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1. Introduction 

Let G be a connected semisimple real Lie group, F an arithmetic subgroup of 
G. Assume G has a discrete series of representations. We will say that a 
sequence F, is a tower of subgroups of F if IF: F,] is finite for all n, and 

lim IF:  F,] = oo. 
n ~ o o  

Of course the groups F, are then arithmetic subgroups of G. In this situation, it 
seems natural to assume that, as n-+ ~ ,  the spectral decomposition of L2(F,\G) 
will approximate that of G. In particular, let 3 be a discrete series representa- 
tion of G. If F is a subgroup of G, let re(F, 6) be the multiplicity of 3 in the 
representation of G, by right translations, on L2(F\G). Choose a Haar  measure 
dg on G; if F is arithmetic, let v(F\G) be the (finite) volume of F\G for the 
measure induced by dg. Let d(3) be the formal degree of 3 for the measure dg. 

Conjecture A. Let (F,) be a tower of subgroups of F. Then 

lira m(F,, 3)=d(3). 
. . ~  v ( r . \ c )  

When F\G is compact, this conjecture has been proved by DeGeorge and 
Wallach [20]. (Note that F does not have to be assumed arithmetic in that 
special case.) In the general case, the Conjecture should follow some day from 
a better understanding of the Arthur-Selberg Trace Formula. Partial results - 
when the real rank of G is 1 and b is regular enough - have been obtained by 
DeGeorge [19] and Barbasch-Moscovici [8]. Meanwhile, and in view of the 
applications, it seems of interest to prove a weaker result, which still implies 
that the representation 6 imbeds, with large enough multiplicity, in spaces of 
automorphic forms. Kazhdan announced in [26] a proof of the following: 
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Conjecture B. Under the same assumptions, there exists ~ > 0 such that 

lim inf m(F., 3) > e. 
. ~  v ( r . \ ~ )  

In this article we will prove a weak version of Conjecture B for congruence 
subgroups. Let G be a connected, simply connected, semi-simple, almost simple 
group defined over ~.  We assume that G=_G(P,) is noncompact. Let F be a 
congruence subgroup of O. If S is a finite set of primes, we define in w the 
(natural) notion of "a  sequence of subgroups F, of F tending to 1 at S". If F, is 
such a sequence, we write F , -~ ,  1. Moreover (cf. w we may define the limit of 
F. at a prime p. 

Assume now that Po is a prime such that _G(Qpo ) has a supercuspidal 
representation. 

Theorem 1. Let F c G be a congruence subgroup. Then there is a subgroup F o of 
F such that, if S is a finite set of primes not containing Po, and F. is a sequence 
of  subgroups of F o such that F.-U~ 1 : 

m(r. ,  6) 
lira inf - - - -  > e > O. 

. ~  v ( r . \ O )  

Here e is a constant depending only on G, F o and the limit of the sequence (F~) 

at P0. 
As may be seen, Theorem 1 is enough to complete Kazhdan's  proof of his 

theorem on the conjugates of arithmetic varieties by automorphisms of ~ ,  
when the variety is not complete [27, w 5]. It also has obvious consequences for 
the cohomology of arithmetic groups and the L2-cohomology of arithmetic 
manifolds. If F~ is a tower of congruence subgroups of G as in Theorem 1, the 
cohomology of F~ in the middle dimension will grow at least as the covolume. 
Also, our result joined to work of Borel and Casselman [12] shows that the 
criterion they obtained for the finite-dimensionality of the L2-cohomology of 
F \ G / K  (K maximal compact  in G) is necessary - for F deep enough - as well 
as sufficient. These consequences are detailed in w Also, in w we give a 
theorem realizing discrete series representations of p-adic groups in spaces of 
cusp forms. 

The proof relies on three main ingredients. The first one is Arthur 's  version 
of the Trace Formula for ad61e groups (for an introductory account see [28]). 
This gives a formula for the trace of a function f on the ad61ic group acting in 
the discrete spectrum of automorphic forms, in terms of certain distributions 
containing in particular orbital integrals of f If one wants to prove 
Conjecture A, the only important  term is a multiple o f f ( l ) .  Thus easy versions 
of the trace formula, from which this term is missing, are of no avail. Even to 
prove our weaker theorem, one needs a recent result of Arthur giving a fairly 
manageable expression for the term associated to unipotent orbital integrals. 

The second ingredient is a theorem of Delorme and the author [16, 17], 
constructing pseudo-coefficients on a real semi-simple group. This allows us to 
eliminate, from the "representation-theoretic" side of the trace formula, all 
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terms except those relative to a finite number of representations of G. The 
third is a method introduced by DeGeorge and Wallach which shows that the 
terms pertaining to representations other than 6 vanish at the limit. 

The article is organized as follows. In w we recall some definitions and 
results on arithmetic subgroups of semi-simple groups. In w we prove the 
ad61ic version of Theorem 1. In w 4, we give an extension of the ad61ic theorem 
to p-adic places. The theorem itself is deduced in w 5, as well as the corollaries 
concerning cohomology. 

2. Preliminaries 

2.1. Let G be a connected real semi-simple Lie group. We will use the 
extended notion of arithmetic subgroups of G, which we now recall. We refer, 
e.g., to [30]. 

If G = G(IR) +, the connected component  of the real-valued points of a group 
G defined over Q, a subgroup F of G is strongly arithmetic if there is an 
embedding 0 of G into GL(R), defined over Q, such that ~9(F) is commensur- 
able with Gc~GL(R, Z). The group F is a congruence subgroup if there is such 
an imbedding for which O(F)~Gc~A, where A is a congruence subgroup of 
GL(R, Z). 

If now G is just a connected semi-simple Lie group, a subgroup F of G is 
arithmetic if there is a semi-simple group G1 defined over ~ and a surjective 
homomorphism ~p: GI(R)  + ~ G  with compact kernel such that the image of a 
strongly arithmetic subgroup of GI(R)§ is commensurable with F. 

2.2. Assume now that G is simply connected, so that G(~,) is connected. Let 
G(A) be the group of A-valued points of G, where A is the ring of ad61es of I1~. 
Then congruence subgroups are just groups of the form G(~)c~(G(R)x  K), K 
being a compact-open subgroup of G(Ar), Aj. the finite ad61es. 

