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In this paper,  we show that  a K a c - M o o d y  algebra  fl(A) associated to a 
symmetr izable  generalized Car tan  matr ix  A carries a cont ravar ian t  Hermi t i an  
form which is positive-definite on all root  spaces. We deduce that  every 
integrable highest weight g(A)-module  L(A) carries a cont ravar ian t  positive- 
definite Hermi t i an  form. This allows us to define the m o m e n t  m a p  and prove  a 
general izat ion of the Schu r -Horn -Kos t an t -Heckman-At iyah -P re s s l ey  convexity 
theorem. The  proofs are based on an identity which also gives est imates for the 
act ion of 9(A) on fl(A) and L(A). 

We hope that  the main  idea behind the paper  is apparent :  it is to use the 
interplay between the coadjoint  and  the highest weight representat ions.  

We are grateful to V. Gui l lemin for an in t roduct ion  to the m o m e n t  map.  

w 1. Basic definitions (see [6, 8, 9] for details) 

- a  " be a symmetr izable  general ized Car tan  matrix,  i.e., 1.1. Let  A - (  ij)i,j=l 
a , = 2 ,  alj are non-posi t ive  integers for i + j  ( i , j = l  . . . . .  n), and there exists 
an invertible diagonal  matr ix  D = d i a g ( d l  . . . . .  d,) such that  D - ~ A  is sym- 
metric. Then  we can (and will) choose the d i to be positive rational.  Choose  a 
triple (IN,/7, H v), unique up to i somorphism,  where I N is a vector  space over  
R of d imension 2 n - r a n k A ,  a n d / 7 =  {~1 . . . . .  ~,} ~ I ~ , / T v =  {h 1 . . . .  , h,} clh~ are 
linearly independent  sets satisfying o~i(hi)=aij. We put  t~ = C ~ I N .  

The  Kac-Moody algebra g = g ( A )  is the Lie algebra over  C genera ted by 
the vector  space b and symbols  e i and f~ ( i=  1 . . . . .  n), with defining relations:  
[I), [9] = (0); [ei, f /]  = 6ij h i ; [h, ei] = o~i(h ) ei, [h, fi] = - o;i(h)fi(h ~ D), (ad e i )  1 -a'J(e) 
= 0 = (ad f 3 ' - " ' ~ ( f j )  (i.t=j). 

We have the canonical  embedding  [ c g .  Let  n+ (resp. n )  be the sub- 
a lgebra of g generated by the e i (resp. f3, i =  1 . . . .  , n. We have the triangular 
decomposition: g = n  ( ~ b G n  +. Every ideal of g which intersects I) trivially is 
zero [3]. 

* Partially supported by NSF grant MCS-8203739 
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We have the root space decomposition g = @ g ~ ,  where g~={xegl[h,x] 
~t El)* 

=e(h )x  for all heb}, so that g , = ~ e  i, g _ , = C f ~ ,  go=b.  A root is an element 
of A.-={~Eb*lct4:0, g,+(0)}. Put Q = ~ Z e  i and Q + = ~ 7 / + ~ i ,  where 7/+ 

i i 

= {0, 1, ...}, and put h t (e)= ~ k i for ct= ~ kieie Q. Introduce an ordering on b* 
i i 

by: 2>/~ if 2 - / ~ Q + .  Put A+=Ac~Q+. We have: n + =  @ g+,. 
~t~zt + 

The root space decomposition of g gives us a Q-gradation of the universal 
enveloping algebra: U(g) = @ U(g)~. 

P 
We choose a nondegenerate symmetric C-bilinear form (.I.) on l) such that 

(hilh)=diei(h) for i=  1 . . . . .  n and beD. This form extends uniquely to a nonde- 
generate g-invariant symmetric ~-bilinear form (.I.) on g (see [6], Proposi- 
tion 7 and Lemma 2). We have: 

(e, lL)=di. (1.1) 

The form (.I.) induces an isomorphism v: D-M)* and a form (.I-) on t)*. Then 
v(hi)=dla i. Furthermore, (g~tga)=(0) if c t + - f l ,  and g, and g_,  are nonde- 
generately paired; we have: 

[x,y]=(xly)v-X(a) if x~g~ and y~g_~. (1.2) 

Define a conjugate-linear involution mo of g by requiring ~Oo(ei)=-f~, 
~Oo(f / )=-e  i ( i=1 . . . . .  n), ~oo(h)=-h  for he[hR, and define the following non- 
degenerate Hermitian form on g: 

(xlY)o = - (xlo~0(y)). 

