= 1). It is enough to show that if PEZ(L) is the 
homogeneous operator of the form P = f f + ( l o w e r  terms) and r is not divisible 
by n, then the conserved density resP  is non-trivial. Suppose it were trivial. 
Then (7.11) shows that the first n -  1 coefficients of (L- 1 p)_ would vanish; in 
particular, we should have r e s L - 1 p = 0 .  Repeating the argument, we deduce 
that the first n - 1  coefficients of the operators (L-qP)_ vanish for all q>__ 1. But 
one of these operators has leading term ~- ~, 1 < i_< n - l, a contradiction. 

In the matrix case a similar argument (a little more elaborate, especially if 
n =  1) shows also the linear independence of the conserved densities, as con- 
jectured in the last paragraph of [15]. 
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8. The Second Hamiltonian Structure 

We now return to the study of  the modified Lax equations constructed in Sect. 4. 
We begin by establishing the analogue of(7.1 1) for our  specialized L 

L = r v I . . . . .  v,_ i). 

For  each PeZ(L) ,  we have the 'Hami l t on i an '  Hp defined by (7.9): thus if P is 
homogeneous  of  degree r >  0, then H e = ( l / r ) t r  res P (the n in (7.9) was the order 
of L). Extending the notat ion used in Sect. 2, we shall write 

X=cok-circ(xo . . . . .  x,, 1)' 

to mean:  X is the u)k-circulant whose first column is the vector indicated: thus 
the (i,j) entry of  X is (okix/ i" (As in Sect. 2, indices run from 0 to n - 1  and are 
read rood n where necessary.) 

(8.1) Proposition. Let P~Z(L) .  TheJ~ 

(i) if P is an o)k-circuhmt, k=t=O, then H e ~ I m i  ~ 
(ii) (J P is a circuhmt, then 2 

res L ~ P= (1 / n )  co- l-circ(0, ~SHe/fvl , . . . ,  (SHe/ft',, 1)'. 

Note that since every P is a sum of cok-circulants. (8.1) solves the ' second 
problem of specialization" (3.11) for this L:  essentially just the conserved 
densities coming from circulants survive the specialization. 

Proof qf  (8.1). Let Q=L-  I p ,  and let 

res Q = co k- 1-circ(qo . . . .  , q,, 0'. 

By (7.10) (with Q instead of  P) we have 

6Hp=-trres (6L.Q)  (mod lm ~) 

~((3L)i~(res Q)ji (by (7.12)) 
I,J 

~ , u ) i ( ~ u j  i . (O (k 1)iqi_ i 
l , J  

-(Y~ ~'>~')(Z ~t,,. q,). 
i 1 

(ln this calculation all sums are taken from 0 to n - l ,  indices j - i  are read 
modn ,  and we set vo=0 .  ) Now, if k #:0, the sum of roots  of unity is zero, so (7.1) 
shows that 6He/6vi=O for all i, which proves (i). If k = 0 ,  then (7.1) gives 

6Hp 
6v i =nqi ,  i = 1 , 2  . . . . .  n - l ,  

which almost proves (ii); that % = 0  will follow from our  next calculation (8.2). 

z We exclude the case where P has a component that is of degree zero, that is, a multiple of the 
identity 
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Propos i t ion  (8.1) shows that  a ' f i rs t '  Hami l ton i an  structure for our  modified 
equations,  formed from circulant opera tors  P, does not exist, since the relevant 
Hami l ton ians  HLp do not survive the specialization. However ,  since the Hami l -  
tonians H E do survive, we may  well have a ' s econd '  Hami l ton ian  structure. We 
shall now verify that, and calculate explicitly the corresponding skew matr ix  I. 

Let  x = ( x  1 . . . .  , i n _ l )  l, x i e B  , be a ' l - f o r m ' .  Mot iva ted  by (8.l), we assign to x 
the ope ra to r  

X = (1/n) g -  t. ~o- l-circ(xo, X l . . . . .  x ,_  1)' 

where x o is to be determined so that  Eq. (5.7) is consistent. 

(8.2) Proposition. The equations 

?xL=(LX)+ L - L ( X L ) +  

are consistent if and only (f x o is constant: in that case the), take the ./arm 

8,~vi=-(1/n)~?x,, i, i = 1  . . . . .  n - 1 .  