If moreover G has the strong approximation property - in particular if G is 
simply connected, almost simple over Q, and G(R) is noncompact  - there is a 
natural bijection between G(II~)\G(A)/K and F \ G( I ( ) ,  F being the congruence 
subgroup defined by K. This will be used in w to compare "classical" and 
"ad61ic" automorphic forms (cf. Borel-Jacquet [13]). 

2.3. Assume G is as in the previous paragraph, and satisfies in particular the 
strong approximation property. If F is a congruence subgroup of G, let K r be 
the associated subgroup of G(AI). If F. is a sequence of congruence subgroups 
of F, and S a finite set of primes, we say that F , ~  1 at S if, setting K , = K r  : 

For all large enough n, K ,  is a direct product K . = K s , , x K  s, with K s 
= [I  Kp a product of local groups, independent of n, and K s . . . . .  , 1. 

pr 
(Note that we assume rather stringent properties of the decomposition of 

Kr,  as a product.) 
If pq~S, Kp is called the limit of the sequence F, at p. 
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3. The ad61ic theorem 

3.1. We consider a semi-simple connected group defined over ~ .  In this para- 
graph, we denote it by G instead of _G; then Goo=G(~,), Gp=G(tl)p), G(A) 
denote the points with values in 11, II~p and A. We assume that G o has a 
discrete series. 

We choose a prime Po such that the group Gpo has supercuspidal repre- 
sentations. Using the methods in G6rardin [21, Chap. 5], such representations 
may be constructed if G is split, and thus a Chevalley group, at Po, and if the 
associated finite reductive group has cuspidal representations; thus it is true at 
least for a set of primes having non-zero density, thanks to the results of 
Deligne and Lusztig for finite groups. 

We choose such a representation n o of Gpo=G o. Let K p o = K  0 be a com- 
pact-open subgroup of G o such that n o contains non-zero vectors fixed by K o. 
Moreover, let fo be the function defined on G o by fo (g )=(gw,  w) for such a 
vector w. We assume that (w, w ) =  1. Then, by Schur's orthogonality relations 
[24], trace no(fo)=d(no)-L (We choose a Haar  measure dgA=@dg v on G(A); 

both the trace and the formal degree d(no) are then computed by means of 
dgo). 

Let S be a finite set of primes such that po~S. Let K s be a compact-open 
subgroup of Gs= 1-[Gp. If K s is a variable such subgroup, defined, say, by a 

pES 

directed set of indices, we say that K s ~ 1 if, for any compact-open subgroup U 
of G s the subgroup (Ks) i is contained in U for large enough i. 

Let s be the space of cusp forms on G(Q)\G(A).  If K 
is a compact-open subgroup of G(AI), we write 5r K for the space of K- 
invariants (by the natural right-action) in ~ .  It is still a Goo-module. 

Finally, let us choose a compact-open subgroup K s'p~ of 

G s, ,o = I]  Gp. 
pr D 

Theorem 1A. 

lim inf Iv(Ks) mult (6, Lz~u~p(G(Q)\G(A)) ~~ • K~• ~s, vo)] 
K s ~  1 

> v(G(Q)\G(A)),  d(no) dim(no K~ d(6) v(K s" po)- 1. 

An extension of Theorem 1A to certain discrete series representations of G s, 
where S is a finite set of primes, will be given in the next paragraph. 

3.2. The proof  will be obtained by applying Arthur 's  trace formula ([1, 2]; see 
also [18]) to a suitable function f on G(A). For  simplicity we first assume that 
K s'p~ is a product of local groups; this condition will be removed in w 

We take f to be a tensor product f = f ~  | 1 7 4  @ fp. 
remaining 

P 

The function f0 is chosen as above. For  given K s, let h s be the characteristic 
function of Ks; we set f s=vo l (Ks ) - lh s :  thus fs depends, in fact, on Ks, and, 
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for the convolution defined by the measure dgs, it satisfies fs*fs =fs. For other 
finite primes p, define fp in the same manner, using the fixed group Kp; of 
course, vol(Kp)= 1 for almost all p. 

We still have to define f~ .  Let K~ be a maximal compact subgroup of G~. 
By Theorem 1.1 of [16], there is a smooth, compactly supported function fo~ 
on G~, K~-finite on both sides, such that trace 6 ( f ~ ) = l ,  and trace n ( f ~ ) = 0  
for any tempered irreducible representation n4:6 of G. This is our choice for 
f~,~. (Such a function is called a pseudo-coefficient of 5.) 

Lemma 1. There exist only a finite number of irreducible representations n of 
G~ (up to isomorphism) such that trace n(f~)+O. Moreover, none of them 
except 5 belong to the discrete series. 

Proof By a theorem of Harish-Chandra and Zuckerman, any n can be 
uniquely written as a sum, with integral coefficients, of basic representations. It is 
shown in [16, 17] that the trace offo~ in any basic representation except 5 is 0. 
But then, if trace n(f~)+O, the expression of n must involve 5; this implies 
that the infinitesimal character of n is that of 5, whence the first assertion. This 
also shows that n cannot be a basic representation - and ~ fortiori a discrete 
series representation - unless n=5 .  [] 

We now apply Arthur's trace formula. It is expressed by an identity [2, 
p. 120] 

(*) Z J~(f)= ~ JTz(f) 
oe~ Ze,ff" 

of certain distributions evaluated at f Here T is a suitable regular point in a 0, 
the real Lie algebra of the split component of a minimal Levi subgroup of G 
defined over Q. We explain the right-hand side first. 

Lemma 2. For f as above, ~ jT( f )  is the trace trace rcusp(f ) of f acting by 
ZeW 

convolution on the space L2osp(G(ff))\G(A)); it does not depend on T. 

Proof This could be proved rather directly, tracing the effect of truncation by 
T on functions. We prefer, for brevity, to use Arthur's end results. 

The set Y" is the set of cuspidal data, i.e., pairs (M, p) where M is a Levi 
subgroup of G over Q, and p an irreducible, cuspidal representation of M(A) 1, 
the subgroup of elements of M(A) on which all rational characters have 
absolute value 1. See [1, w or [18, Lecture 1]; data conjugate by the inner 
action of G are identified. 

