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1. Introduction

Let G be a connected semisimple real Lie group, I' an arithmetic subgroup of
G. Assume G has a discrete series of representations. We will say that a
sequence I is a tower of subgroups of I' if [I':I,] is finite for all n, and

lim(I:[]=c0.

Of course the groups I, are then arithmetic subgroups of G. In this situation, it
seems natural to assume that, as n— oo, the spectral decomposition of I*(I,\G)
will approximate that of G. In particular, let J be a discrete series representa-
tion of G. If I is a subgroup of G, let m(I; §) be the multiplicity of ¢ in the
representation of G, by right translations, on I*(I'\G). Choose a Haar measure
dg on G; if I' is arithmetic, let (I"\G) be the (finite) volume of I'\G for the
measure induced by dg. Let d(8) be the formal degree of d for the measure dg.

Conjecture A. Let (I) be a tower of subgroups of I. Then

om0
lim G~ 4O

When I'\G is compact, this conjecture has been proved by DeGeorge and
Wallach [20]. (Note that I' does not have to be assumed arithmetic in that
special case.) In the general case, the Conjecture should follow some day from
a better understanding of the Arthur-Selberg Trace Formula. Partial results -
when the real rank of G is 1 and ¢ is regular enough - have been obtained by
DeGeorge [19]1 and Barbasch-Moscovici [8]. Meanwhile, and in view of the
applications, it seems of interest to prove a weaker result, which still implies
that the representation § imbeds, with large enough multiplicity, in spaces of
automorphic forms. Kazhdan announced in [26] a proof of the following:
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Conjecture B. Under the same assumptions, there exists ¢ >0 such that

. _m(l,,d)
llg;nf v(Ij,\G)>

In this article we will prove a weak version of Conjecture B for congruence
subgroups. Let G be a connected, simply connected, semi-simple, almost simple
group defined over Q. We assume that G=G(IR) is noncompact. Let I' be a
congruence subgroup of G. If S is a finite set of primes, we define in §2 the
(natural) notion of “a sequence of subgroups I, of I' tending to 1 at S”. If I} is
such a sequence, we write I, > 1. Moreover (cf. §2) we may define the limit of
I at a prime p.

Assume now that p, is a prime such that G(Q,) has a supercuspidal
representation.

Theorem 1. Let I' =G be a congruence subgroup. Then there is a subgroup I, of
I such that, if S is a finite set of primes not containing p,, and I, is a sequence
of subgroups of Iy such that I,—>1:

m inf T R6)

Here ¢ is a constant depending only on G, I, and the limit of the sequence (1)
at p,.

As may be seen, Theorem 1 is enough to complete Kazhdan’s proof of his
theorem on the conjugates of arithmetic varieties by automorphisms of C,
when the variety is not complete [27, §5]. It also has obvious consequences for
the cohomology of arithmetic groups and the I*-cohomology of arithmetic
manifolds. If I is a tower of congruence subgroups of G as in Theorem 1, the
cohomology of I’ in the middle dimension will grow at least as the covolume.
Also, our result joined to work of Borel and Casselman [12] shows that the
criterion they obtained for the finite-dimensionality of the I*-cohomology of
I'\G/K (K maximal compact in G) is necessary - for I deep enough - as well
as sufficient. These consequences are detailed in §5. Also, in §4, we give a
theorem realizing discrete series representations of p-adic groups in spaces of
cusp forms.

The proof relies on three main ingredients. The first one is Arthur’s version
of the Trace Formula for adéle groups (for an introductory account see [28]).
This gives a formula for the trace of a function f on the adélic group acting in
the discrete spectrum of automorphic forms, in terms of certain distributions
containing in particular orbital integrals of f If one wants to prove
Conjecture A, the only important term is a multiple of f(1). Thus easy versions
of the trace formula, from which this term is missing, are of no avail. Even to
prove our weaker theorem, one needs a recent result of Arthur giving a fairly
manageable expression for the term associated to unipotent orbital integrals.

The second ingredient is a theorem of Delorme and the author [16, 17],
constructing pseudo-coefficients on a real semi-simple group. This allows us to
eliminate, from the “representation-theoretic” side of the trace formula, all
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terms except those relative to a finite number of representations of G. The
third is a method introduced by DeGeorge and Wallach which shows that the
terms pertaining to representations other than § vanish at the limit.

The article is organized as follows. In §2 we recall some definitions and
results on arithmetic subgroups of semi-simple groups. In §3, we prove the
adélic version of Theorem 1. In §4, we give an extension of the adélic theorem
to p-adic places. The theorem itself is deduced in §5, as well as the corollaries
concerning cohomology.

2. Preliminaries

2.1. Let G be a connected real semi-simple Lie group. We will use the
extended notion of arithmetic subgroups of G, which we now recall. We refer,
e.g., to [30].

If G=GR)™*, the connected component of the real-valued points of a group
G defined over Q, a subgroup I' of G is strongly arithmetic if there is an
embedding  of G into GL(R), defined over @, such that W(I') is commensur-
able with GNGL(R, Z). The group I' is a congruence subgroup if there is such
an imbedding for which Y (I')>Gn4, where 4 is a congruence subgroup of
GL(R,Z).

If now G is just a connected semi-simple Lie group, a subgroup I' of G is
arithmetic if there is a semi-simple group G, defined over Q and a surjective
homomorphism ¢: G,(R)" -G with compact kernel such that the image of a
strongly arithmetic subgroup of G,(IR)* is commensurable with I

2.2. Assume now that G is simply connected, so that G(IR) is connected. Let
G(A) be the group of A-valued points of G, where A is the ring of adéles of Q.
Then congruence subgroups are just groups of the form G(Q)N(G(R)x K), K
being a compact-open subgroup of G(A,), A, the finite adéles.