The first assert ion completes  the p roof  of  (8.1): for we know that  the Lax 
equat ion  formed from a circulant P is consistent,  and has the form in (8,2) with 
X = Q  (see the p roof  of (7.13)). It follows that  the element q0 in the p roo f  of 
(8.1) is constant,  hence zero if P has no degree zero component .  

Proof of (8.2). Direct  calculation. Let  us set 

V=c i r c (O , r  1 . . . .  ,v,_O, X=(1/n)c irc(xo , . . . , x ,_ l ) '  

so that  L = f2({ + V), X = ~-  1 )~ ~ -  i, where f2 is as in (2.3). We then find 

so  that 

(LX)+ = f 2 2 ~  -1, (XL)+ = 2 ,  

( L X ) + L = f 2 2 ~ + O X V ,  L(XL)+=f2 fd~+f2c?X+f2V2.  

Subtract ing and using the fact that  2 V = V2,  we get 

8 x L =  - ~ 8 2 ,  

from which (8.2) follows at once. 
Combin ing  (8.1) and (8.2), we obta in  the following. 

(8.3) Proposition. Let P~Z(L)  be a circulant. Then the modified Lax equations 

8t L = [P+, L] = EL, P__] 

can be written in Hamiltonian form 

16HP, 
8, v= 8v 
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where l is the matrix of operators with - ( l / n ) ~  along the 'off-diagonal' and zeros 
elsewhere. 

Note that  l is indeed Hami l ton ian  (Sect. 5, Example  1). 
Next we show that  the conserved densities (Hamil tonians)  of the original and 

modif ied equat ions are ' the  same' .  In the KdV case (n=2)  this is a very old 
observat ion,  due to Miura  (see [8]). 

(8.4) Proposition. Let P~Z(L)  be the homogeneous circulant (?f the form 
P =  l d - i f +  ,.. (,see (4.2)); let P=s(P)eZ(L) .  As usual, set 

He=(1/r) trresP,  H~=(n/r)resP. 

Then H e =- H ~ (rood I m  0). 

Pro(~ Let res P = c i r c ( p  o . . . .  , p ,_  ~). Then a trivial calculation shows that  the Lax 
equat ion 8~ L = [L, P_] is equivalent  to 

~tVi=(l --o)i)pi, i = 1 , 2  . . . .  , n - 1 .  

It follows from (8.3) that  pi~Im ~ for i + 0 .  Thus modu lo  Im g, we have 

r l - - ]  

(n/r) res/5 = (n/r) ~ Pi =- (n/r) P0 = (l/r) tr res P. 
0 

Finally, before stating our  main  theorem we need the following lemma,  the 
p roof  of which we defer until Sect. 9. Recall f rom Sect. 4 that  the coefficients u~ of 
L are certain differential polynomials  in the modif ied variables v~. 

(8.5) Lemma .  The variables (u o .... ,u,, 2) are d!fferentially independent. 

That  means  that  we have an inclusion of differential a lgebras 

B(uo,Ul,.. .  , u , , _ 2 )  ~ B ( v l ,  v2 . . . . .  Vn- 1) 

SO we are in a posi t ion to use Propos i t ion  6.1. 

(8.6) Theorem.  The Hamiltonian structure on B(v) defined by the operator l of 
(8.3) restricts to give the second HamiItonian structure on B(u) (Sect. 5, Example 5). 

Pro(~2 Let D be the Frdchet  Jacob ian  of u with respect to v, and l e t / ' b e  the skew 
opera to r  defining the second structure on B(u). By (6.1), we have to prove  that  
for all feB(u) ,  we have 

(D I D* -T) 6~'u =O. 

Now,  (4.3)(ii), (8.3) and (8.4) show that this is t rue whenever f =  Hp is one of the 
Hami l ton ians  for the Lax equations.  Hence  the p roof  is comple ted  by the next 
lemma,  which will be proved in Sect. 10. 

(8.7) L e m m a .  Let S be a matrix of differential operators with coeJficients in B(v) 
that annihilates all the vectors 6Ho/6u, /5~z(L). Then S = 0 .  
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9. Proof of Lemma (8.5) 

In view of (4.4), what has to be proved is clearly a differential analogue of (the 
easier part of) the standard lemma on symmetric functions. The problem is a 
little obscured by the fact that the ' roots '  of L are not independent, but add up 
to zero. Let us formulate the corresponding result without this restriction; it will 
be needed in any case to handle the Lax equations with u,_ 1#:0 (see Sect. 11). 