The definition of Jr( f )  is given in [2, p. 88] and an expression for it is 
obtained in [2, p. 120]: 

J f ( f )  = ~ n(A) -1 S trace (MV(n)z Ip(n, f)z) dn. 
P tT(M) 

Here the sum is over all parabolic subgroups P = M N  containing a given 
minimal parabolic subgroup Po; n(A) -a is a certain constant; II(M) can be 
taken to be the set of isomorphism classes of representations of M(A) whose 
restriction to M(A) 1 occurs discretely in LZ(M(Q)\M(A) ~) ([1, w 3]; note that G 



270 L. Clozel 

is semi-simple; also, Arthur defines II(M) as the set of all isomorphism classes, 
but the term associated to ~ is then 0 unless ~ occurs discretely). For given 
~el-I(M), Ie(n ) is the representation of G(N) induced from the representation 
a |  of P(N)=M(N)N(N), where a is the subspace of the discrete spectrum 
(modulo the center) of M(N) spanned by representations isomorphic to ~; 
Ip(~,f) x is the operator given by convolution by f in the subspace of Ip(rr) 
given by residues of Eisenstein series built from )~; finally, Mr(~) is a certain 
operator in the space of Ie(rc, f)x associated to truncation at the parameter T 

Now, since fo is a coefficient of a supercuspidal representation, the local 
operator le(~,fo ) is zero for any representation rc of M(Qpo ) if P is a proper 
subgroup. (This is well known; for a proof, see Henniart [-25, Appendix 1]). 
Since the global operators Ie(~,f) are tensor products of local operators, we 
see that only the terms with P=G in the expression of Jrx(f) are non-zero. 
Thus 

j r ( f ) =  ~ trace(M~(~)x I~(~, f)x) d~. 
n~G) 

The integral is now in fact a discrete sum. Assume now that the datum Z is a 
pair (p,M) with M:I:G. By definition I6(rc, f )  x is the subspace of 
Lzis(G(O~)\G(A)) composed of representations of type ~, obtained from Eisen- 
stein series associated to functions in the space of LZ,sp(M(II~)LM(A) 1) of type 
p. If z is an irreducible representation of G contained in Ic,(Tc, f)x, Eisenstein 
series and their residues (cf. e.g., Arthur [3]) provide an intertwining operator 
from Ie(rM) onto z, where rM is a cuspidal (non-unitary) representation of 
M(A) such that ZMIM~a),~-- p. But again, by the condition on f0, we have 
Ie(~M,f)=O whence I6(~ , f )x=0.  Thus we are left with the terms cuspidal for 
G, which proves Lemma 2. []  

We now explain the left-hand side of (,). Here the sum runs over the set (9 
of G(Q)-conjugacy classes of semi-simple elements of G(Q). If ~ ( 9 ,  Arthur 
defines ([1, p. 947, 942]) 

Jr( f )  = ~ k[(x, f )dx  
G(~} \ G(A) 

where 
k~ ' (x , f )=~( -1)  ~" ~ Kv, o(6x, 6x)'~p(H(6x)-T),  

P 6eP(@) \ G(~) 

([1, p. 938]). Here the sum runs over all standard parabolic subgroups P 
=MN; ap is the dimension of the split component of M; r is, for 6 
and x given, a real number whose definition need not concern us (cf. [1, 
p. 936]); if P=G, it is identically equal to 1. Lastly, 

Ke, o(x,Y)= ~ ~ f (x-17ny)dn 
7eM(~)no N(A) 

for x, yeN(N) M(Q)\G(N). (See [1, p. 923].) 
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Lemma 3. For f as above, 

J r ( f ) =  S { ~ , f ( x - ' T x ) } d x ;  

the integral S l~  f (x-17 x)l dx is absolutely convergent. 

Proof Arthur shows (Thin. 7.1) that ~lk~'(x,f)] is absolutely convergent, so we 
only have to prove that 

k~(x,f)= • f(x-17x).  

(Such a sum is finite.) This means that, in the expression of k~ given above, all 
terms Kp, o for P#:G vanish. But if P # G  we have ~ fo(X-17ny)dn=O for 

N(QP o) 
any x, 7, Y by a fundamental property of coefficients of supercuspidal repre- 
sentations (cf. e.g., [-22, Thm. 6]). Afo r t i o r i ,  the global integral vanishes, 
whence the result. [] 

At this point, we have proved: 

Lemma 4. For f as above, 

trace rc,sp(f ) = ~ ~ { Z f (  x-1 ~x) dx}. 
a G ( ~ ) ' - - G ( A )  7 c o  

Moreover, 

E ~lE f(x- 'TX)[<oo. 
0 )'EO 

Again, the convergence assertion is contained in [1, Thm. 7.1]. 

Lemma 5. For K s ,small enough, f (x-17x)=O for any xeG(A), unless 7 is 
unipotent. 

Proof Using a faithful representation: G--,GL(R), defined over O, we may just 
identify G to a subgroup of GL(R). For xeG, let 

p(x, T) = det (x - (1  - T ) ) =  TR +al(x) T R- 1 + ... +aR(X); 

the a i are then polynomial functions on G, defined over ~.  In particular, for 
xeG(A), ai(x)eA is well-defined. Moreover, 

a,(x) = {ai(x~) ai(xo) 1-[ a,(xp)} [I a,(Xp). 
pr p~S 

P# Po 

When K s varies, and f varies accordingly, the bracketed term is constant and 
bounded independently of x in the support of f ,  since the support off~ for yeS 
does not vary. Let [x[p be the normalized p-adic absolute value of xeQp; if 
xeA,  let IxL=I-I Ix,L be its absolute value. 

v 
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Taking K s small enough, we may arrange that, on the support o f f ,  lai(xr) 
-ai(1)lp=]ai(xv)]p<e for any given e. Taking the product of the local val- 
uations, we see that for small enough K s , we may arrange: 

lai(x)l < 1 (x~Supp(f)).  

But now, i f f ( x - 1 7 x ) = O ,  7 is conjugate in G(A) to an element y6Supp(f) .  
So we must have, the a~ being conjugation-invariant: 

lag(7) I = lai(Y)l < 1. 