Then the root space decomposition is orthogonal with respect to (.I.)o. 
Choose p~h~ satisfying (p]ai)=�89 (or, equivalently, p(hi)=l  ) for i 

=1 . . . .  ,n. For A, aeI)*, put 

Ta(~)=(A + pla)-�89 

In the sequel we will need 

T0(~) > 0 if ~EA+\/7 .  (1.3) 

Indeed, (1.3) is clear when (~la)<0;  otherwise, using [6, Lemma 14 and 
formula (23)], 2 v- 1 (e)/(el a)e ~ 7I. + h i \ / 7  v, proving (1.3) in this case also. 

i 

1.2. Given AeD*, a g-module V is called a module with highest weight A if 
there exists a non-zero cyclic vector VAeV such that n+(va)=(0) and h(VA) 
= A(h) v A for all h e b. Such a module is b-diagonalizable. 

Given an I)-diagonalizable module V, we have the weight space decomposition 
V=@V~,  where Vz={veVIh(v)=2(h)v for all h~I)}. Elements of P(V) 

2eI~* 

,=  {2eb*l V~ 4:(0)} are called weights of V. For  a g-module V with highest weight 
A, we have: VA=~ V a and P ( V ) c A - Q + .  
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Let V be a g-module such that for every vsV, the set {~sA+lg,(v)#(0)} is 
finite. Such a module is called restricted. Note that every highest weight 
module is a restricted module. Following [7], we define the partial Casimir 
operator s o on a restricted module V as follows. For each ~sA, choose bases 
{x~ k)} of g, and {y(k}} of g__ such that (k) (l) - -  (x~ lY~ )--6kt, and put 

Oo(V)= Z Z Y~k'(x'~k'(v)) �9 
~t~d+ k 

Lemma 1.1. a) If  ~, fleA and zsg,_~, then, in g| we have: 

E x'~k'| z, y{,k'] = E ix?, z l |  
k k 

b) If  V is a restricted g-module and usU(g)p, then we have on V: 

OoU-Uf2o=u(To(- f l ) Iv-  v- l(fl)). (1.4) 

Proof a) is checked by pairing with an element e |  where eeg_~, feg~: 

(x(~k)le) ([Z, y~k)][f)= ~ (x~k)ie)(y~k)l [f, Z])= (el[f, z])= ([z, e]If)  
k k 

= Z (x{~k)l [z, e])(y~k'I/) = ~ "~x {k} 2. ~1_ ~ , z]le)(y~k}lf). 
k k 

Since g? and g_ v are nondegenerately paired under (.I.), this verifies a). 
If b) holds for usU(g)~ and u'sU(g)B,, then it holds for uu'eU(g)p+~,. 

Hence, it suffices to check b) for u=x~, or y~, (for ueU(i)), b) is obvious). Using 
a) and 

(?+Z~I)c~AcA + for ? e A + \  {oh}, 
we have, on V: 

[~o ,  x~,] = [y~, x~,, x~,] = - v-  ~(~) x~, 

= - -  (OCll O~i) Xot ' - -  Xot ' 12 1 (0~i) = Xoq ( T  O ( -  a i )  I v - v - 1  (eel)) ; 

El2 0, y~,] = [y~, x~,, y J  = y~, v- ~(~) 

=y~,(To(ai)Iv-v-l(-ai)),  proving b). [] 

Among g-modules with highest weight A, there is a module M(A) which is 
free of rank 1 as a U(n_)-module, and an irreducible module L(A). M(A) and 
L(A) are unique up to isomorphism. 

A Hermitian form F( . , . )  on a g-module V is called contravariant if 
F(g(u),v)=-F(u,~oo(g)v ) for all u, v e V  and gsg .  For example, the form 
(.1 .)0 on g is contravariant. It is standard that for AsI3~, L(A) carries a unique 
contravariant Hermitian form, denoted by H(. ,  .), such that H(v A, VA)= 1; this 
form is nondegenerate and the weight space decomposition is orthogonal with 
respect to it. 

Fix fundamental weights Aieb ~, 1 <=i<__n, satisfying Ai(hj)=cSi~, l <__j<=n, and 
put P + = ~ Z + A ~ .  A g-module L(A), ASP+, is called an integrable highest 

weight module. We have [-9, Proposition 2.4d]: 

TA(fl)>O if AsP+ and A-fleP(L(A))\{A}. (1.5) 
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w 2. The crucial lemma 

By analogy with the partial Casimir operator, we define an operator (2~ on u 
by: 

~2a(z)= ~ ~ Eye), [x~ ), z]_], 
~eA+ k 

where the subscript "minus" denotes projection on n with respect to the 
triangular decomposition. 

Lemma 2.1. If aeA + and ze9_,, then 

f2~ (z) = 2 To(a) z. 