If moreover G has the strong approximation property — in particular if G is
simply connected, almost simple over @, and G(R) is noncompact — there is a
natural bijection between G(Q)\G(A)/K and I'\G(R), I' being the congruence
subgroup defined by K. This will be used in §5 to compare “classical” and
“adélic” automorphic forms (cf. Borel-Jacquet [13]).

2.3. Assume G is as in the previous paragraph, and satisfies in particular the
strong approximation property. If I' is a congruence subgroup of G, let K be
the associated subgroup of G(A,). If I} is a sequence of congruence subgroups
of I and S a finite set of primes, we say that I —~ 1 at S if, setting K, =K :

For all large enough n, K, is a direct product K,=Kg ,x K> with K*

= Hst a product of local groups, independent of n, and K ,——— 1.
p¢

(Note that we assume rather stringent properties of the decomposition of
Ky, as a product.)
If p¢S, K, is called the limit of the sequence I, at p.
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3. The adélic theorem

3.1. We consider a semi-simple connected group defined over ®. In this para-
graph, we denote it by G instead of G; then G, =G(R), G,=G(Q,), G(A)
denote the points with values in R, @, and A. We assume that G has a
discrete series.

We choose a prime p, such that the group G, has supercuspidal repre-
sentations. Using the methods in Gérardin [21, Chap. 5], such representations
may be constructed if G is split, and thus a Chevalley group, at p,, and if the
associated finite reductive group has cuspidal representations; thus it is true at
least for a set of primes having non-zero density, thanks to the results of
Deligne and Lusztig for finite groups.

We choose such a representation n, of G, =G,. Let K, =K, be a com-
pact-open subgroup of G, such that n, contains non-zero vectors fixed by K.
Moreover, let f, be the function defined on G, by f,(g)=<{gw, w) for such a
vector w. We assume that {w, w)=1. Then, by Schur’s orthogonality relations
[24], trace my(f,)=d(m,)~"'. (We choose a Haar measure dg, =X)dg, on G(A);

both the trace and the formal degree d(n,) are then computed by means of
dgo)-

Let S be a finite set of primes such that p,¢S. Let K be a compact-open
subgroup of Gg= HGP. If K¢ is a variable such subgroup, defined, say, by a

eS
directed set of indfces, we say that K¢— 1 if, for any compact-open subgroup U
of G4 the subgroup (Kj); is contained in U for large enough i.
Let $=L2cusp(G((Q)\G(A)) be the space of cusp forms on G(Q)\G(A). If K
is a compact-open subgroup of G(A,), we write %X for the space of K-
invariants (by the natural right-action) in .¢. It is still a G _-module.

Finally, let us choose a compact-open subgroup K5 70 of

¢e= [ G

p¢Suipoiuw

-
Theorem 1A.
lim inf [v(Kg) mult(8, 12, (G(Q)\ G (A))< ™ Ks~ K- poyy
Kg-—1

2 0(G(Q\G(A)) - d(mp) dim(ng®) d(8) v(K> )~ ".

An extension of Theorem 1A to certain discrete series representations of Gy,
where § is a finite set of primes, will be given in the next paragraph.

3.2. The proof will be obtained by applying Arthur’s trace formula ([1, 2]; see
also [18]) to a suitable function f on G(A). For simplicity we first assume that
K5 0 is a product of local groups; this condition will be removed in §3.4.
We take f to be a tensor product f=f, ®f,®f(® & f,.
remaining
P
The function f, is chosen as above. For given Kg, let hg be the characteristic
function of Kg; we set fy=vol(Kg)~'hg: thus fg depends, in fact, on Ky, and,
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for the convolution defined by the measure dgg, it satisfies fg* fg=f. For other
finite primes p, define f, in the same manner, using the fixed group K,; of
course, vol(K )=1 for almost all p.

We still have to define f_ . Let K be a maximal compact subgroup of G ..
By Theorem 1.1 of [16], there is a smooth, compactly supported function f,
on G, K_-finite on both sides, such that trace 6(f,)=1, and trace n(f )=0
for any tempered irreducible representation m%4 of G. This is our choice for
f..- (Such a function is called a pseudo-coefficient of d.)

Lemma 1. There exist only a finite number of irreducible representations n of
G, (up to isomorphism) such that trace n(f,)+0. Moreover, none of them
except O belong to the discrete series.

Proof. By a theorem of Harish-Chandra and Zuckerman, any m can be
uniquely written as a sum, with integral coefficients, of basic representations. It is
shown in [16, 17] that the trace of f_ in any basic representation except ¢ is 0.
But then, if trace n(f,)=+0, the expression of = must involve §; this implies
that the infinitesimal character of = is that of 4, whence the first assertion. This
also shows that n cannot be a basic representation - and & fortiori a discrete
series representation - unless 7=9. []

We now apply Arthur’s trace formula. It is expressed by an identity [2,
p. 120]

(%) LI =2 I ()

oet xed
of certain distributions evaluated at f. Here T is a suitable regular point in a,,
the real Lie algebra of the split component of a minimal Levi subgroup of G
defined over @. We explain the right-hand side first.

Lemma 2. For [ as above, ZQPJXT(f) is the trace tracer, (f) of [ acting by

y4
convolution on the space LZCUSP(G(Q)\G(A)); it does not depend on T.

Proof. This could be proved rather directly, tracing the effect of truncation by
T on functions. We prefer, for brevity, to use Arthur’s end results.