However, ai(y)6~,  and the product formula gives la/(7)l = l  if ai(~)4:0. Thus 
ai(7)=0 for all i, which means that 7 is unipotent. [] 

Assume now that K s satisfies the assumption of Lemma 5: then we get, by 
Lemma 4: 

trace rcusp( f )=Joo( f )= ~ { ~ f ( x  -1 7x)} dx  
G(~)'- G(&) ~oo 

where o o is now the set of all unipotent elements of G(Q). 
We now use a fundamental result of Arthur about the distribution Joo 

associated to o o, the unipotent orbit. We denote it by Ju.ip. Recall that, for 
general f, the distribution J~niv depends on a parameter T (only for our 
particular choice o f f  is it independent of T). For a certain choice T O of T, J{nip 
has particularly nice properties. We will denote by Ju.ip(f) the distribution 
d{~ ) (see [5, w 1]; [4, w 1-2]). 

Recall that the subgroup K s of G s defined before the statement of Theorem 
1A is fixed. For simplicity we will assume that K s is maximal compact in G s, a 
product of maximal-compact local subgroups. (It is easy to see that the 
following argument does not really depend on that assumption). 

Let S ' = S w { P o } U { ~  }. Let ~s '  be the Hecke algebra of functions on G(A) 
which are finite sums of functions of the form g s , |  where gv~ C~(G(Qv)) for 
v~S', and f s '  is as above. We write G(~s ,  ) = I~ G(Qv). Thus ~s '  is the space of 

VE~" 

functions on G(A) which are unramified outside S'. 
Let ~//s' be the set of unipotent conjugacy classes of G s,: it is finite. If U is a 

unipotent conjugacy class in G(Q), the product U s, of its points with values in 
the local fields is a unipotent class in q/s'- Let d#s,~ be the subset of q/s' defined 
by such classes. 

Theorem 2 (Arthur [5, 6]). (1) For each U~q/s, ~ there is a measure m v on U 
such that, for  any f ~ s '  : 

dunip(f) = Z ~ f ( x )  dmv(x  ). 
U~qlS,,ff ~ U 

(2) The measure m v is absolutely continuous with respect to the measure on U 
invariant by Gs,. 

(3) For the unit orbit U={1} we have 

m y ( f )  = vol (G(Q)\G(A)) f(1). 
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This follows from the following results: Fix a minimal parabolic subgroup 
Po=MoNo of G over Q. For  any Levi subgroup M of G containing Mo, and 
unipotent conjugacy class U~G(Qs,) ,  Arthur defines in [-6, Thm. 5.2] a distri- 
bution JM(U,f)  on C~(G(ff)s,)). (It is a limit of weighted orbital integrals on 
semi-simple elements.) It is shown to be absolutely continuous with respect to 
the invariant measure on the orbit [6, Thm. 5.2]. Moreover, in 1-5, Cor. 8.3] it 
is shown that 

Jun ip ( f )  = 2 2 aM(U)dM(U,f); 
M U~IIS, ' ff~ 

the aM(u) are certain constants, M ranges over Levi subgroups as before. 
Finally, the constant for U =  {1} is computed in I-5, Cor. 8.5]. 

We now apply Theorem 2 to du,ip(.f), with f as before. Recall that, at the 
places of S, we have f s=vo l (Ks)  - '  h s, h s the characteristic function of K s. We 
have: 

Ju . ip ( f )=vo l (G(~) \G(A) ) f (1 )+  ~ ~ f (x)  dmv(x ). 
U4=I U 

Writing v for voI(G(~)\G(A)),  this yields: 

(**) vol(Ks) Junip(f)=v. f~(1) .  v(K s) 1 

+ ~, ~ fo~(x~)fo(Xo)" hs(xs) dmv(xo~, Xo, Xs). 
U~I U~xUoxUs 

(Recall that f0(1) = 1.) 

Since U is the product of local orbits associated to a rational orbit, we 
have Up+ {1} for peS. 

Lemma 6. Let U be a unipotent orbit 4={1} in the reductive p-adic group G. 
Then, if g~ is the characteristic function of the compact-open subgroup K: 

lira ~ g~(x)dx=O 
K~I U 

where dx is the invariant measure on U. 

This is obvious by Lebesgue's dominated convergence theorem: the integral 
is absolutely convergent, by a well-known result of Rao and Deligne. It is 
majorized, say, by the integral of g~o for K o fixed, and gK(x)~0 pointwise 
when K ~  1. [] 

But now, using absolute continuity of the measure m e with respect to the 
invariant measure on U, Lemma 6 and Fubini's Theorem imply that each of the 
terms associated to U:I: 1 in the expression (**) tends to 0 when K s ~  1. So we 
have proved: 

Lemma 7. 

lim vol (Ks) d u n i p ( f )  - -  vol (G(C})\G(A)) .f~ (1). v(KS) - ~ 
K s ~  1 
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We know (cf. after the proof  of Lemma 5) that  Ju , i p ( f )= t r ace  recap(f). We 
now analyze this trace using the specifil properties of f. At the places p :~ Po, fv 
is just the projector  associated to  Kp. Thus, writing as before L~ for 
L~u~p(G(~)\G(A)): 

trace rr ) = trace (f~ | I ~Lf'KsKs" po) 

where ~aK denotes the vectors of L~ a fixed by a group K. (Note that ~L# K~Ks'p~ is 
a representat ion of G~ x Gpo). 

We now use the properties of f ~  and fo. By Lemma  1, trace ~z(f~)~=0 only 
for a finite number  rr L ~ = fi, nz . . . . . . .  re,, ~ of representations of G~. Moreover ,  
since rc o is a supercuspidal representat ion of Gvo, we have trace a ( f o ) = 0  for 
any irreducible representat ion aO:rt o of  Gpo; and by our choice of fo, 

1 
trace rCo(fo)= d~0~o). This allows us to rewrite: 

1 n 

trace r~u~p(f)=d( ~ o) i=~1 trace hi' ~ ( f~)m(~i '  ~ | ~~ 
L#K~Ks, Po) 

where re(n, ~/F) is the multiplicity of rr in a representat ion V. 
We will now use the following lemma, which will be proved later: 

L e m m a  8. Assume rti, ~ + 6 (so i#: 1). Then 

lim v(Ks) m(rri, ~ | ZeK~KS' vo) = O. 
K S ~  1 

Combining now Lemmas  7 and 8, the identity Ju , l p ( f )= t r ace  rcusp(J" ) and 
the expression for trace rc,sp(f), we get, using that trace 6(f~)  = 1 : 

1 lira v (Ks)m(6 |  &~'x~Ks'P~ v(KS) -1. 
d(rto) r~ - I  

We still need a last lemma: 

L e m m a  9. foo (1) = d(6), the formal degree of (5. 