Proof Put R=A+ c~(a-A+) and calculate in M(0): 

2 To(a) Z(Vo)= 2 f2o(Z(Vo)) =2 ~, ~ Y~k) x~k) Z(Vo)= 2 ~ /~Yfl~ "(k)[x(k)L p ,  Z] (VO) 
tleA+ k peA+ k 

= 2 E • Y<Pk'[x<~ k,'z] (Vo)= E E [y~k), [x~k,,z]] (VO) 
t ier k tieR k 

+ 2 Z (y#' ix#,, + ix#,, y#,) (Vo) = (Vo). 
t ier k 

The first equality follows from (1.4) and the last one from Lemma 1.1a. 
As M(0) is a free U(n )-module, the lemma follows. []  

Remark. Lemmas 1.1 and 2.1 hold (by the same proof) for the Lie algebra g(A) 
associated to an arbitrary symmetrizable matrix A over a field. 

w 3. Unitary structure on L(A) and g 

3.1. Theorem 1. Let 9(A) be the Kac-Moody algebra associated to a symmetriz- 
able generalized Cartan matrix A. Then: 

a) The Hermitian form (.I.)o is positive-definite on n_ @n+. 
b) Every integrable highest weight g(A)-module L(A) carries a positive- 

definite contravariant Hermitian form. 

Proof We first prove a). Using co o, it suffices to show that (-I.)o is positive- 
definite on 9-~ for all aeA+.  We do this by induction on ht(a). The case ht(a) 
=1 is clear by (1.1). Otherwise, put R=A+c~(a-A+) and use the inductive 

(. (k)~ of wi th  assumption to choose, for every tieR, an orthonormal basis ~yo , g_p 
respect to (.[.)o. Then, setting x~k'= --O9o(y~k)), we have (x~k)]y~)~=bkr NOW we 
apply Lemma 2.1 with this choice of x~ k) and y~k) (the choice for the f l e A + \ R  
is unimportant) and zeg_~: 

2 T o (a) (z ]Z)o = (f2, (z)lZ)o = ~ ~, (Ey~ k), [x~ k), z]] [z) o 
tieR k 

= E S 
flmR k 
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By the inductive assumption, the last sum is non-negative; using (1.3), we get 
(ziz)0>0. Since (-].)0 is nondegenerate on g-a, we deduce that it is positive- 
definite, proving a). 

By remarks in Sect. 1.2, the contravariant Hermitian form H( , , . )  on L(A) 
satisfies: H(VA, VA)=I, and the weight spaces are pairwise orthogonal. We 
prove by induction on ht (A-2)  that the restriction of H( . , . )  to L(A)~ is 
positive-definite. Let 2eP(L(A)) and veL(A)~. Thanks to a), we can choose bases 
{x~ k)} of g~, c~eA+, such that ~[v'(k)[v'(l)]l~cr lO--~kl.--~ Note that U-~-U(1)A) for some 
ue Uz_ a. Hence, by (1.4), we have: 

Qo(V)----- TA(A -- ,~) v. (3.1) 

Therefore, we have: T A(A - 2) H(v, v) = H((2 o(v), v)-- ~ ~ H(x~ k)(v), x~ k)(v)). In 
~ A  ~- k 

the same way as in the proof of a), we conclude, using (1.5), that H( . , . )  is 
positive-definite on L(A)a. This proves b). [] 

Remark. Positivity of H( . , . )  in the affine case is due to Garland [4]; our 
argument in the proof of b) is similar to his. 

3.2. We now derive estimates for the action of g on g and on L(A). For this 
we need: 

Lemma 3.1. Let {Xk} be a basis of r~+ such that (XkIXl)O~(~ki  . Let y e n ,  and let 
wL(A), AeP+. Then: 

a) H(~2o(V), v)= ~ H(xk(v), xktv)). 
k 

b) (~2~ (Y) IY)0 -- Y, ([Xk, Y] - 1 [xk, Y] )o. 
k 

Proof. Putting x* = --O0(Xk), {Xk} and {x~'} are bases of n+ and n ,  dual under 
(-I-). Since the operators f2 o and f2~ can be expressed using arbitrary dual bases 
o f n  and n+, we have: 

~?o(V)=~,x*(x~(v)) and Q~(y)=Y~[x*,[xk,y]_ ]. 
k k 

The lemma follows. [] 

To state our estimates, we need some notation. Choose an inner product 
( , ) on b- The induced norm on b* satisfies: ]A(h)I<IAL ]hi for all Aeb*, hell. 
For z~g, write z=z  +Zo+Z+, where z+en+,  Zo~ll, and define an inner 

r t . ! product(  , ) o n g b y : ( z , z ' ) = ( z  Iz )o+(Zo,Zo)+(~+lz+) o .Wewil lwri te lz l  for 
(z, z) § and also Iv[ for H(v, v) ~, where veL(A), AeP+. Define deDer(g) by d(x) 
= ht(cOx for xe9, ,  and d~EndL(A) by d(v)= - h t ( A - 2 ) v  for veL(A)~. 