(9.1) Proposition. Let x I . . . .  ,x  n be difjerentially independent variables, and define 
the 'non-commutative elementary symmetric Jimctions' at,  ..., a, ~ B(x) by 

(9.2) ~ " - 0 - , ~ " - l + . . . + ( - l ) " 0 - = ( ~ - x , ) ( ~ - x , _ l ) . . . ( ~ - x O .  

Then 0-1 .... ,0-, are differentially independent. 

The usual (commutative) version of this is generally proved by induction on 
n (one considers the effect of putting, say, x~ =0), but we did not succeed in 
imitating that argument. Instead, we imitate the following one. 

(9.3) Proposition. Let x 1 . . . .  , x ,  be elements of a field F, algebraically inde- 
pendent over some subfield, say (17. Let 2 be an indeterminate (commuting with the 
elements of F),  and define ai~F by 

n 

2 "  - -  0" 1 ; n - -  1 ~ _ . . .  _~ ( - -  1)n  0-.  : ~ I ( )  ~ - -  X i ) .  

1 

Then 0-1,..., 0-, are algebraically independent (over ~). 

Proof. Consider the field extensions 

r . . . .  , a , ) c~? (x l  . . . .  ,x,). 

The composite extension has transcendence degree n, and the second extension 
is algebraic; hence the first extension has transcendence degree n. That implies 
that the a i are algebraically independent (for otherwise we could choose a 
proper subset of {0-1, .-., 0-,} such that all the remaining 0-i were algebraically 
dependent on this subset: the extension C cC(0-i) would then have transcen- 
dence degree less than n). 

To adapt this argument to prove (9.1), we have to develop the theory of 
'differential fields' (0-fields for short), that is, fields F equipped with a derivation 
0: F-- ,F.  Most of the necessary work is done in [12], so we shall sketch the 
theory only briefly. For  simplicity, and also so as to be able to refer to [14], we 
confine ourselves to the case of finite transcendence degree. 

Let E c F  be an extension of 0-fields. An element x e F  is said to be (?- 
algebraic 3 over E if some (nontrivial) differential polynomial in x with coef- 
ficients in E vanishes. An element x e F  is said to be O-dependent (with respect to 
E, considered fixed) on a subset {Yt . . . . .  y r } c F  if x is 0-algebraic over 
E(Yl . . . .  ,Yr). (This last symbol naturally denotes the smallest 0-field containing 
E, Yt, . . . ,Yr.)  We have the following basic properties of ~-dependence. 

3 In [12] the confusing term 'algebraically transcendental' is used 
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(i) Every Yi is 8-dependent on {Yl, ...,Yr}. 
(ii) l j x  is 8-dependent on {Yl .. . .  ,Yr} but not on {Yl . . . . .  Yr-l} ,  then Yr is 8- 

dependent on {Yl .. . .  ,Y~ 1,x} �9 
(iii) I['x is 8'-dependent on {Yl . . . . .  y,} and each Yi is ?-dependent on {z I . . . .  , z,}, 

then x is (?-dependent on {z 1 . . . .  ,z,}. 

It follows from (i), (ii) and (iii) that  most  of the propert ies  of  algebraic 
dependence (see [14]) also hold for ~?-dependence. In part icular  one can define 
the ?-transcendence degree 4 of an extension E c F to be the number  of  elements 
in any maximal  ?- independent  subset of  F. (A subset of  F is Z-independent  (with 
respect to E) if no element of it is Z-dependent on the rest: this coincides with 
our usual not ion of differential independence.) We ment ion  explicitly the follow- 
ing. 

(9.4) Proposition. An extension E ~ F has ~-transcendence degree 0 if and only if 
every element o f F  is 8-algebraic over E. 

(9.5) Proposition. An extension E ~ E ( x ~ , . . . , x , )  generated by n elements has O- 
transcendence degree at most n; it has ~?-transcendence degree n if and only if the 
x i are ~?-independent. 

(9.6) Proposition. I f  E ~ F ~ G with the extensions E ~ F, F ~ G having ~-trans- 
cendence degrees p, q, respectively, then the extension E ~ G has ~-transcendence 
degree p + q. 

Finally, we need the next proposi t ion,  which would be a tautology in the 
usual case (without derivations). 