Proof. This is well-known and follows immediately from the Plancherel for- 
mula (see Lem ma  12, where the p-adic case is detailed). [ ]  

We now notice that  the multiplicit Z of ~ in the space ~ q~K~176 is at least 
'~ PO dim(too ~~ multiplied by m(O| o, L# K~K ' ). Thus:  

lira inf v(Ks) m(6, L# ~~ rs' vo) 
K S ~  1 

>dim(too x~ lim v(Ks) m(6| ~ K~Ks' po) 
K S ~  1 

> d(rc o) dim (rrg ~ v(G(O,)\G(A)) d(fi) v(KS) - ~. 

This is the s tatement  of Theorem 1A. [ ]  
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3.3. We still have to prove  L e m m a  8; the p roof  relies on the me thod  of 
DeGeorge -Wal l ach  (see also [31]). For  simplicity we just  write n for hi, ~; thus 
n does not belong to the discrete series. Remark  that  by the usual propert ies  of 
n o and f0, the multiplicity of n o in a Gpo-space ~" is equal to d(no) t race( fo  [ ~" ). 
We will use that  without  comment .  

We will now apply the trace formula  to a function f=fo~|  @ fp; the fp 
ptov 

associated to the finite pr imes are as above,  but  the function f ~  = u will be a 
new function, to be defined later. 

In G~,  let us denote  by B r the ball of radius r > 0 :  writing a Car tan  
decomposi t ion  G ~ = K ~ A + K ~ ,  Br is the set of all g = k l a k  2 such that  
a = e x p ( H )  where H e a = L i e A  has length ILHIL<r for the Killing metric  (cf. 
[20, w 23). 

L e m m a  10. (i) For each compact-open Ks cGs ,  there is r > 0  with the following 
property. Let f = u |  (~ fp, with fp as before and u6C~(G~). Then, if Supp(u) 

p4-~  

c B r , f ( x  -a 7x)=O for any x~G(A)  and 7~G(~)  unless 7 is unipotent. 
(ii) Let r(Ks) be the maximum such r. Then, as K s ~ 1, r(Ks) ~ ~ .  

Proof We use the notat ions  of  L e m m a  5 and its proof. The p roof  shows that  
we will have f ( x - ~  7 x ) =  0 unless 7 is unipotent ,  provided 

la~(x)l < 1 for all x ~ S u p p ( f ) .  
Writ ing 

lai(x)l = lai(x~))l~ I-I lai(Xp)lp H [ai(Xp)lp, 
p~S p~S 

we see that  this can be ensured by bounding  the suppor t  of u, proving (i). As 
K s ~ l ,  the m a x i m u m  value of the middle te rm on K s tends to 0; thus 
lai(x~)l~ can be made  as large as we want,  proving (ii). [ ]  

We now fix K s. If Supp(u)cB~,  where r=r(Ks),  the conclusion of L e m m a  5 
is still valid; using, as before, Theorem 2, we obtain  the expression (cf. formula  
(**) after L e m m a  7) 

v(Ks ) trace(u| f o l ~r~rs ,  po) = v . u(t) v(KS) - 1 

+ ~ ~ u(x~)fo(Xo) hs(xs) dmv(x). 
U~:I U ~ x U o x U s  

We now apply  this formula  to a function u = w ,  ~v (convolut ion product)  
where w e C [ ( G ~ )  and # (g )= f f (g -~ ) .  The representat ion of G| which appears  
in the left-hand side of our  formula  is trace-class; in any trace-class representa-  
t ion p we have: 

trace p(u)= IIp(w)ll 2 

where II hi2 denotes the Hi lber t -Schmidt  norm of operators .  Moreover ,  u(1) 
= IIw]l~, the L2-norm on G~. 

Recall that fo (g)=(gw,  w)  where w is in the space of rt 0. In any irreducible 
representat ion a 0 of Gpo, of type n o, ao(fo) projects on a well-defined one- 



276 L. Clozel 

dimensional subspace, the image of ~ w  by the isomorphism r C o ~  0. Let us 
denote by p the representation of G~ on the subspace of 5Y rs'Ks'p~ thus 
defined. We have 

v(Ks)llp(w)ll 2 =v .  Ilwl12 2. v( /S)  -1 

+ ~ ~ (w �9 ~v)(xo~)fo(Xo) hs(xs) dmv(x). 
U U ~ x U o x U s  

We apply this to the following function w: let e be a unit vector in the 
space of ~ and f(g)=(ge, e) the associated coefficient. Set w=hj; where h is a 
smooth approximation to the characteristic function of B,/2. (Note that the 
convolution of B,/2 by itself is contained in B~-cf.  [33, p. 320]). We then get: 

v(Ks) m(rt, p)I[rc(w)l[ z 2 < v(Ks) IIP(W)ll z 

__< v. II wll ~ v(K s) - '  + ~ f (w �9 W)(xo~)fo(Xo) hs(xs) dmv(x ). 
U 

If now h tends to the characteristic function h,/2 of Br/2, w tends to a 
compactly supported function; re(w) is still a Hilbert-Schmidt operator;  it is 
easy to see that all the terms in the inequality tend continuously to their values 
for w=h,/zf, and thus the inequality is preserved for w. 

Lemma 11. For w = h r / 2 f  ~ llg(w)lI2~ Ilw[l~. 
This is proved in [20]: since f i s a  matrix coefficient, 

]f~(w)ll~>l~ f(g)w(g)dgl2=l ~ Iw(g)12 dgl2=llwll4. [] 
Br/2 

Using Lemma 11 and the previous inequality for w, we get: 

v(gs)  m(~, p)=< c rl wll i-2 + II w ll ;4  Y~ ~ (w �9 Cv)(x ~) fo(Xo) hs(xs) . ainu(x), 
U 

where c is a constant independent of K s. Note that the inequality holds, in 
fact, for any w = h,f,  f being our coefficient and h r the characteristic function of 
B, with r<�89 

Let us adopt this choice of w. Since w ,  # is a function of positive type, we 
have 

](w * ~)(x)l <(w * ~)(1)= IIw]] 22 

for any xeG~. Moreover, w ,  # is supported in Bzr, so 

Iw,fv(x)T<llwtl~h2,(x) for all x~G~. 

