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1. Introduction 

In this paper we study the scattering frequencies ~k. For the Laplacian A, in the 
region f2 =Rn\(9 exterior to a compact analytic obstacle (9. We suppose that n is 
odd and that Dirichlet boundary conditions are imposed on Of 2. The set {#k}, 
discrete in Re/~ < 0, arises in a variety of different disguises (see [L.P. 2]). 

(1) They are the poles of the analytic continuation of the resolvent (z 2 -  A)-1 
which is analytic for Rez>0.  

(2) They are the values p such that the boundary value problem 

( # 2 - A ) u = 0  in f2, u = 0  in Of 2, 

where u satisfies the Sommerfeld radiation condition, has a non zero solution. 
(3) Via an expansion Z e"k'Uk, they describe the asymptotic behavior as t ~  oo 

of solutions to 

~2u-Au=O in R t x f 2 ,  u = 0  in Rtxt~I2, (1.1) 

u(0, -), ut(0, - ) of compact support. (1.2) 

(4) They are the poles of the analytic continuation of the scattering matrix. 
(5) They form the spectrum of the infinitesimal generator B of the Lax-Phillips 

semigroup Z(t). 
Because of (3) and (4) a particularly important role is played by those/~ with 

small real part, and this paper addresses the question of how fast Re/~ must grow as 

Lax and Phillips recognized that the response is related to the propagation of 
singularities for (1.1). Their reasoning together with the resolution of the problem 
of propagation of C ~ singularities by Taylor, Melrose and Sj6strand showed that 
for non trapping obstacles there is a constant C > 0  such that: 

Re/.t k =< -- C Log []Ak[ Vk. (1.3) 
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The key to this is the fact that solutions to (1.1), (1.2) are, for large t, C ~ on 
compact sets. Lebeau [L.2] has recently shown that for analytic, non trapping 
obstacles this can be improved to Gevrey 3. As in the earlier work of Goodhue [G],  
this allows us to improve the bound to 

Repk ~ -- C[/~k[ 1]3 Vk. (1.4) 

For the case (9 = (Ix[ _-< R), it can be shown by explicit calculation that there is an 
infinite number of k with Re/Ak~--C[llk[ 1/a SO, in that case, the bound (1.4) is 
optimal. Our  main result is that this optimality is valid for most analytic strictly 
convex obstacle. In broadest terms, our idea is to associate resonances with a 
dosed non degenerate geodesic on Or2. Such a geodesic is an "analytic ray" in the 
sense of Sj6strand and is therefore the carrier of a function of class exactly Gevrey 3 
which remains trapped. To take advantage of this, we follow [L.P.2] and [B.G.R.] 
(and also [D.G.] and [C]) in considering: 

Tr(t) = TrZ(t) = y. e u't , (1.5) 

where the Pk are repeated according to their algebraic multiplicity. When (9 is 
analytic and non trapping Tr is Gevrey 3 on (0, oo) and for strictly convex (9 we 
show that Tr is analytic except at the numbers Te ~q, the union of the lengths of 
closed geodesics in 0s If T is isolated in L and is the length of exactly one geodesic 
which is, in addition, non degenerate, we obtain a lower bound 

]~t T(t)[ > a c " ( 3 n ) !  A, C > 0, (1.6) 

and it follows that with a constant C ' >  0 

:~ {~Uk : Re#k => _ C,]l~k [ 1 / 3 }  = o O  (1.7) 

showing that the bound (1.3) is sharp. In fact our results are more precise than (1.6), 
(1.7). And finally it is reasonable to expect that the convexity can be replaced by 
convexity near the closed geodesic. 

The paper is organized as follows. In the first section, we state precisely our 
three main theorems corresponding to the bound (1.3), the regularity assertions 
about Tr(t) which we call the Poisson relation, and the assertion (1.7). We prove the 
first and then show how the last follows from the Poisson relation. We then show 
how the study of Tr can be reduced to the analysis of the restriction to R,  • 0f2 of 
elementary solutions in R,  x R" and R,  x Eg. The crux of our proof is a calculation 
of the constant C which appears in the Gevrey 3 regularity of Tr. This constant can 
be viewed as a measure of regularity within the class Gevrey 3 and it is related to 
the Gevrey 3 regularity of solutions to (1.1). In Sect. II, we recall the Fourier Bros 
Iagolnizer characterizations of microlocal regularity. The notions of Gevrey 3 
Lagrangian distributions and finally, Lagrangian distributions Gevrey 3 with 
weight ~p. The weight ~0 is a microlocal version of C. Section 3 (resp. 4) are devoted 
to a precise analysis of the elementary solution in Rt  x ~ "  (resp. Rt • f2) as 
Lagrangian distributions. This done, the Poisson relation follows. The appendices 
contain two geometric results. The first computes a Maslov index and the second 
shows that, generically, obstacles do have closed geodesics with the properties we 
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require. The results contained in this paper were announced in [B.L.R.]. By a 
different method (estimation of Greens functions) G. Popov [P.] has obtained 
upper bounds like (1.4). 