The set & is the set of cuspidal data, i.e., pairs (M, p) where M is a Levi
subgroup of G over @, and p an irreducible, cuspidal representation of M(A)',
the subgroup of elements of M(A) on which all rational characters have
absolute value 1. See [1, §3] or [18, Lecture 1]; data conjugate by the inner
action of G are identified.

The definition of J; (f) is given in [2, p.88] and an expression for it is
obtained in [2, p. 1207:

JIN=Yn )" | traceM{(n), Ip(m, f),)dn.

P (M)

Here the sum is over all parabolic subgroups P=MN containing a given
minimal parabolic subgroup Py; n(4)~' is a certain constant; II(M) can be
taken to be the set of isomorphism classes of representations of M(A) whose
restriction to M(A)" occurs discretely in L>(M(Q)\M(A)") ([1, § 3]; note that G
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is semi-simple; also, Arthur defines IT(M) as the set of all isomorphism classes,
but the term associated to m is then 0 unless n occurs discretely). For given
ne[[(M), Ip(n) is the representation of G(A) induced from the representation
o®1 of P(A)=M(A)N(A), where ¢ is the subspace of the discrete spectrum
(modulo the center) of M(A) spanned by representations isomorphic to «;
I(m, f), is the operator given by convolution by f in the subspace of Ip(n)
given by residues of Eisenstein series built from y; finally, M} (m) is a certain
operator in the space of Ip(x, f), associated to truncation at the parameter 1.

Now, since f, is a coefficient of a supercuspidal representation, the local
operator Ip(m, fy) is zero for any representation n of M(Q, ) if P is a proper
subgroup. (This is well known; for a proof, see Henniart [25, Appendix 1]).
Since the global operators In(n, f) are tensor products of local operators, we
see that only the terms with P=G in the expression of JXT (f) are non-zero.
Thus

JI(N)= | trace(M{(m), I4(n, f),) dn.

IKG)

The integral is now in fact a discrete sum. Assume now that the datum y is a
pair (p, M) with M=+G. By definition I4(n,f), is the subspace of
%, (G(Q)\G(A)) composed of representations of type 7, obtained from Eisen-
stein series associated to functions in the space of chusp(M (@\M(A)) of type
p. If = is an irreducible representation of G contained in I4(x, f),, Eisenstein
series and their residues (cf. e.g., Arthur [3]) provide an intertwining operator
from Ip(tr,) onto 1, where 7, is a cuspidal (non-unitary) representation of
M(A) such that |y ., =p. But again, by the condition on f,, we have
Ip(tp, £)=0 whence I;(m, f),=0. Thus we are left with the terms cuspidal for
G, which proves Lemma 2. [

We now explain the left-hand side of (). Here the sum runs over the set ¢
of G(®)-conjugacy classes of semi-simple elements of G(Q). If +€0, Arthur
defines ([ 1, p. 947, 942])

L= | kj(x fdx

G~ GA)

where

ko, )= (=1 % Kp ,(0x,0x) tp(H(6x)~T),
P e P@Q)~ G(Q)

([1, p.9387]). Here the sum runs over all standard parabolic subgroups P
=MN; a, is the dimension of the split component of M; {p(H(6x)—T) is, for é
and x given, a real number whose definition need not concern us (cf. [1,
p. 936]); if P=G, it is identically equal to 1. Lastly,

Kp,(x,y)= Y [ f&x'yny)dn

reM (@ o N(A)

for x, ye N(A) M(Q)\G(A). (See [1, p. 923].)
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Lemma 3. For f as above,

JWH= | AXfxyddx;

G(@Q)~G(A) veo

the integral {3 f(x~"'yx)|dx is absolutely convergent.
ye@

Proof. Arthur shows (Thm. 7.1) that {|kJ(x, f)| is absolutely convergent, so we
only have to prove that

ke (x, /)= flx~"yx).
y€0
(Such a sum is finite)) This means that, in the expression of kI given above, all

terms K, for P+G vanish. But if P+G we have | f,(x"'yny)dn=0 for
N(@p,)
any x,v,y by a fundamental property of coefficients of supercuspidal repre-

sentations (cf. e.g, [22, Thm. 6]). A fortiori, the global integral vanishes,
whence the result. [

At this point, we have proved:
Lemma 4. For f as above,
tracero,,(f)=3 | {X fx~'yx)dx}

o G@~G(A) yeo
Moreover,

LI St yx)< oo,

[ yED
Again, the convergence assertion is contained in [1, Thm. 7.1].

Lemma 5. For Kg small enough, f(x~'yx)=0 for any xeG(A), unless y is
unipotent.

Proof. Using a faithful representation: G — GL(R), defined over @, we may just
identify G to a subgroup of GL(R). For xeG, let

p(x, T)=det(x —(1 = T)=TR +a,(x) TR + ... + ag(x);

the a, are then polynomial functions on G, defined over Q. In particular, for
xeG(A), a;(x)eA is well-defined. Moreover,

a;(x)={a;(x ) a;(x,) l—[s a;(x,)} 1_[Sai(xp)'
p¢ pe

When Ky varies, and f varies accordingly, the bracketed term is constant and
bounded independently of x in the support of £, since the support of f, for v¢S
does not vary. Let |x|, be the normalized p-adic absolute value of xe@,; if
xeA, let |x|=]]Ix,l, be its absolute value.

v
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Taking Ky small enough, we may arrange that, on the support of f, |a,(x,)
—a;(1)|,=la;(x,)|,<e& for any given e Taking the product of the local val-
uations, we see that for small enough K, we may arrange:

la;,(x)I <1 (xeSupp(f)).

But now, if f(x~!yx)=0, y is conjugate in G(A) to an element yeSupp(f).
So we must have, the g; being conjugation-invariant:

la; () =la;(y)| < 1.