Put C1=0 if n = l ,  Ca= ( m a x - ( c q ] c @  �89 otherwise; C2=max[~i t ;  C 3 
1 <=i,j<n l<=i<=n 

= max [v-1(~3[. Then we have, for all ~eQ+:  
l <~i<=n 

To(C0=< �89 C z ht(e)2; Ic~l =< C 2 h t(~); (3.2) 

Iv-1 (7)1 =< C3 ht(~) 
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Indeed, for e =  ~ kloqeQ+, we have: 

C 2 h t(a) 2 - 2 T O (a) = Cz~ ~, k~ + ~, (k~ - k,) (~,la,) + Y, (C~ + (a,laj)) k, kj => o. 
i i i:~j 

The rest of (3.2) is obvious. 
Put  C 4 = 4 C 1 + 2 C 2 + 2 C  3. 
Below, we shall use the Schwarz inequality, etc., without  comment.  

Proposition 3.1. I f  x e n + ,  z, z'eg, AeP+ and veL(A),  then: 

a) I[x,z] I_-<Cllxlld(z)l. 

b) IEz, z']l < C4(Id(z)l Iz ' l+lzl  Id(z')l). 

C) I X ( v ) l ~ l Z l  [2s I II)l--~-C4[x I Id(v)L. 

d) Iz(v)l < 3 Ial Iz[ Ivl + C4(Id(z)l Ivl + Izl Id(v)l). 

Proof. Let x~n+ ;  y , y ' ~ n  ; z, z'~g; h~b. We claim: 

I I-x, y]_  I z _-< I x12 (O1 (y), y). 

Indeed, we may assume that Ixl = 1, complete  {x} to an or thonormal  basis of 
n+, and apply L e m m a  3.lb. Furthermore,  (01(y),y)<CZtd(y)l  2 by (3.2) and 
Lemma 2.1, yielding: 

I[x, Y]_I < Cllxl Id(y)l. (3.3) 

Let y"6n_ satisfy d(y")= [y, y']. Then:  

I[Y, y,][2 = [([y, y,], d(y"))[ = [(d([y, y']), y")[ = I([d(y), y'] + [y, d(y')], Y")I 

= I(d(y), [COo (y'), y"] _ ) -  (d(y'), [COo(y), y"]_)[ 

< Id(y)l [[COo (y'), y"] _ [+ Id(y')l II-COo (y), y"] _ I. 

Applying (3.3) to estimate the right-hand side, we obtain, using d(y")=  [y, y']:  

I[Y, Y']I < C~(Id(y)l lY'I + JYl Id(y')l). (3.4) 

Write z = S z , ,  z '=Zz ' , ,  where z, ,z '~g~.  Then 

l[h, z][ 2 = z~ Ice(h)[ 2 Iz=l z <= C 2 [hi 2 2; h t(00 2 [z,[ 2 = C 2 Ihl 2 Id(z)l 2, 

SO: 
I[h, z]l < C2[h[ Id(z)l. 

SO: 

(3.5) 

Using (1.2), we have: 

II-z, Z']ol < S I(z~l z'_~)l Iv-1(~)1 < 2; Iz~l Iz'_ =t Iv-1(~)1 <_- C3 S Iz=l Iz'_ ~1 Ih t(~)l 

= C 3 S Id(z=)l Iz'~[ < 63(2; Id(z~)12) ~ (S Iz' ~12) ~ 

= C3 Id(z)[ Iz'l, 

I[z, z'-101 < C3 [d(z)l Iz'l. (3.6) 
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Applying (3.3-5) and the triangle inequality to 

Ez, z'] = [ z ,  z'_] + [z+, z'_]_ + E z ,  z+]_ + [Zo, z t ]  + Ez_, z;] ,  

we obtain: 

IEz, z']_ I__< (2 c 1 --t- c2) (Id(z)l Iz'l + Izl Id(z')l). (3.7) 

Using (3.6), (3.7) and an analogous estimate for II-z,z']+l, the triangle 
inequality applied to [z, z'] = [z, z'] _ + [z, Z']o + [z, z'] + gives: 

I[z, z']l < (4 C 1 + 2 C 2 + C3) (Id(z)[ Iz'l + Iz[ Id(z')l). (3.8) 

Now, let A e P . .  Using (3.2) and T A ( A - 2 ) = T o ( A - 2 ) + ( A L A - 2 ) ,  we have, 
for all 2 ~ P ( L ( A ) ) c A - Q +  : 

Ta(A - 2) <= �89 C2~ (h t (Z  - 2)) 2 + C 3 [Zl h t(A - 2). 