(9.7) Proposition. Let E ~ F  be ?-j~elds, and let x~ . . . . .  x,,cF. Define a~ . . . . .  a,, by 
(9.2). Then each x i is 8-algebraic over E(a t . . . . .  a,), so that the extension 

E(a~ , ..., a , ) ~  E(x1 . . . .  , x,,) 

has (?-transcendence degree O. 

(9.8) Lemma .  Let A, B, C be differential operators with constant leading 
coeJJ~cients and A = B C .  Then the coefficients o f  any one of  A, B, C are 
differential polynomials in the eoeJJicients r the other two. 

The p roof  of  (9.8) is trivial. 

Proof  o f  (9.7). We use descending induction on i. By the transit ivity of  2- 
dependence  (property  (iii) above) it will suffice to show that  if we rewrite (9.2) as 

(9.9) { ' - a a  d" - I  + . . . .  (~,n-l+al~n-i-l-+-...)(~-x)(~i-l+bl~,i-2q-...) 

then x = x  i is (?-algebraic over the field EOrj,ak). We should like to put ~ = x  in 
(9.9), but because of the non-commuta t iv i ty  we can not  do that  in the usual way. 
However ,  we can expand the right hand side of (9.9) and  move  the powers  of  
over  to the right to put  it in the form ~" d~ {~; equality of  two such expressions 
means  of course that  all the coefficients are equal, so we can then substi tute x 

4 'Hypertranscendence degree' in [12] 
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for ~. Doing that yields a relation of the form 

(9.10) x ' - o l  x ' -  l + . . . .  (some differential polynomial in (aj,x, bk)) 

By (9.8), the right hand side of (9.10) can be rewritten as a differential poly- 
nomial in (at,x, ok), SO we have a relation of the kind that we want. It is non- 
trivial because, for example, the term x" does not occur on the right of (9.10). We 
omit  the proof  of that. 

Proof of (9.1). This can now proceed exactly like the proof of (9.3) given above. 

Proof of (8.5). This follows the same lines: the only difference is that the ~- 
transcendence degrees are now n -  1, rather than n. 

10. Proof of Lemma (8.7) 

Since we shall not be referring to the modified equations in this section, we 
abandon the tildes, and let L denote the scalar operator ( ' +  ... + u  0. Similarly P 
will denote an element of Z(L)cB(u)[~,  ~-1]. 

To explain the idea of the proof of (8.7), let us first give it in the simplest case 
n = 2. In that case it is well known that the 6Hp/6U, rewritten in terms of v, have 
the form 

fiHp 
6u = fl v~r) + (l~ terms), 

where fl is a non-zero constant and ' lower '  means: involving only derivatives of 
order less than r. Suppose 

S=Sqe3'Td - ... +So,  siEB(v),  sq@O, 

is a differential operator  that annihilates all these. Choose r greater than the 
orders of any derivatives of v involved in any of the coefficients of S. Then in 

S(/3 v ~ + . . . ) = 0  

the only term involving v tr+q) is flSq v r Hence sq=0, a contradiction. 
To imitate this argument in the general case, we need an analogue of the fact 

that f l+0.  That  is provided by the work of Veselov [13]. 
Let P = ~r+ ... be the homogeneous element of Z(L) of order r; we recall that 

' homogeneous '  refers to the natural grading such that ~ has degree 1 and ul ~) has 
degree n - i + j .  We write P in both 'left '  and ' r ight '  notations, singling out the 
linear terms: 

n - 2  co 

P-= ~ ~-ijct __ju (r-"+l+i+j)~-i-z +. . .  
j=O  i = 0  

n--2 ,,~ 
-~- ~ ~ ~--i--l[~ bl(r-n+l+i+j)..]_ 

r i j  j . . . .  
j = 0  i = 0  

(Here the dots indicate non-linear terms involving only lower derivatives of uj 
than those indicated.) We recall from (7.11) that the first n - 1  'right hand '  
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coefficients of P are precisely the variational derivatives 6 H L / 6 u  ~ that we are 
interested in. Let fl denote the matrix 

fl=(fllj), O < i , j < n - 2 .  

(10.1) Proposition [13]. I f  r is prime to n, the matrix fl is non-singular. 

For completeness we indicate how this is proved. First, it is clearly equiva- 
lent to prove that the corresponding matrix a = (u~) is non-singular, since ~ and 
fl are related by a lower triangular matrix with l's on the diagonal. The a~j are 
determined as follows. 