However, a,(y)e®, and the product formula gives |a,(y)|=1 if a,(y)*0. Thus
a,(y) =0 for all i, which means that y is unipotent. [

Assume now that K satisfies the assumption of Lemma 5: then we get, by
Lemma 4:

trace 7, (/) =L ()= | { ¥ fx"Tyx)}dx

G@Q)~ G(A) yeoo

where v, is now the set of all unipotent elements of G(Q).

We now use a fundamental result of Arthur about the distribution J,
associated to 0y, the unipotent orbit. We denote it by J,;,. Recall that, for
general f, the distribution JuTnip depends on a parameter T (only for our
particular choice of f is it independent of T). For a certain choice T, of T, J
has particularly nice properties. We will denote by J,,;.(f) the distribution
JI5.(/) (see [5,§17; [4,§1-2))

Recall that the subgroup K® of G® defined before the statement of Theorem
1A is fixed. For simplicity we will assume that K® is maximal compact in G5, a
product of maximal-compact local subgroups. (It is easy to see that the
following argument does not really depend on that assumption).

Let S'=Su{py}w{o0}. Let #; be the Hecke algebra of functions on G(A)
which are finite sums of functions of the form gg ® 15, where g,e C*(G(Q,)) for

veS, and f5 is as above. We write G(Qg)= [] G(@,). Thus #; is the space of
veS’
functions on G(A) which are unramified outside §'.

Let % be the set of unipotent conjugacy classes of Gg: it is finite. If U is a
unipotent conjugacy class in G(Q), the product Uy of its points with values in
the local fields is a unipotent class in %;.. Let % , be the subset of % defined
by such classes.

Theorem 2 (Arthur [5, 6]). (1) For each Ue%s g, there is a measure my on U
such that, for any fe #;.

Junip(f)z Z j‘f(x) de(x)'

UEWIS" Q U

2) The measure my, is absolutely continuous with respect to the measure on U
v y 14
invariant by Gg..
(3) For the unit orbit U ={1} we have

my(f)=vol(G(QN\G(A)) f(1).
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This follows from the following results: Fix a minimal parabolic subgroup
P,=M_ N, of G over Q. For any Levi subgroup M of G containing M, and
unipotent conjugacy class U < G(Qy ), Arthur defines in [6, Thm. 5.2] a distri-
bution J, (U, f) on C*(G(Qy)). (It is a limit of weighted orbital integrals on
semi-simple elements.) It is shown to be absolutely continuous with respect to
the invariant measure on the orbit [6, Thm. 5.2]. Moreover, in [5, Cor. 8.3] it
is shown that

Junip(f):Z Z aM(U)JM(U’f)s

M Ueag, )

the a™(U) are certain constants, M ranges over Levi subgroups as before.
Finally, the constant for U={1} is computed in [5, Cor. 8.5].

We now apply Theorem 2 to J,,;,(f), with f as before. Recall that, at the
places of S, we have fg=vol(Kg)~! hg, hg the characteristic function of Kg. We
have:

Junip(f)=vOl(G@QNG(A) f(1)+ 3 | f(x)dmy(x).

U1 U

Writing v for vol(G(Q)\G(A)), this yields:

(#%) VOl(K ) Jyip (M) =0-f (1) - (K%~
+ Z v J v foo(xw)fo(xo)'hS(xS)de(xooﬂxo’xS)-

(Recall that f,(1)=1.)

Since U is the product of local orbits associated to a rational orbit, we
have U,# {1} for peS.

Lemma 6. Let U be a unipotent orbit {1} in the reductive p-adic group G.
Then, if gy is the characteristic function of the compact-open subgroup K :

lim |gg(x)dx=0

K-1vU

where dx is the invariant measure on U.

This is obvious by Lebesgue’s dominated convergence theorem: the integral
is absolutely convergent, by a well-known result of Rao and Deligne. It is
majorized, say, by the integral of g, for K, fixed, and g, (x)—0 pointwise
when K—»1. [J

But now, using absolute continuity of the measure m; with respect to the
invariant measure on U, Lemma 6 and Fubini’s Theorem imply that each of the
terms associated to U1 in the expression (x+) tends to 0 when Kg— 1. So we
have proved:

Lemma 7.
lim vol(Kg) J,pip (/) =VOH(G(QN\G(A)) - (1) - v(K%) .

Ks—1
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We know (cf. after the proof of Lemma 5) that J,,, (f)=trace r.(f). We
now analyze this trace using the special properties of f. At the places p=+p,, f,
is just the projector associated to K, Thus, writing as before & for

trace r., . (f)=trace (f, ®f,| pKsKS: Po)

where #X denotes the vectors of & fixed by a group K. (Note that #Xsk¥% 70 jg
a representation of G x G, ).

We now use the properties of f,, and f,. By Lemma 1, trace n(f,)#+0 only
for a finite number n, =0, n, , ..., n, ., of representations of G_ . Moreover,
since 7, is a supercuspidal representation of G, , we have trace a(f,)=0 for
any irreducible representation o#n, of G,; and by our choice of f,
trace 7, ( f0)=—1*. This allows us to rewrite:

d(m,)

1 n
d(no) i=z1 trace , oo( f"o) m(ni, © ® Ty ZKS K5 Po)

where m(m, ¥7) is the multiplicity of = in a representation ¥~
We will now use the following lemma, which will be proved later:

trace r . ( =

Lemma 8. Assume m;  #+6 (so i+ 1). Then
lim o(Kg) m(n, , @, LXK P)=0,

Kg—+1

Combining now Lemmas 7 and 8, the identity J ., (f)=trace r ., (f) and
the expression for trace r,,.,(f), we get, using that trace 6(f,)=1:

lim o(Kg) m(3@m,, L5 ™) = 0(GQNG(A)) £, (1) o(K) .
d(?‘[o) Ks—1

We still need a last lemma:
Lemma 9. f_(1)=d(J), the formal degree of 4.