Hence, by (3.1) and Lemma 3.1a, we have 

[x(v)l 2 < Ixl 2 H(f2 0 (v), v) < Ixl 2 (�89 C 2 Id(v)l 2 + C 3 IAI H ( -  d(v), v)) 

_-< Ixl2 (iA[ Ivl+(C1 + c3)[d(v)l) 2, 

Ix(v)l ~IAI Ixl Ivl +(C1 + C3)[xI Id(v)l. 
SO: 

We also have, for v= ~ v x, vaeL(A)z,  

(3.9) 

Jh(v)[2 = 22 IA(h)J 2 Ivy] 2 ~ ]hi 2 27 IlL] 2 I v~l 2 =< [hJ 2 X(]AI + C2  h t ( A -  2)) 2 Jvzl 2 

= IhL 2 [JAI v - C z d(v)[ 2, 

so that:  

Jh(v)[ <= IAI Ihl [vl + C2 Ihl Id(v)l. (3.10) 

We now take y e n _ ,  and put x'=COo(y) and s=[y ,  x'], so that  COo(S_)= - s + .  
Using the contravariance of H, we obtain: 

lY(V) l 2 = Ix' (v)[ 2 + 2 Re H (s + (v), v) + H (So (v), v), 
so:  

ly(v)l 2 < Ix'(v)[2 + 2 Is + (v)[ Iv[ + ISo(V)l IvL. 

We estimate Ix'(v)l and Is+(v)l using (3.3 and 9), and Iso(v)l using (3.6 and 10). 
From this, we obtain: 

lY(v)l <IAI [Yl [vl+(Cx+C3)ld(Y)l  I v l + ( C x + C 2 + C 3 ) l Y l  Id(v)l. (3.11) 

Finally, (3.9-11) combine to show: 

{z(v)l<3lAI Iz{ Ivl-}-(C1-FC3)ld(z)[ I v I -F2(Cx+C2+C3)Iz l  Id(v)[. (3.12) 

(3.3, 8, 9 and 12) prove the proposition. [] 
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Remark. It is not difficult to sharpen these inequalities. Also, using 
[H(v, d(v))[ <{d(v)t z, we have an alternative version of (3.9): 

Ix(v)l <(IAI + Ct + C3)Ixl ]d(v)l. (3.13) 

w 4. A convexity theorem 

4.1. We first recall the construction of the group G associated to g and its 
unitary form K, and related results from [11]. Put V= @ L(A) and V~  

A~P+ 

~ v A c K We endow V and 9 with the finest topology which induces the metric 
topology on finite-dimensional subspaces. Since the elements e i and f~ are 
locally nilpotent on V, we have the one-parameter groups exp t el and exp tf~ 
(t~C) for all i; they generate a subgroup G of GL(V). G acts on each L(A), 
A~P+, say by za, and also on 9 via the adjoint action Ad, We have: 
ga (Ad (g) x) = x A (g) TC A (X) gA (g)-  1 for g e G and x ~ g. 

The involution o) o lifts to G; let [ and K be its fixed point sets in g and G. 
Note that K preserves the Hermitian forms (-J.)o on g and H on L(A). 

Let B={geGIg(V ~ c V~ H=Bc~oo(B), and let N be the normalizer in G 
of H. These definitions are equivalent to the ones in [11]. (B is denoted B+ in 
[11].) 

D c g  is Ad(N)-invariant and Ad(H)-fixed. Hence, we have an action of the 
Weft group W: = N/H on l); moreover,  this action is faithful. W is generated by 
the set S={r/}7=1, where r~(h)=h-~i(h)h i (h~b) , and (W,S) is a Coxeter system 
(cf. [8] or [9]). C:={h~b~l~i(h)>O for i = 1  . . . . .  n} is called the fundamental 
chamber for W. The set X =  U w(c) is a convex cone in b~, called the Tits 

w~W 

cone. Note that  X = ~  if and only if dim g < oo (cf. [9]). Let < be the Bruhat 
order on W (see e.g. [10]). 

For w~W, put K w = K n B w B .  Then [11]- 

K = L[ K~. (4.1) 
w 6 W  

Fix A~P+. Since G=KB [11], and hence KwB=BwB , we deduce: 

~ *  K~,(va) = ~* B w B(VA). (4.2) 

For v~L(A), denote by supp v the set of all 2~b* such that v has a non-zero 
component  in L(A)~. We have by [11, Theorem 1]: 

If WKw(va) , then suppvc[{w'(A)lw'<w}]. (4.3) 

(Here and further on, the convex hull of a subset M of a real vector space is 
denoted by [M]. )  

Put / ~ = H o m ( Q ,  {E*); this is a group isomorphic to ({E*)". Define a homo- 
morphism Ad: / ] ~ A u t ( g )  by Ad(h)x=h(~)x if xeg~,  and an action of H on 
L(A) by: h(v)=h(B)v if veL(A)a+o. I2I normalizes G and B under these actions 
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and commutes with H; since the centralizer of H in G is H [11], we have, 
using (4.2): 

{E* fl  Kw(VA)= {E* Kw(VA). (4.4) 

There exists a finest topology on G such that (cf. [10]): 
a) G is a topological group; 
b) the maps t~--*expte i ( i=1 . . . . .  n) are continuous on ~ with the usual 

topology. 
We fix this topology on G. Then G is Hausdorff and the action of G on V 

and g is continuous, co o is continuous and hence K is a closed subgroup of G. 
Furthermore, each Kr. is a compact subgroup of K, and the commutator  
subgroup (K~Kr.) is isomorphic to SU 2 as a topological group. (Here and 
further on, M denotes the closure of M.) Let weW, and write w=ri...r~, 
where s is minimal. Then 

Kw=K%... .  K,~. 