2. Main theorems 

Suppose n > 3 is odd and that (9 C ~"  is a compact set and O = ~L"\(9. We assume 
that f2 is an analytic connected manifold with boundary Of 2. Let u be the solution of 
the wave equation with Dirichlet boundary conditions (1.1) and initial data 

u(0,.)=Uo(.), ~tu(0,.)=u,(.). (2.1) 

We denote by u_(t)=-(u(t, .), 8,u(t, -)) the Cauchy data at time t and by H(Y2) the 
completion of C~(Y2) • C~(Y2) in norm 

It(Uo, ul)II 2 = i(Uo ' u012 = ~ [Dxuo[2 + [u,12 dx. 
f2 

Then, H(f2) is a Hilbert space and the map _u(t)= U(t)u_(O) defines a unitary group 
with generator. 

With 0 chosen so that (~C{Ixl<~} we introduce the spaces D~3- Lax-Phillips 
FL.P.1]: 

D~ if I x l < + t + O  and i t > O } .  

Then D R are orthogonal, and if P~ are the orthogonal projections on D~:3- then: 

Z(t) = W+ U(t) W_ 

# o d_ is a contraction semigroup on K = (D + �9 D_) . Z describes the behavior of U near 
(9 in the sense that i f f 6 H ,  suppfE{[xl=<Q} then for all t > 0  

Z ( t ) f = U ( t ) f  on {]xl=<Q}. 

The infinitesimal generator, B, of Z(t) has discrete spectrum in R e # < 0  
consisting of eigenvalues of finite multiplicity. As discussed in the introduction 
(1.3) holds for non trapping obstacles (see [M.1] for definition). 

Theorem 1. I f  the analytic manifold, t~f2, is non trapping, then there is a constant 
C > 0 such that 

a(B) E {# ~ IEI Re# < - cl#l 1/3}. (2.2) 

Our main result is that this bound is optimal for convex analytic manifolds 
satisfying an additional geometric hypothesis which is generically satisfied (see 
Appendix 2). 
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In the Theorem 2, as in many problems of diffraction, the Airy function, Ai, 
intervenes. The Fourier transform of Ai(x) is exp(i~3/3) and a brief discussion of its 
properties can be found on pages 203-205 of [H.2]. 

Theorem 2. Suppose that the Obstacle (9 is convex with analytic boundary of strictly 
positive curvature. Suppose that Y is a geodesic or length T on t~(9 and satisfies 

(1) There is a neigborhood of T in F, such that ~ is the only closed geodesic on 0(9 
whose length is in that neigbourhood. 

(2) 7 is non degenerate in the sense that the f irst  return map of  the geodesic flow 
at time T has I as a simple eigenvalue. 

Then for  any e > O, the set 

is infinite, where 

{# ~ a(B)lRe # ~ -- (C r + e) lPl 1/3} (2.3) 

T 
Cr - co cos(n/6) (21/3 T ) -  1 ~ e2/3(s)ds, (2.4) 

0 

-- co is the zero of  smallest modulus o f  the Airy function, Q is the curvature in A n of  ~, 
and s is the arclength parameter. 

Theorem 2 is a direct consequence of Melrose's [M.2] polynomial bound for 
the resonances and the following Poisson type relation in the Gevrey category. 

Theorem 3 (Poisson Relation). Suppose that 0f2 is analytic and that (9 is strictly 
convex. Then: 

O) The distribution Tr( .  ) defined in (1.5) lies in G3(]0, ~] ) .  
(ii) I f  L is the set of  lengths of  closed geodesics on 0f2, then Tr is analytic on 

]0, oo]\L 
(iii) I f  T~ s and T is the length of  exactly one closed geodesic y which in 

addition, is nondegenerate, then for any e > O, one has: 

l imsup [i sur< ' 1((3n)!)-10~'Tr(t)l '/3"] >(C,T)  -1 �9 (2.5) 

with C r defined in (2.4). 