Proof. This is well-known and follows immediately from the Plancherel for-
mula (see Lemma 12, where the p-adic case is detailed). [

We now notice that the multiplicity of 4 in the space LKoKSE PO i ot east
dim(7%°) multiplied by m(8®m,, £*sX ). Thus:

lim inf v(Kg) m(5, & XoXs KS:poy
Ks—1
gdim(ngﬂ) lim v(Kg) m(6@m,, g’KsKS- po)
Kg—1

2d(m,) dim(rg°) v(G(QN\G(A)) d(3) v(K%) .

This is the statement of Theorem 1A. [
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3.3. We still have to prove Lemma 8; the proof relies on the method of
DeGeorge-Wallach (see also [31]). For simplicity we just write n for 7, ; thus
n does not belong to the discrete series. Remark that by the usual properties of
n, and f,, the multiplicity of =, in a G, -space ¥ is equal to d(n,) trace(f, | ¥).
We will use that without comment.
We will now apply the trace formula to a function f=f_® @ fp; the f,
P o0

associated to the finite primes are as above, but the function f_ =u will be a
new function, to be defined later.

In G, let us denote by B, the ball of radius r>0: writing a Cartan
decomposition G, =K _A*K_,, B, is the set of all g=k ak, such that
a=exp(H) where Hea=Lie A has length |H| <r for the Killing metric (cf.
[20, §27).

Lemma 10. (i} For each compact-open K< Gyg, there is r>0 with the following
property. Let f=u® ® Jp» with f, as before and ueC*(G_). Then, if Supp(u)

<B,, f(x"1yx)= Ofor any xeG(A) and yeG(Q) unless y is unipotent.
(ii) Let r(K) be the maximum such r. Then, as Kg— 1, r(Kg)— o0.

Proof. We use the notations of Lemma 5 and its proof. The proof shows that
we will have f(x~'7x)=0 unless y is unipotent, provided

la;(x)]<1 for all xeSupp(f).
Writing
|ai(X)|=|ai(xm)lwﬂs|ai(xp)l,,l;[slai(xp)l,,,

we see that this can be ensured by bounding the support of u, proving (i). As
Kg—1, the maximum value of the middle term on Ky tends to 0; thus
la;(x.)|, can be made as large as we want, proving (ii). [

We now fix K. If Supp(u) < B,, where r=r(Ky), the conclusion of Lemma $
is still valid; using, as before, Theorem 2, we obtain the expression (cf. formula
(%) after Lemma 7)

v(K) trace(u® f, | LERSESPY i (1) v(KS) !
+ Z § u(x,,) foxo) hs(xs) dmy(x).

Ux1l UgoxUgxUg

We now apply this formula to a function u=w=# W (convolution product)
where we C*(G,) and w(g)=w(g~"'). The representation of G which appears
in the left-hand side of our formula is trace-class; in any trace-class representa-
tion p we have:

trace p(u)=| p(W)| 3

where || |, denotes the Hilbert-Schmidt norm of operators. Moreover, u(1)
=||w||3, the [*-norm on G,.
Recall that f,(g)=<gw, w) where w is in the space of ny. In any irreducible

representation o, of G,, of type my, 64(f,) projects on a well-defined one-



276 L. Clozel

dimensional subspace, the image of Cw by the isomorphism n,~0,. Let us
denote by p the representation of G_ on the subspace of ZX5K%P° thyg

defined. We have
o(Kg)lpw)3=v- w3 v(K5)~!
+y [ waw)(x,) folxo) hs(xs) dmy(x).

U UgpoxUgxUg

We apply this to the following function w: let e be a unit vector in the
space of n and f(g)=<{ge, e)> the associated coefficient. Set w="hf, where h is a
smooth approximation to the characteristic function of B,,,. (Note that the
convolution of B,, by itself is contained in B, —cf. [33, p. 320]). We then get:

o(Kg)m(m, p)|m(w)i3 < v(Kg) o (W) 3
<v- w3 oK%+ % § w2 W)(x0) fo (x) hs(xs) dimy (x).

If now h tends to the characteristic function h,, of B,,, w tends to a
compactly supported function; n(w) is still a Hilbert-Schmidt operator; it is
easy to see that all the terms in the inequality tend continuously to their values
for w=h,,, f, and thus the inequality is preserved for w.

Lemma 11. For w=h,, f, |n(w)||3 Z Iwl5.

This is proved in [20]: since f is a matrix coefficient,

IrWIZzIf f(9) wig)dgl® =] | Iw(g)l*dgl*=|wl%. OO

By

Using Lemma 11 and the previous inequality for w, we get:

o(Kg)m(m, p)<ciw]y*+Iwl;* % § w2 W)(x ) fo (xo) hs () - dmy (x),

where ¢ is a constant independent of K. Note that the inequality holds, in
fact, for any w=h, f, f being our coefficient and h, the characteristic function of
B, with r<1r(K).
Let us adopt this choice of w. Since w# W is a function of positive type, we
have
(w * W) ()| S (w = #)(1)= || wl3
for any xeG . Moreover, w* W is supported in B,,, so

[w* W(x)| < |wl|3 hy,(x)  forall xeG.