This is shown by the same argument as in [13, Sect. 8]. In particular, K,,, is 
compact. 

Fix weW. Put L(A;w)= @ L(A)~; clearly, d imL(A;w)<oo .  Then 
)~ >w(A)  

B w B(VA)c L(A; w) is irreducible in the Zariski topology (see [11, Theorem l]). 
Since the closure of BwB(CvA) in the Zariski topology is ~ Bw'B((EVA) Ell, 
Theorem l c], we obtain, using (4.2): w, <=w 

There exists ve Kw(va) such that supp v D {w'(A)] w' <__ w}. (4.5) 

4.2. Denote by p the projection of g on b with respect to the root space 
decomposition. Now we can prove the following convexity theorem. 

Theorem 2. a) If  he C and we W, then 

p(Ad(Kw) h) = [{w'(h)l w' < w}]. (4.6) 

b) If  heX, then 
p (Ad (K) h) = [ W(h)]. (4.7) 

Proof. Formula (4.7) follows from (4.6) and the following 

Lemma 4.1. I f  Wl, wzeW, then there exists weW such that w>w 1 and w>w 2. 

Proof of Lemma 4.1. Induction on I(wO+I(w2) using the following two facts: 
l(riw)>l(w ) implies riw>w; riw~w,w' implies riw>riw'. [] 

To prove (4.6), we employ the moment map. Let a be if  or I~. Fix AeP+. 
We define the moment map M, from the projective space IP(L(A)) to a by: 

(xlM,(v)) o = H(x(v), v)/H(v, v) for xea 

(we can make this definition thanks to Theorem 1). Notice that M~ is K- 
equivariant and that Mit(va) = v- ~(A). We also have: 

MbR(y, v~)= y', H(v~, v~) v- 1(2)/}-', H(v~, v~), where vxeL(A)a. (4.8) 
2 2 
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Let w e W. The crucial observation is: 

M~(~* Kw(va)) = [{w'(v- 1 (A))I w' < w}]. (4.9) 

The inclusion c in (4.9) follows from (4.8) and (4.3). On the other hand, by 
Theorem 2 from [1] applied to the action of the complex torus/-) on the finite- 
dimensional projective space IP(L(A; w)), M~(ITI(v)) is convex for every non 
zero v eL(A; w). The reverse inclusion now follows from (4.4), (4.5) and (4.8). 

The following properties of the moment map are clear: 

Mbl t = p o Mi~. 

Mi,(k(va))= Ad(k)v-l(A) for kEK. 

Using this, (4.9) implies (4.6) for all he C such that ai(h)E ~ ( i= 1 . . . . .  n). Using 
the compactness of Kw, we deduce that (4.6) holds for all hE C. [] 

Remarks. a) If d i m g <  0% then K is a compact group and X=h~; in this case, 
(4.7) is due to Schur-Horn-Kostant and (4.6) to Heckman (references may be 
found in [1]). 

b) We have p(Ad(K)X)=X by Theorem2.  What are [Ad(K)X]  and 
{xei~lp(Ad(K) x) c X } ?  

c) Let heC have finite stabilizer in Wand let h ' e h + ~ l R h  s. Put 
s 

[h'[s=supAs(P(Ad(k)h')) for s = l  . . . . .  n. 
k~K 

Then the following are equivalent: 

(i) h'e[Ad(K) hi. 
(ii) h'e [W(h)]. 

(iii) Ih'Js<As(h ) for s = l  . . . . .  n. 

This is immediate from Theorem 2, W(h')c Ad(K)h',  and: 

[W(h)] =s - ~ ~+ h~), where ]R+ = {tEN] t>0}.  
s 

The latter formula follows from [14, Proposition 2.4] and the fact that if M is 
a bounded subset of [W(h)], then p(h-w(h ' ) )~m as l(w)~ov, uniformly for 
h'eM. 

d) The previous remark implies that, in the case dim g <  ~ ,  one has for 
he[)~ (using that all K-orbits in it  intersect [hR): [Ad(K)h ]=  {xeit[(p(Ad(k)x)) 
<As(h ) for s = l  . . . . .  n and all keK}.  

e) Using the proposition below and the fact that M~R(eh(v)) 
=�89 log H(eh(v), eh(v)) for he[hR, one can avoid the reference to [1]. 