We obtain the inequality: 

v(gs) m(~, p)<=c Ilwllff 2 + ]twll~ 2 ~ ~ h2r(x~o)I/o(X0)[ hs(xs) dvv(x ) 
U 
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where dv v is the absolute value of the measure dm v. Now, since f is a 
coefficient of rc and rc is not square-integrable, we have 

S [f(g)l 2 dg = o0. 

Given e>0,  we may then choose r large enough that, for w=h, f ,  
Ilwll2>g -1. We then have, if r(Ks)>2r: 

v(Ks) m(n, p) < e.{c + ~ S h2r(xoo)Ifo(Xo)l hs(xs) d Vu(X)}. 
U 

Consider now a sequence of Ks-+l.  For K s small enough, r(Ks)>2r; so 
this inequality is satisfied. Moreover,  the functions h s decrease to 0. An 
application of Lebesgue's theorem, using the absolute continuity of dv v with 
respect to the invariant measure on U (cf. after Lemma 6) then shows that each 
of the terms in the sum indexed by U tends to 0. So we have: 

lim (v(Ks) m(r~, pKs)) <__~c. 
K S ~  1 

(We have written PKs for the representation previously denoted by p to 
make clear now its dependence on Ks). Since ~ was arbitrary, we have at last: 

lim v(Ks) m(~, PKs) = 0 
K S ~  1 

which means, by the definition of PKs: 

lim v(Ks) m(~|  5(' KsKs' po) =0. 
K s ~  1 

This is Lemma 8. [] 

3.4. So far we have assumed that K s'p~ was a product of local groups, but this 
condition was irrelevant: remark that we could arrange this by enlarging S. If 
we do this, however, K s will tend to 1 only at some places of S. But it is clear 
that in the arguments after Theorem 2, we only needed that K s--* 1 at some 
(non-empty) set of places of S. This terminates the proof of Theorem 1A. 

4. Extension to the finite primes 

4.1. In this paragraph, we state an extension of the ad61ic theorem to discrete 
series representations of G(&s) = 1-[ G ( ~ ) ,  where S is a finite set of places of Q 

v~S 

containing the infinite prime. The proof given in w applies without any 
transformation; however, we will need the existence of pseudo-coefficients for 
discrete series representations of p-adic groups. Fortunately, this is an easy 
consequence of the invariant Paley-Wiener theorem for p-adic groups recently 
proved by Bernstein, Deligne and Kazhdan. 
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4.2. We will first state the Paley-Wiener theorem of [9]. For this, let us denote 
by G a reductive p-adic group. Let R(G) be the Grothendieck group of 
admissible G-modules of finite length, Irr(G) the set of irreducible repre- 
sentations of G. The set Irr(G) has a natural decomposition into connected 
components; each component is associated to a cuspidal datum f2---(M,p) 
where M is a Levi subgroup of G and p a supercuspidal, irreducible M- 
module. 

If M is a Levi subgroup of G, the unramified, one-dimensional characters of 
M form a complex torus, denoted by 7~(M). If 09 is a representation of M and 
Z~ 7J(M) we may form the representation ~o| 

Let ), be an additive functional: R ( G ) ~ ;  2 is called good if 
(i) The function 2: I r r ( G ) ~ C  is supported on a finite number of com- 

ponents. 
(ii) For  any proper Levi subgroup M, and a6R(M), the function 

Zw-~2(i~M(a| is a regular function on the variety 7~(M). 
(Here we denote by iGM(a| ) the representation induced from P = M N  to 

G of a QZ, where P = M N  is any parabolic subgroup having M as a Levi 
component). 

Theorem 3 (Bernstein-Deligne-Kazhdan). Let 2: R ( G ) ~  be an additive func- 
tional. Then 2 is good if and only if there is a function f~  C~ (G) such that 

2(rt) = trace n( f )  
for any ~R(G) .  

We will deduce from this (we assume, for simplicity, that G is now semi- 
simple): 

Proposition 1. Let ~ be a discrete series representation of G. Then there is a 
function f ~ C~ (G) such that 

(1) trace 6 ( f )=  1, 
(2) trace n( f )=O for any tempered irreducible representation n + 6 of G. 

Before proving Proposition 1, we need a few preliminaries about the Lang- 
lands classification for p-adic groups (Silberger [32], Borel-Wallach [14]). We 
refer to [14] for details. Choose a minimal parabolic subgroup Po=MoNo of 
G. If P---MN is standard, let A = A ~  be the split component of M, a its "real 
Lie algebra". Let aw-*H(a) be the Harish-Chandra map: A ~ a. 

We say that a representation a of M is essentially tempered if there is a 
character Z of M such that a Q z  is tempered. If a is an irreducible representa- 
tion of M, and ~o~ its central character, we define 2~Ea* by logl~%(a)[ 
= ( 2  o, H(a)). We say that a is positive if (2~, e ) > 0  for any root e of (P, A). 
Langlands' classification theorem then asserts that, if a is essentially tempered 
and positive, the induced representation Ip(a) has a unique irreducible sub- 
module Jp(a). Moreover, any irreducible representation of G is so obtained, 
and Jp (a) is equivalent to J~,, (a') if and only if p = p', a = a'. 

The following fact is well known to experts. We call a character Ip(a), with 
a positive for P, a standard character. 
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Proposition 2. The standard characters form a basis over Z of  the Grothendieck 
group R (G). 

Proof  We first show (cf. [31]) that an irreducible representation ~z can be 
written as a combination of standard characters. Such a representation can be 
realized as a Langlands submodule Jp(a). Moreover, if n' is another irreducible 
submodule of Ie(a), and (P', a') are its Langlands data, )~, < 2 ,  for the natural 
ordering on a* ([14, Lemma 2.13, Ch. XI]). Moreover, by a theorem of 
Bernstein-Zelevinski and Casselman [10, 15] n' must come from the same 
cuspidal datum as n. This leaves a finite number of possibilities for n'. By 
induction on 2~, we may assume that any n' is a combination of standard 
characters; the same is true for n =-Jp(a)=le (a ) -  ~ n'. 