We obtain the inequality:

vo(Kg)m(m, p)Sclwliy®+[wl3? ; § 2y (x.0) | fo(xo)l hs(xs) dvy(x)
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where dv; is the absolute value of the measure dm;,. Now, since f is a
coefficient of = and 7 is not square-integrable, we have

§ /(@ dg=oo.
Goo

Given £>0, we may then choose r large enough that, for w=h_f,
[wl3>¢~". We then have, if r(Kg)>2r:

v(Kg)m(m, p)se{c+ %: 5 by (x ) fo(xo) hs(xs) dvy(x)}.

Consider now a sequence of Kg—1. For Kg small enough, r(Kg)>2r; so
this inequality is satisfied. Moreover, the functions hg decrease to 0. An
application of Lebesgue’s theorem, using the absolute continuity of dv, with
respect to the invariant measure on U (cf. after Lemma 6) then shows that each
of the terms in the sum indexed by U tends to 0. So we have:

lim (v(Kg) m(m, pg ) Sec.
Kg—1
(We have written p,_ for the representation previously denoted by p to
make clear now its dependence on Kg). Since ¢ was arbitrary, we have at last:

lim o(Ky) m(r, py)) =0
1

Ks—

which means, by the definition of p,:

lim o(Kg) m(z @y, X555 %) =0,

Ks—-1

This is Lemma 8. [

3.4. So far we have assumed that K579 was a product of local groups, but this
condition was irrelevant: remark that we could arrange this by enlarging S. If
we do this, however, K¢ will tend to 1 only at some places of S. But it is clear
that in the arguments after Theorem 2, we only needed that Kg—1 at some
(non-empty) set of places of S. This terminates the proof of Theorem 1A.

4. Extension to the finite primes

4.1. In this paragraph, we state an extension of the adélic theorem to discrete
series representations of G(Ag)=[] G(Q,), where S is a finite set of places of Q

veS

containing the infinite prime. The proof given in §3 applies without any
transformation; however, we will need the existence of pseudo-coefficients for
discrete series representations of p-adic groups. Fortunately, this is an easy
consequence of the invariant Paley-Wiener theorem for p-adic groups recently
proved by Bernstein, Deligne and Kazhdan.
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4.2. We will first state the Paley-Wiener theorem of [9]. For this, let us denote
by G a reductive p-adic group. Let R(G) be the Grothendieck group of
admissible G-modules of finite length, Irr(G) the set of irreducible repre-
sentations of G. The set Irr(G) has a natural decomposition into connected
components; each component is associated to a cuspidal datum Q=(M, p)
where M is a Levi subgroup of G and p a supercuspidal, irreducible M-
module.

If M is a Levi subgroup of G, the unramified, one-dimensional characters of
M form a complex torus, denoted by ¥(M). If w is a representation of M and
€ ¥ (M) we may form the representation v ®y.

Let A be an additive functional: R{(G)— C; 1 is called good if

(i) The function A:Irr(G)—C is supported on a finite number of com-
ponents.

(i) For any proper Levi subgroup M, and o¢eR(M), the function
x> Aligy (e ®y)) is a regular function on the variety ¥ (M).

(Here we denote by ig,(c®y) the representation induced from P=MN to
G of o®y, where P=MN is any parabolic subgroup having M as a Levi
component).

Theorem 3 (Bernstein-Deligne-Kazhdan). Let A: R(G)— € be an additive func-
tional. Then A is good if and only if there is a function fe CX(G) such that

Alm)=trace n(f)
for any neR(G).

We will deduce from this (we assume, for simplicity, that G is now semi-
simple):

Proposition 1. Let 0 be a discrete series representation of G. Then there is a
Sunction fe CX(G) such that

(1) trace 6(f)=1,
(2) trace n(f)=0 for any tempered irreducible representation 46 of G.

Before proving Proposition 1, we need a few preliminaries about the Lang-
lands classification for p-adic groups (Silberger [32], Borel-Wallach [14]). We
refer to [14] for details. Choose a minimal parabolic subgroup F,=M, N, of
G. If P=MN is standard, let A=A,, be the split component of M, a its “real
Lie algebra”. Let ar— H(a) be the Harish-Chandra map: 4 —a.

We say that a representation ¢ of M is essentially tempered if there is a
character y of M such that ®y is tempered. If ¢ is an irreducible representa-
tion of M, and w, its central character, we define A_ea* by loglw,(a)l
={4,, H(a)). We say that ¢ is positive if {J_,a)>>0 for any root a of (P, A).
Langlands’ classification theorem then asserts that, if ¢ is essentially tempered
and positive, the induced representation Ip(¢) has a unique irreducible sub-
module Jp(g). Moreover, any irreducible representation of G is so obtained,
and Jp(0) is equivalent to Jp.(¢”) if and only if p=p’, 6=0".

The following fact is well known to experts. We call a character I,(g), with
o positive for P, a standard character.
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Proposition 2. The standard characters form a basis over Z of the Grothendieck
group R(G).

Proof. We first show (cf. [31]) that an irreducible representation = can be
written as a combination of standard characters. Such a representation can be
realized as a Langlands submodule J,(6). Moreover, if n’ is another irreducible
submodule of I,(s), and (P, ¢) are its Langlands data, 4,, <4, for the natural
ordering on a* ([14, Lemma 2.13, Ch.XI]). Moreover, by a theorem of
Bernstein-Zelevinski and Casselman [10, 15] n' must come from the same
cuspidal datum as zn. This leaves a finite number of possibilities for n'. By
induction on A,, we may assume that any 7' is a combination of standard
characters; the same is true for anP(o)zl,,(a)—z 7.