Proposition 4.1. Let V be a finite-dimensional real vector space and let S be a 
finite subset of V* such that [S] has non-empty interior. Let c z (2ES) be positive 
real numbers. Put G(v )=~cze  ~) and F(v)=logG(v). Then the image of 

(grad F): V ~  V* is the interior of  IS]. 
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Proof First, let f :  V-~R be an arbitrary convex function. For I~V*, put f(l) 
=inf{f(v)- l (v) lv~V}~lRw { - oo}; put TI= {l~v*lf(l)> - ~},  T/r= {l~T~lf(v) 
- l(v)=f(l)  for some v~V}. Then: 

Interior (TI) c T} c T I. (4.10) 

Indeed, if leTI--.Tj, choose vl, v 2 . . . .  e V such that f (v , )- l (v ,)~f( l ) .  The con- 
tinuity of f forces [v,l~oo, so that by choosing a subsequence if necessary, 
there exists rev*  such that l'(v,)~+oo. Hence, l+el'r for all e>0,  and so 
lr This proves (4.10). 

Let G and F satisfy the hypothesis of the proposition. Then it is easy to 
check that T v = IS] and that F is of class C ~176 Moreover, one calculates that 

2G2(D~F) = ~ czc.(2(fl)-I~(fl)) 2 e x+", 
3.,#~S 

so that (D~F)(v)>0 for all fl, v~V such that fl@0. In particular, F is convex 
and of class C l, and therefore T~=(gradF)(V). Moreover, D(gradF) is sur- 
jective at each v~ V, so that grad F is an open map and hence (grad F)(V) is 
open. Applying (4.10), the proposition follows. [] 

4.3. Example. Let K cGLr(ll2 ) be a connected simply-connected compact sim- 
ple Lie group, with Lie algebra fcgl r (C) ,  and let T be a maximal torus of K, 
with Lie algebra t c f .  For a subset A of a finite-dimensional vector space U 
over ~,  we denote by A the set of all polynomial loops on A, i.e., the set of all 
maps f :  S I ~ A  such that f(ei~176 ~o) for some polynomial map p: 

C z ~ U .  I f f s O ,  then we write f '  for f(e i~ and ~ f f o r  (2n) -1 ~ f(ei~ We 
0 

regard GLr(II]) and gl~(~) as subsets of Matr(ll2 ). Using pointwise multipli- 

cation and addition in Matr(~), GL~(C) becomes a group and glr(C) a Lie 
algebra. 

The unitary form of the Kac-Moody algebra ~ associated to the extended 
Cartan matrix of K (a "non-twisted affine Lie algebra") is ~,=Rd| 
with bracket (for x, yet): 

[x,y]=(xy-yx)+(~tr(x 'y))c;  [d,x]=x'; [c,~] =(0). 

We put t , = R d @ t |  (its complexification is the Cartan subalgebra of ~). 
We define a ~-invariant symmetric R-bilinear form (.I-) on ~ by (for x, yef): 

(xly)= ~ tr(xy); (cld)= 1; (xJc)=(xld)=(clc)=(dld)=O. (4.11) 

As we shall see in a moment, the unitary f o r m / (  of the group G associated 
to ~ is a central extension a: / ( ~ / (  of the loop g roup / ( .  (One can show that 
Ker o-- S a.) We proceed to compute the adjoint representation Ad o f / (  on ~. 

We extend the obvious action of f on ~"'; to a representation ~ of ~ by 
putting 5(e)=0, r Then ~r is an integrable representation (cf. [11]), 

and hence induces a representation ~r o f / (  on ~2 ~ satisfying: 

~(Ad(k)z)=~(k)~(z)'~(k) -~ for k e g ,  e e l .  
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On the other hand, it is easy to check that the obvious representation ~ of the 

group /( on IE "~ is faithful, and that z~(/()crT(/(). Hence, there exists a homo- 
morphism a : / ( ~ / (  such that f f=~oa ;  we write/~ for a(k). 

For a e / (  and xe~', one easily calculates: 

~r(a)~(x)~(a)-l=~(axa 1); ~r(a)~(d)fr(a)-a=.~(d_a, a-X). 

For kE/( and x d ,  we find: 

z~(Ad(k) x) = ~(k) ~(x) ~(k)- 1 = ~(/~) z}(x) ~(/~) 1 = z?(/~ x/~ 1) 

and, similarly, ~(Ad(k)d)=~(d-fCk-1). Now, Ker(r~)=Nc, and (.I.) is Ad(/()- 
invariant. Hence, using (4.11), we obtain for k e / (  (cf. [2]): 

Ad (k) d = d -/~'/~-a _ �89 (S tr ([r 1)2) c; 

Ad(k)x=~xfi-~+([tr(fCxfc-X))c (xef); (4.12) 

Ad(k) c = c. 

We proceed to write (4.7) more explicitly. Put QV ={. /et lexp(2n~/)=leK},  
and define an injective homomorphism 0: QV~/~  by: (0(~/))(ei~ 
Now, regard K as the group of constant loops in / ( .  Letting N (resp. N) be the 
normalizer in K (resp. /() of T, it is easy to see that T = T x O ( Q  v) and ~r 
= N ~ 0 ( Q ~ ) .  Put 

7"={keKIAd(k)x=x for all xEt}, N = { k e g [ A d ( k ) t = t } .  