We still have to show that the standard characters are independent. Let us 
fix a cuspidal datum D =(M, p). The previous argument shows that all irreduc- 
ible characters attached to ~ are linear combinations of standard characters 
attached to ~;  and the (finite) matrix so obtained is a square, unipotent matrix. 
Since irreducible characters are independent, this shows that standard charac- 
ters are in fact independent over ~. [] 

We can now prove Proposition 1. Using Proposition 2, we may define a 
linear functional 2 on R(G) by setting 2(3)= 1 (note that 6 is a standard 
character!) and 2(n)=0 for any standard character n#:6. Since a tempered, 
irreducible representation of G is standard by definition, Proposition 1 will be 
proved if we can show that 2 is represented by a function f We must check 
that 2 is a good functional. Condition (i) is satisfied; we will check that 2 
vanishes on any induced representation n = I ~ n ( z  ) with M + G .  Using again 
Proposition 2, we may assume that z is a standard representation of M : z  
= / M  t M,~N,~M~a, a an essentially tempered representation of M,  positive for 
(NorM').  But then n = l ~ u , a ;  if P~ is the parabolic subgroup of G containing 
M' such that the roots of 2~ with respect to A' are determined by (2~, ~) <0, n 
is then a standard representation associated to (a, P,). (P~ may not be standard; 
however, conjugating it to a standard parabolic subgroup reduces the situation 
to a standard one). Thus 2(n)=0. This obviously implies condition (ii), showing 
that 2 is a good functional. Theorem 3 then implies Proposition 1. []  

4.3. We now revert to the assumptions and notations at the beginning of w 
Let S be a finite set of places of Q containing ~ .  Let Po be a prime such that 
Gpo has supercuspidal representations. We choose n 0, K 0 as in 3.1. 

Let S' be a finite set of (finite) primes disjoint of S and {P0}. We define K s, 
as in w replacing S by S'. As in w we also choose global and local 
measures. We assume chosen a compact-open subgroup K of 1-I Gv. 

p~S ~S' v{po} 
Again, ~ = L2usp(G(~)\G(A));  ~ r o  • Ks, • K is now a representation of G s. 

Let 6 s be a discrete series representation of Gs: thus 6 s = (~6~ where, for all 
v~S 

v, 6~ is a discrete series representation of the real or p-adic group G,. 

Theorem 1 B. 
lim inf[v(Ks,)  mult (6 s, ~Ko • K~, • K)] >__ c 
Ks, ~ 1 
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with 
c = v ( G ( ~ ) \ G ( A ) )  d(no) dim(no K~ v(K) -1 d(6s). 

The proof is the same as for Theorem 1A, using the function fs = | where 
fv is a pseudo-coefficient of ~ as in Proposition 1. We need only check for p- 
adic groups the analogues of Lemma 1 and Lemma 9. Lemma 1 is obvious: iff~ 
is a pseudo-coefficient of 6~,, and trace n~(Iv) + 0, then by the arguments around 
Proposition 1, n~ must be attached to the same cuspidal datum as fv; this 
leaves a finite number of possibilities. By the choice of f~, moreover, n~ cannot 
belong to the discrete series. 

We still need the analogue of Lemma 9. (Note that this would be un- 
necessary if we just wanted to know that Theorem 1B holds for some c>0).  

Lemma 12. Let (5 be a discrete series representation of  the p-adic group G; 
assume f 6 C~ (G) satisfies the conditions of  Proposition 1. Then 

f (1)=d(6) .  

Proof  We use the Plancherel formula, proved by Harish-Chandra [23]. This 
expresses f(1) as an integral ([23, w 13]): 

f ( 1 ) = ~  c u S d(co)/~(~)trace(no(f))d~o. 
M g2(M) 

The sum ranges over conjugacy classes of Levi subgroups; gz(M) is the variety 
of unitary square integrable representations of M; n,o is the associated induced 
representation, d(~) the formal degree of ~o and /2(co)d(o the Plancherel mea- 
sure, and c M a certain constant. If M = G ,  CM=I and #(~o)=1. For f as in 
Proposition 1, all terms associated to co 4:6 vanish, whence 

f(1)  =d(6). [] 

We finish this paragraph with two remarks. First, even when G(R) has no 
discrete series, the same proof will show that a discrete series representation of 
G s, where S is now a finite set of finite primes, imbeds in a global, cuspidal 
representation of G(A), say n =  | of course, in that case n~ cannot be 
specified. Second, we have worked over Q for simplicity of notations; ob- 
viously the analogue of Theorem 1B and the previous remark hold over any 
number field. 

5. Proof of Theorem 1 and applications 

5.1. We can now prove Theorem 1. Recall the assumptions: _G is a reductive 
group over •, connected, simply connected, semi-simple and almost simple. 
We assume that G = G ( R )  is noncompact;  F is a congruence subgroup of G. 
We assume P0 chosen so that _G(Qpo ) has a supercuspidal representation. We 
will give a more precise statement than in the Introduction: 
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Theorem 1. There exists a subgroup F o of finite index of F with the following 
property. Let S be a finite set of primes, not containing Po, F, a sequence of 
congruence subgroups of F o such that F , ~  l, and 6 a discrete series representa- 
tion of G. Then there is e > 0 such that 

l iminf  ~ ,  >e,d(6) 

with a constant e depending only on the limit Kpo of the sequence (F,) at Po. 

Proof Since F is a congruence subgroup of G, we have F=G(II~)c~K r, K r a 
compact-open group in G(As). Let K ~ be a group admitting a decomposition 
K ~ 1 7 6  pox K ~176 with K ~176 compact-open in H G(Qp), and contained in K r. 

P#'Po 
We may further assume that G(ff)po) has supercuspidal representations with 
vectors fixed by K ~ We set Fo=_G(~)c~K ~ 

P 0 '  

If now S is a finite set of primes disjoint of {Po} and F, is as in Theorem 1, 
let K" be the closure of F, in G(Af). Then K"=Kpo • K~ • K s'p~ with Kpo fixed 
and contained in K ~ and K s'p~ fixed (at least for large enough n). We apply 

Po  

Theorem 1A to the groups K"; we obtain: 

lim inf v(K~) mult (3, L2usp(G(Q)\_G(A)) r") 

> v(G(Q)\G(A)) d(rto) dim(Tzo~pO) d(,5) v(KS, p~ -~ 

Strong approximation (cf. [13, w and 4.7]) yields an isomorphism of G- 
spaces: 

In particular 
_6(Q)\G(A)/K" : r.\G. 

L[u.,dg(~)\g(A)W: n~u~.(r.\G) 
and 

vol (K") vol (F,\G) = v(_G(Q)\_G(A)). 