We still have to show that the standard characters are independent. Let us
fix a cuspidal datum Q=(M, p). The previous argument shows that all irreduc-
ible characters attached to Q are linear combinations of standard characters
attached to Q; and the (finite) matrix so obtained is a square, unipotent matrix.
Since irreducible characters are independent, this shows that standard charac-
ters are in fact independent over €. [

We can now prove Proposition 1. Using Proposition 2, we may define a
linear functional 2 on R(G) by setting A(d)=1 (note that § is a standard
character!) and A(n)=0 for any standard character n+J. Since a tempered,
irreducible representation of G is standard by definition, Proposition | will be
proved if we can show that 2 is represented by a function f. We must check
that 4 is a good functional. Condition (i) is satisfied; we will check that A
vanishes on any induced representation n=I% .(r) with M #+G. Using again
Proposition 2, we may assume that t is a standard representation of M:zt
=14 v 0, 6 an essentially tempered representation of M’, positive for
(NAM"). But then n=1%.y.0; if P, is the parabolic subgroup of G containing
M’ such that the roots of 1, with respect to 4" are determined by {4,, ) <0,
is then a standard representation associated to (o, F,). (P, may not be standard;
however, conjugating it to a standard parabolic subgroup reduces the situation
to a standard one). Thus A(x) =0. This obviously implies condition (ii}, showing
that 1 is a good functional. Theorem 3 then implies Proposition 1. []

4.3. We now revert to the assumptions and notations at the beginning of §3.1.
Let S be a finite set of places of @ containing oo. Let p, be a prime such that
G, has supercuspidal representations. We choose 7y, K, as in 3.1.

Let S’ be a finite set of (finite) primes disjoint of S and {p,}. We define Ky
as in §3.1, replacing S by §. As in §3.1, we also choose global and local

measures. We assume chosen a compact-open subgroup K of s ls—[ ( }Gp.
PEIUS Uipg

Again, Z =1 (G(Q)\G(A)); L¥o ks K is now a representation of Gg.
Let 4 be a discrete series representation of Gg: thus dg=() 8, where, for all

veS
v, 0, 1s a discrete series representation of the real or p-adic group G,.

Theorem 1B.

lim inf[v(K ) mult(dg, LXoEKs*K)]>¢
Kgs—1
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with
c=v(G(Q)\G(A)) d(n,) dim(n§°) v(K)~ " d(dy).

The proof is the same as for Theorem 1A, using the function fy= ®f, where
£, is a pseudo-coefficient of §, as in Proposition 1. We need only check for p-
adic groups the analogues of Lemma 1 and Lemma 9. Lemma 1 is obvious: if f,
is a pseudo-coefficient of J,, and trace #,( f)+0, then by the arguments around
Proposition 1, n, must be attached to the same cuspidal datum as f; this
leaves a finite number of possibilities. By the choice of f,, moreover, n, cannot
belong to the discrete series.

We still need the analogue of Lemma 9. (Note that this would be un-
necessary if we just wanted to know that Theorem 1B holds for some ¢ >0).

Lemma 12. Let & be a discrete series representation of the p-adic group G
assume fe CZ(G) satisfies the conditions of Proposition 1. Then

S(1)=d(9).

Proof. We use the Plancherel formula, proved by Harish-Chandra [23]. This
expresses f(1) as an integral ([23, §13]):

f)=Y ey | d(o)p(o) trace(n,(f)) do.
M

&2(M)

The sum ranges over conjugacy classes of Levi subgroups; &,(M) is the variety
of unitary square integrable representations of M; =, is the associated induced
representation, d(w) the formal degree of w and u(w)dw the Plancherel mea-
sure, and c,, a certain constant. If M=G, ¢, =1 and u(w)=1. For f as in
Proposition 1, all terms associated to w=J vanish, whence

f()=d@). O

We finish this paragraph with two remarks. First, even when G(IR) has no
discrete series, the same proof will show that a discrete series representation of
Gy, where S is now a finite set of finite primes, imbeds in a global, cuspidal
representation of G(A), say n=®nmn,; of course, in that case =, cannot be
specified. Second, we have worked over @ for simplicity of notations; ob-
viously the analogue of Theorem 1B and the previous remark hold over any
number field.

5. Proof of Theorem 1 and applications

5.1. We can now prove Theorem 1. Recall the assumptions: G is a reductive
group over ®, connected, simply connected, semi-simple and almost simple.
We assume that G=G(R) is noncompact; I is a congruence subgroup of G.
We assume p, chosen so that G(Q,) has a supercuspidal representation. We
will give a more precise statement than in the Introduction:
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Theorem 1. There exists a subgroup I, of finite index of I' with the following
property. Let S be a finite set of primes, not containing p,, I, a sequence of
congruence subgroups of I, such that I,— 1, and 6 a discrete series representa-
tion of G. Then there is >0 such that

with a constant & depending only on the limit K, of the sequence (I) at p,,.

Proof. Since I' is a congruence subgroup of G, we have I'=G(Q)nK,, K, a

compact-open group in G(A,). Let K° be a group admitting a decomposition

K°=K9 x K%? with K®?° compact-open in [] G(Q,), and contained in K.
*po

We may further assume that G(Q,) has sulx;e;?cuspldal representations with

vectors fixed by K . We set I; =G(Q)nK°.

If now S is a finite set of primes disjoint of {p,} and I is as in Theorem 1,
let K" be the closure of I} in G(A[). Then K"=K, x K§x KS Po with K, fixed
and contained in K9 and KS-po flxed (at least for large enough n). We app]y
Theorem 1A to the groups K"; we obtain:

lim inf v(K%) mult (3, 12, (G(Q)\G(A))X")

n—

= 0(G(Q)\G(A)) d(r,) dim(nEro) d(5) v(K> o)~ 1.

Strong approximation (cf. [13, §4.3 and 4.7]) yields an isomorphism of G-
spaces:

GQNGAYK"=L\G.