(10.2) Lemma [13]. Let au~ ) be a linear term occurring in any of the 'left-hand' 
coefficients of  P. Then a is equal to the coefficient of  z q in the power series 

[(1 +z) r -  1][(1 + z ) " -  1] -1. 

Pro(~ The following seems to us simpler than the proof given in [13]. Let P(e) 
(and similarly L(e)) denote the operator obtained by replacing each uj by e. ui; set 

t~ P(~:)I~= o. 

Clearly,/5 is the 'linear part '  of P that we want to compute. Finally, let/~ denote 
the result of setting all the variables except uj equal to zero. Differentiating the 
relation 

[L(e), P(~)] = 0, 

we easily find 

(10.3) [~,,/~] = [~r, uj ~J]. 

Let us associate to each homogeneous operator A of the form 

t l  It (q) A =  __q__j ~ - q  
q=O 

the formal power series ~ a a z  q. Then the power series associated to [~ ,  A] is 

(Z a. z~) [(1 +z)~- 1]. 

Hence (10.2) follows at once if we equate the formal power series corresponding 
to the two sides of (10.3). 

Lemmal0.2  shows that a is a 'Hankel matrix'. If r is prime to n, the 
numerator and denominator of the power series in (10.2) have no common 
factor except z; (10.1) then follows from the theory of Hankel matrices (see [13] 
and [3], Sect. 5, exercice 3). 

To prove (8.7), we have to write the 6H/ fu  i in terms of the modified variables 
vj. (That is essential, since it is not clear a priori that the operator DID* can be 
expressed in terms of the u~.) So we need the following. 
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(10.4) L e m m a .  Let  the linear part of  u i be given by 

_ _  ( n  - -  i - 
u i - ~ Oij vj 1) + (lower terms). 

J 

Then the matrix (O~j) is non-singular. 

Proof. In t roduce  new variables Y0 . . . . .  Y.-2 by 

Yi = E Ooij U j ,  
J 

so tha t  we have  

n - 2  

(10.5) ~"+u._2. +. . .+Uo= ~-  Yi (~+y._2)..-(~-+yo). 

Since the (Vandermonde)  matr ix  (co ii) is non-singular,  it is enough to show that  
if 

ui = ~ q~ij Y~"- i- 1) + (lower terms), 
J 

then the mat r ix  (q~j) is non-singular .  But that  is clear, because (q~j) is t r iangular  
with non-zero  entries on the diagonal.  (To see that, we imagine ourselves 
calculating u~ by expanding (10.5), picking either a ~ or a y from each factor. To  
get a term linear in y, we mus t  pick only one y; and to get n - i - 1  derivatives, 
we have  to pick at least that  n u m b e r  of ~'s before the y.) 

Combin ing  (10.1) and (10.4), we get the result that  we really need. 

(10.6) Proposition. Set 

6HLp 0-1 
3u i -- ~. Viiv~+i) + (lower terms). 

j = l  

Then if r is prime to n, the matrix (~/ij) is non-singular. 

Note. Here, unfortunately,  we have i running f rom 0 to n - 2 ,  j f rom 1 to n - 1 .  

q 

Proof  of  (8.7). Let S = ~ s k •k be a matr ix  of  differential opera to r s  that  annihi lates  
0 

all the vectors  6HLp/3U. Since of course tha t  means  that  each row of S separately  
annihilates all the •HLp/6U, we m a y  as well assume that  S has just  one row; thus 
each s k is a row vector  with entries Sk;FB(v), O < j < n - - 2 ,  and we assume that  
So4:0. Choose  r large enough (pr ime to n) so that  no derivat ives vl ~) with / > r  
occur  in any of the Sk, J. Then  in the expression 

6 H L p  (10.7) S--~-u =0 

the only te rms involving derivat ives of o rder  p = q + r + n -  2 are 

E s ~ v (v) q;n-2 n - 2 , j  j " 
J 
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Hence Sq:n_2~)n_2,j=O for all j. Since 7 is non-singular, some 3,,_2,j=#0; it 
follows that the last entry Sq;,_ 2 of Sq vanishes. 