Thus we can rewrite the basic inequality as 

lim inf(v(F,\G) -1 m(6, F,))> dOro) dim(rcoKPO) V(Kpo) - ~ d(6). 
n ~ o o  

This implies Theorem 1. [] 

Remark. Note that we get an apparently stronger result, replacing the multi- 
plicities in the discrete spectrum by the multiplicities in the cuspidal spectrum. 
By a theorem of Wallach [34], however, they coincide. 

5.2. We will now prove a weak result for general arithmetic groups. 

Proposition 3. Let G be a connected semi-simple Lie group, F an arithmetic 
subgroup of G. Then there is a sequence F, of subgroups of F,, of finite index, such 
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that, if 6 is a discrete series representation of  G: 

lim inf m(6, Fn) > ed(6) 

for a f ixed constant 5. 

Proof. We use a series of reductions: 

A. Assume that G =  G(~)  where G is a Q-group satisfying the assumptions 
of Theorem 1, and F is strongly arithmetic. Then F is commensurable with a 
congruence subgroup F o as in Theorem 1. If now F~ c F  o is as in Theorem 1, we 
have L2(F.\G)~L2(F,c~F\G); moreover, F,c~F\F. is a subgroup of FoC~F\F o, 
so the index IF~c~F\F,I is bounded; it is easy to see that the groups F,c~F 
satisfy the assertions of Proposition 3. 

B. Assume that G = G ( I / )  + with G a group over Q, connected and semi- 
simple, with no Q-factor compact at the infinite place. We consider the simply- 
connected covering G sc of _G; we have a surjection GSC(l/)~G; G sc is a product 
of groups as in A. By the same set of arguments as in A, we deduce the 
assertion for F strongly arithmetic in G from the assertion for G so. 

C. More generally assume F c G  is strongly arithmetic. Again passing to 
the simply-connected covering, we may assume that G=G1  x ... x G r (product 
of Q-groups); assume, e.g., that G/=GI(I1) is compact for i<s. Then F is 
commensurable with F'=Fc~(Gs+ 1 x ... x Gr). It is easy to deduce from B that 
the pair (G, F') verifies Proposition 3. Thus it also holds for (G, F). 

D. Finally, assume F c G  is arithmetic in Margulis' sense: thus there exists 
G1 over Q, and an exact sequence 

1 ---, U---~ G , ( ~ )  + ~ G - ,  1 

with U compact,  F~ strongly arithmetic in G~(~) § such that n(F 0 is com- 
mensurable with E We may replace F by Fnn(F1). If 6 belongs to the discrete 
series, 

mult (3, L2(F\G)=mul t (6  o n, L 2 ( n  - 1 F \ _ G I ( ~ X ) + ) )  

= mult (3 o n, L 2 (F~ U\G~ (R) +)) = mult (3 o n, L 2 (F~ \G~ (R) +)). 

We may now take a suitable sequence of subgroups F, of F~ ; their image in G 
will satisfy Proposition 3. []  

5.3. Cohomology of arithmetic groups. For simplicity we will just assume that G 
satisfies the assumptions of Theorem 1. We assume that G = G(~)  has a discrete 
series. Let K be a maximal compact  subgroup of G, q=�89 Let (4, V) 
be a finite-dimensional representation of G. 

Proposition 4. Let F be a congruence subgroup of  G. Let F o c F, F, c F  o satisfy 
the assumptions of  Theorem 1. 

Then, for n large enough, 

dim Hq(Fn, V) > ev(F,\G) 

with a constant ~ > 0 depending only on V and the limit of the sequence (Fn) at Po" 
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Proof This is now obvious  using the results of Bore l -Wal lach  [-14]. We  use the 
no ta t ions  of [14, II, w Let  # be the highest  weight  of V* Then A = p + p  is 
regular  and  determines  a discrete series representa t ion  3 = o0 a. By T h e o r e m  5.3 
of [14, I I ]  we have /-/q(,q, k; ~ @ V ) ~  where J f  is the space of K-fini te  
vectors of b. On the o ther  hand  [14, VII,  Cor. 2.7] for F discrete in G 

H"(V, V)=Hq(g, k; C~(F\G)| v). 

Moreover ,  let L2usp(r\G) ~ be the space of C ~ cusp forms. Then,  if L2usp(F\G) 
= @ m ( r 0 ~ ,  we have Hq(g,k; L2u.,p(r\G)~| Hq(g,k;  ~z| a 

ned 
finite sum (cf. [-14, VII,  Theo rem 3.2]). M o r e o v e r  Borel  [11] has shown that  
the cuspidal  c o h o m o l o g y  the cohomology  of L2usp(F\G) ~176 injects in the 
c ohom ol ogy  of C~176  Thus 

d im H q (f', V) ~ m (6) dim H q (g, k, 6 | V) = m (6); 

2 recal l ing that  the mul t ip l ic i ty  of 3 in L 2 is the same as its mul t ip l ic i ty  in Lcusp , 
and  app ly ing  this and  T h e o r e m  1 to F,, we see: 

d imHq(F,  V)>~v(F,\G). [] 

5.4. LZ-cohomology of arithmetic varieties. We finish with a footnote  to the 
art icle of Bore l -Casse lman  [,12]. Let  G be as in Theo re m 1, F c G  a congruence  
subgroup,  V a f in i te -d imensional  represen ta t ion  of  G, l? the assoc ia ted  local  
system on F \ X = F \ G / K .  (We refer to [-12] for undef ined no t ions  and  no- 
tations.)  

Theorem 4 (Borel-Casselman).  The space of L2-cohomology H~z)(F\X; ~') is 
finite-dimensional if no proper euspidal parabolic subgroup of G contains a 
Cartan subgroup of a maximal compact subgroup of G. 

Conversely,  T h e o r e m  1 implies:  

Proposi t ion 5. Assume that G contains a proper cuspidal parabolic subgroup P 
= M A N  containing a Cartan subgroup of a maximal compact subgroup of G. 
Then, for suitable arithmetic subgroups F n of F, the space H~(Fn \X  ; V) is 
infinite-dimensional. (/-/ere 2qM is the dimension of the symmetric space of M.) 

Indeed,  this is p roved  in [12, w under  the a s sumpt ion  that  LE(FnC~MM) 
conta ins  a sui table  discrete series represen ta t ion ;  by T he o re m l, it will be the 
case for deep enough F.. [ ]  
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