In particular

L o(GOQNGAN =L (L\G)
and

vol(K") vol(I\G) =v(G(Q)\G(A)).
Thus we can rewrite the basic inequality as

lim inf (e(,\G) ™ m(3, I,)) 2 d(n) dim (nkeo) v(K , )~ d(8).

This implies Theorem 1. [

Remark. Note that we get an apparently stronger result, replacing the multi-
plicities in the discrete spectrum by the multiplicities in the cuspidal spectrum.
By a theorem of Wallach [34], however, they coincide.

5.2. We will now prove a weak result for general arithmetic groups.

Proposition 3. Let G be a connected semi-simple Lie group, I' an arithmetic
subgroup of G. Then there is a sequence I, of subgroups of T, of finite index, such
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that, if & is a discrete series representation of G:

.. .m(,T)
lim inf "4 n
o WING)

> £d(0)
for a fixed constant ¢.
Proof. We use a series of reductions:

A. Assume that G=G(R) where G is a Q-group satisfying the assumptions
of Theorem 1, and I' is strongly arithmetic. Then I' is commensurable with a
congruence subgroup I, as in Theorem 1. If now I, I} is as in Theorem 1, we
have [*(I,)\G)< [*(I,nI'\G); moreover, [,nI'\I, is a subgroup of I,nI'\Iy,
so the index |I,nI'\I,| is bounded; it is easy to see that the groups I,nI"
satisfy the assertions of Proposition 3.

B. Assume that G=G(R)* with G a group over Q, connected and semi-
simple, with no @-factor compact at the infinite place. We consider the simply-
connected covering G* of G; we have a surjection G*(IR)— G; G* is a product
of groups as in A. By the same set of arguments as in A, we deduce the
assertion for I' strongly arithmetic in G from the assertion for G*.

C. More generally assume I'cG is strongly arithmetic. Again passing to
the simply-connected covering, we may assume that G=G, x... x G, (product
of @-groups); assume, e.g., that G,=G,;(R) is compact for i<s. Then I is
commensurable with I"'=I'n(G,, ; x... xG,). It is easy to deduce from B that
the pair (G, I'") verifies Proposition 3. Thus it also holds for (G, I').

D. Finally, assume I'< G is arithmetic in Margulis’ sense: thus there exists
G, over Q, and an exact sequence

I-U-G,(R)"-—>G—1

with U compact, I} strongly arithmetic in G,(R)* such that =(I}) is com-
mensurable with I" We may replace I' by I'~n(l}). If 6 belongs to the discrete
series,

mult (6, (I\G)=mult(§on, *(z "' T'\G,(R)"))

=mult(§om, ([} UNG,(R)"))=mult(§om, (I;\G, (R) ™).

We may now take a suitable sequence of subgroups I, of I';; their image in G
will satisfy Proposition3. [

5.3. Cohomology of arithmetic groups. For simplicity we will just assume that G
satisfies the assumptions of Theorem 1. We assume that G=G(IR) has a discrete
series. Let K be a maximal compact subgroup of G, g=4% dim(G/K). Let (£, V)
be a finite-dimensional representation of G.

Proposition 4. Let I' be a congruence subgroup of G. Let I, I, I, I satisfy
the assumptions of Theorem I.
Then, for n large enough,

dim HY(T,, V) > ev(I,\G)

with a constant ¢>0 depending only on V and the limit of the sequence (I) at p,.
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Proof. This is now obvious using the results of Borel-Wallach [14]. We use the
notations of [14, II, §5]. Let u be the highest weight of ¥* Then A=u+p is
regular and determines a discrete series representation §=w ,. By Theorem 5.3
of [14, 111 we have Hi(g, k; # ® V)=C where # is the space of K-finite
vectors of 4. On the other hand [14, VII, Cor. 2.7] for I discrete in G

HUI, V)=H(g, k; C*(I'\G)® V).
Moreover, let LZCUSP(F\G)"c be the space of C* cusp forms. Then, if IZ___(I'\G)

— @m(mn, we have Hi(g k: 12, (I\G)*®V)=®m(n) H(g.k: 1®V), a

neG
finite sum (cl. [14, VII, Theorem 3.2]). Moreover Borel [11] has shown that
the cuspidal cohomology — the cohomology of chusp(l“ \G)* — injects in the
cohomology of C*(I'\G). Thus

dim HYI", V)= m(3) dim H(q, k, 5 ® V)=m(3);

recalling that the multiplicity of & in I? is the same as its multiplicity in L2,
and applying this and Theorem 1 to I, we see:

dim HY(I, V)zeo(IL\G). [

5.4. I?-cohomology of arithmetic varieties. We finish with a footnote to the
article of Borel-Casselman [12]. Let G be as in Theorem 1, I' =G a congruence
subgroup, V a finite-dimensional representation of G, V the associated local
system on I\X=I\G/K. (We refer to [12] for undefined notions and no-
tations.)

Theorem 4 (Borel-Casselman). The space of I2-cohomology H,,("'\X; V) is
finite-dimensional if no proper cuspidal parabolic subgroup of G contains a
Cartan subgroup of a maximal compact subgroup of G.

Conversely, Theorem 1 implies:

Proposition 5. Assume that G contains a proper cuspidal parabolic subgroup P
=MAN containing a Cartan subgroup of a maximal compact subgroup of G.
Then, for suitable arithmetic subgroups I, of I, the space H‘('%(I",,\X;f/) is
infinite-dimensional. (Here 2q,, is the dimension of the symmetric space of M.)

Indeed, this is proved in [12, §4.6] under the assumption that [*(I,nMM)
contains a suitable discrete series representation; by Theorem 1, it will be the
case for deep enough I,. [
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