Next we consider the (remaining) terms in (10.7) involving derivatives of 
order p -  1. These are 

l ) (p  - 1 ) 
2 ( S q ; n _ 3 ' Y n _ 3 . j - ~ S q _ l ; n _ 2 ) n _ 2 . j ) - j  �9 

J 

Hence the expressions in the brackets here vanish for all j. Since 7 is non- 
singular, some 2 x 2 submatrix formed from the last two rows is non-singular. It 
follows that the second last entry of Sq, and also the last entry of Sq_ 1, vanish. 
Continuing this painful argument, we deduce after n - 1  steps that Sq=0, a 
contradiction. 

11. The Case u . _  1 4=0 

In this section we take 

L=~,+u,__l ?,-1+...  +Uo, 

and we work over the algebra B=B(uo,Ul,...,U,_m). The algebra of operators 
B[~, ~-1]  has its usual grading (deg ~ = 1, d e g l @ = n - - i + j ) .  We want to discuss 
what difference the extra variable u,_ 1 makes to our theory. 

The first step is to determine the centralizer Z(L). The answer is the same 
as before: for each integer r, z(L) contains a unique homogeneous operator 
/ 5=d r+  ... ; and Z(L) consists of the linear combinations of these. There are at 
least two ways of seeing that. First, we could use the method of fractional 
powers [11], which works equally well whether or not u, 1=0. Second, we 
could deduce the result for u,_ 1 4=0 from the one for u,_ 1 = 0  by the usual device 
for getting rid of the second coefficient: introduce a new symbol ( such that 

0 ( =  - ( 1 / , ) U , _ l .  

Then for all q, ~- 1 0~ ~ is a differential polynomial in u,_ 1, so that conjugating 
by ~ gives an automorphism of the algebra B[~, ~-1].  The operator ~ - I L  c~ has 
vanishing second coefficient, hence the result. 

For each P~z(L) we can define a Lax equation as usual: 

e, L = EP+, L] = [L, 

But we shall always have ~ u , _  1=0. 
Next we consider the modified equations. We introduce an extra 'modified'  

variable Vo, and start off from the operator 

L = co-circ(~ + Vo, Vl, ... , %_ 1). 

The centralizer Z(L) has the same description as before (to prove it, conjugate 
by Id. ~, where ~-1 (?{= _v0). In particular, we have circulants P as in (4.2) 
defining our modified Lax equations. In these equations we always have 
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C~zV0=0. As before we set L=s(L"); the variables u~, v~ are related by 

L=L,_~. . .L~Lo,  

where 

(11.1) L i = ~ - I - V o + O ) i v l  -k- . . .  + c o ( n - l ~ i V n _ l  . 

Note  that  u,_ a = n %. 
Now we come to the H a m i l t o n i a n  structure. The calculation in the p roo f  of 

(8.2) shows that  the ' s e cond '  Hami l ton ian  s t ructure  on B(v)=B(vo, . . . ,  v,_ ~) is as 
follows: let x=(Xo ,  . . . ,X ,_ l )  be a 1-form; then the corresponding vector  field is 
given by 

~'~ Vo = - (l/n) 0Xo 

Oxvi= -(l /n)Ox,_i ,  i =  1 , . . . , n -  1. 

The  cor responding  skew matr ix  1 is therefore just the direct sum of  our  previous 
l with an extra - ( I / n ) •  in the top left corner. 

(11.2) Theorem.  This Hamiltonian structure restricts to give the second Hamil- 
tonian structure on B(uo, ...,u,_ 1) (Sect. 5, Example4). 

The p roo f  starts off like that  of  (8.6). The modif ied Lax equat ions can be 
writ ten in Hami l ton i an  form with the above  1 and Hami l ton ians  Hp  defined as 
before; it follows tha t  the ope ra to r  DID*- / (wh ich  we want  to p rove  to be zero) 
annihi lates  all the vectors 6Hp/6u. However ,  the analogue of (8.7) is now false. 
To  see that,  note that  since in the modif ied Lax equat ions ~ % = 0 ,  we must  
always have  6Hj,/6vo=O. Hence  if we were to change l by substi tuting anything 
else in the top left corner,  the modif ied Lax equat ions would not  know the 
difference; thus the Hami l ton ians  Hp, P~z(L)  are clearly not enough to detect 
what  we put  in this corner. The remedy is clear: we have to throw in a few more  
Hami l ton ians  to tie down this corner  entry. As our  ' ex t r a '  Hami l ton ians  we take 

H r =  ( _ -,l~r • I'~Z --1--__, 1)' �89 nZ(v~)) 2. 