Using (4.12), we have: 

~ = a - l ( T ) ,  ]Q= a-l(]Q). 

Since K is connected and simply-connected, the standard construction of ~7 
using the Chevalley generators of fi shows that /Q~a(]q) .  Putting W=N/T  and 
I'~'= N/T, we therefore have: 

a induces an isomorphism W--,IQ/T; 
(4.13) 

IQ/T = (N ~ ~k (Q ~ ))/T'~ W~< Q ~. 

Moreover, I~ is the Weyl group o f / ( ,  and its natural action on t is that 
described in Sect. 4.1. 

Theorem 2c in [11] implies t h a t / ( = ] ~ a ( / ( ) .  But, as we have seen above, 
= a(/q) ~ a(/(). Hence, we have: 

/ ( =  a(/(). (4.14) 

Let p be the orthogonal projection of 1 onto t (i.e., the projection along 
[t, []). Then the projection of Sect. 4.2, denoted here by/~, is given by: 

~(2d+ x +lac)=2d+p(Sx)+ pc. 
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Now, let x~t; then d+xe+_iX, where X is the Tits cone (cf. [9, Proposition 
1.9]). Applying (4.7), we obtain: 

~(Ad(I()(d+x))=[IYv'(d+x)] for all xet.  (4.15) 

Finally, taking x = 0  and transforming (4.15) using (4.12-14), we obtain: 

{p(~a'a 1)+ l(~tr(a' a-1)2)claeI(}=[{'/+�89 (4.16) 

which is due to Atiyah-Pressley (according to Guillemin). 

w 5. On a KAK-decomposition 

The following results are due to the second author [12]. Proof will appear 
elsewhere. 

We regard G and /)  as subgroups of GL(V), V= @ L(A), so that /~c~G 
AeP+ 

=(I) and /~ normalizes G, defining G:=FI~<G~GL(V). We denote the action 
of G on L(A) by ~A' 

If ~ is a Hilbert space, let ~ (A ,~) be the algebra of all bounded operators 
on ~ .  For A~P+, let o~A be the completion of the pre-Hilbert space L(A) with 
inner product H( . ,  .). Put ~cont = {gs~[~A(g ) is a bounded operator on L(A) for all 
A~P+}, and define ~A: GC~ A~P+, in the obvious way. Then K ~ G  c~ 
acts unitarily on ~A' 

L e t / (  be the closure, in the strong operator topology, of 

{(Tra(k), na(k)*)A,e+lkeK} ~ (  @ (Y~AO~)). 
A~P+ 

We identify K with a subset o f / ( ,  and extend the 7~ A t o / (  in the obvious way. 
We have the following strong "rigidity" statement. 

Proposition 5.1. A sequence kl ,k2, . . ,  of elements of K converges in the strong 
operator topology if and only if the sequences 

ZrA,(kl) VA, , rrA,(k2) VA,,... and ~A,(kl)* VA,, 7rA,(k2)* VA,, ... 

converge, in norm, for all i, 1 <_ i <_ n. 

Put d e " =  {gedC~ ) is a compact operator for all AeP+}, and let dc ' '  

be the norm-closure of d cv' in ~ A, SO that d ~pt is a semigroup of 

compact operators. Then dCpt acts on ~'~a, AeP+, in a natural way, denoted by 

Let A c be the norm closure of (/~x H)nG cpt in ~ ( (~  ~ a , / .  Then ~cpt 
1 

7~ A . 
\ i=1 / 

= KAr in the following sense. 

Note added in proof. This result has already appeared in [15] 



14 V.G. Kac and D.H. Peterson 

Theorem3. I f  g e G  cpt, then there exist k m , k 2 e K  and a e A  c such that for all 
AeP+: 

~ZA(g ) = teA(k1) rc A (a) rCA(k2)* ' 
and 

~a(a) VA : IlTCa(g)l[ VA. 

Moreover, a is uniquely determined by these conditions, and is, in the norm- 

topology on ~ , , a continuous function of g. 
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Oblatum26-V-1983 

Note added in proof 

(a) We take this opportunity to correct a misprint in [11]: in line 5 of the proof of Theorem 1, 
replace 1~(2-S(v)) by 1~+(-2+S(v)).  

(b) We have recently computed the cohomology ring of the topological space K and of the Lie 
algebra 9'. In particular, it turned out that H*(9', C)~-H*(K, •), and that in the case when A is 
indecomposable and not of finite or affine type, the algebra H*(K, IE) is a free graded commutative 
algebra on e generators of degree 3 and aj generators of degree 2j, j = 2 ,  3, ..., where e= 1 or 0 
according as A is symmetrisable or not and a2, a 3 ....  are determined from the formula: 

t '~w~=(1-t)-"(1-t 2) . . . .  ( l_t3)- ,~ ( 1 -  t , ) - , ,  ... 
w ~ W  