(11.3) L e m m a .  Let S be a matrix of differential operators (with coefficients in 
B(v)) that annihilates all the vectors 6Hr/6u. Then the last column of S vanishes. 

Proof Since obviously 

6Hr = (0, n ,,(2r) it 
6U 

each entry in the last co lumn of S annihilates all the functions V(o 2r). It follows 
easily that  these entries vanish (see the a rgument  at the beginning of  Sect. 10). 

q 

(11.4) L e m m a .  Let S = ~  sk (? k be a matrix of operators that annihilates all the 
o 

vectors 6H/fu where either H=H~ or H = H  r. Then S = 0 .  

Proof By (11.3), the last co lumn of S vanishes. For  each P~Z(L), define the 
mat r ix  ?=(71j) as in (10.6), but  with i,j now running from 0 to n -  1. It is easy to 
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see that  the ( n - 1 ) x  ( n - 1 )  matrix obta ined  by deleting the last row and first 
co lumn of 7 is precisely the matr ix  y that  we had in Sect. 10; it is therefore non- 
singular (for infinitely many  /5). Now we can use the same a rgument  as in the 
p roof  of (8.7) to show that  the remaining n -  1 columns of the leading coefficient 
sq vanish. (Since the last column of S is zero, the last row of 7 will play no part  in 
this argument .)  

Proof of (11.2). It remains  only to show that  the opera to r  DlD*-[ annihilates 
the vectors 3H,./3u. We do that  by direct calculation. Since 

~ 0 )  ~ , ~ 0  9 ~ '  �9 �9 �9 

the Hami l ton ian  vector  field on B(v) corresponding to H~ is 

^ ( 2 r +  1) 
(711 U 0 ~ - -  I~ U 0 

O, vi=O , i > 0 .  

Hence  for all i we have 

~H L i  = __t l  U(o2r + l)____ __bln_  + 1) 

the L i being as in (11.1). The restriction of 8 u to B(u) is therefore given by 

n - - 1  

G L =  y. L,, Li+, ~2 r+~  L0. - -  _1  . . .  Un_  1 Li_l . . .  
i = 0  

On the other  hand, let us calculate the second Hami l ton i an  vector field ?7 n 
on B(u) determined by H r, using the definition in Sect. 5, Example  4. We have 

X z  ~ - n . . ( 2 r )  . un_l, SO (Lx)+=(xL)+=uZq , 
hence 

Wri t ing L as the p roduc t  of  the L~ and using the relations 

L i , , t 2 r )  _ _ , ( 2 r )  L i _ ~ , , ( 2 r +  X) 

we see at once that  this is the same expression as before. 
To  conclude on a more  dignified note, let us point  out that  Theo rem (11.2) 

takes an even simpler form when expressed in terms of the actual  ' r o o t s '  of  L, 
ra ther  than our  variables vi. Tha t  is, let us set 

~n_}_b ln_ l  ~ n -  l ~ . . .  _ ~ . l , l O = ( ~ _ _ _ X n _ l ) . . . ( ( _ _ X 1 ) ( r  

Thus  we have xi= -~ugUvj, giving an i somorphism B(x)~B(v). A short  calcu- 
lation shows that  if we transfer our  Hami l t on i an  structure on B(v) to B(x) via 
this i somorphism,  the result ing structure is given by the mat r ix  l =  - I d .  0. Thus  
we have the following. 
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(11.5) T h e o r e m .  The Hamihonian structure on B(x  o .. . .  , x , _ l )  defined by the 
matrix l = - I d . ~ ?  restricts to give the second Hamiltonian structure on 
B(uo, . . . ,  u._ a)" 

T h e r e  m u s t  su re ly  be  a m o r e  d i r ec t  p r o o f  of  th i s  s i m p l e  a s s e r t i o n  t h a n  the  
o n e  we h a v e  j u s t  g iven.  
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Note Added in Proof 

The additional reference [19] below contains a proof that the second structure is Hamiltonian: it is 
a more sophisticated version of the proof in the unpublished preprint [5]. The proof is valid also in 
the case of a matrix operator L with u,_ 1. ~, T0, which confirms the opinion expressed at the end of 
Sect. 5 above that this generalization would not present any extra problems. 