In the remainder of this section, we derive Theorem 1 from Lebeau's G 3 
propagation theorem and we deduce Theorem 2 from Theorem 3 and Melrose's 
polynomial bound. We then derive a representation for Tr( .  ). The remaining 
sections are devoted to the analysis of the terms entering in this representation, 
culminating in a proof of Theorem 3. 

Definition 2.1. For f2CP.~" open, s t  [1, oo[ and f ~ C~~ we say that f is o f  class 
Gevrey s, f ~ G~(I2) symbolically, i f  for any compact K C f2, there are two constants 
A t ,  B K such that 

(W ~ N") sup 10~fl < Ah-(Br)l~l(J~l !)~. 

The notion of G 5 on an open subset of a C ~' manifold or C '~ manifold with 
boundary is similar. In particular, Gl(O) is the space of real analytic functions on Q. 
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For a distribution f, the set of points p with the property that f is Gevrey s on a 
neighborhood of p is open and its complement is called the Gevrey s singular 
support. 

Proof of Theorem 1. For any R > 0, let O R--=- Oct{Ix1 < R} and consider Cauchy 
data _u(0)e H(f2) with supp_u e O R. If (9 is nontrapping, then we know that there is 
a tl > 0  so that any "Ca-ray" beginning in OR lies in f2c~{Ix I > R} for t > tv By 
[L.3] we know that the Gevrey 3 singular support is a union of C ~ rays. 
Therefore the solution _u(x, t) with Cauchy data _u(0) is Gevrey 3 on I t >  tl]C~f2R. 
Following a proof of Lax I-L, Thm. 2.2] we show that this implies that there are 
constants A, C depending only in f2, tl, t2, R so that 

V I > 0  sup [Ic3~ul+lO~Vul]<ACl(31)! Ilu(0){l~. (2.6) 
[t 1, t2] x f~R 

Toward this end let F =  [tD t2] • f2R and, for N 6 N  

G 3 = ~u ~ C~(F): sup ]D'ul/(ct!)3Nl'l~ < 00. 
( F,~t 3 

Then G3(F) is a Banach space and G3(F)= UuG~(F). Let Au C H be the set of 
initial data with the property that the solution with data in Au lies in G3(F). Then 
Au is a linear subspace of H and UuAN = H. The Baire Category theorem implies 
that for some No, ANo is of the second category. The map H 3 Auo ~ u_ ~uJr ~ G3o(F) 
is defined on a subspace of second category and has closed graph, hence is 
continuous, proving (2.6) with C = No. 

Choose z ~ C  ~ with X=0 on [ 2 , ~ ]  and Z = I  on [ - ~ , 1 ] .  Q, is then the 
truncation operator defined by Q J ( x ) =  z(Ixl/r)f(x). Following Lax and Phillips: 
[L.P. 1], let M =  U(20)-  U0(20) where Uo is the unitary group defined by the wave 
equation on R" and U(2Q) is extended to H(~") as a linear map vanishing on 
H(f2) • Then formula (3.8) p. 155 of the above book asserts that for t>4Q 

Z(t) = po+ MQsQU( t _  40 ) Q3oMP~_ . 

Then for to>4Q, and any lcTl.+, 

B'Z(to) = O~Z(to) = PQ+ MQ 5eO~ U(to - 40) Q 30Pe- �9 (2.7) 

Choosing R = I 0 0  and to>t , ,  we see that (2.6) and (2.7) show that BtZ(to) is 
bounded from H(f2) to itself with 

ItB'Z(to)tl < A'(C')'(3/)! Vt. 

For /~eo(B), I~leUt~ and is therefore bounded by the norm of that 
operator: 

lt~l 1 e '~ < A'(C')' .  (31) t. 

Given/~, choose I so that [3l--(ll~l/C')l/31 < 1 and use Stirling's formula to prove 
(2.2). 

Proof of  Theorem 2 assuming Theorem 3. We show that if r { Re/~ ~ - C1#11/3 } 
is finite, then C < C v. To accomplish this, we use the supposed finiteness and 
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Melrose's polynomial bound [M.2] 

3n, u s.t. VR # {/zk :[#kl < R} < M(R + 1)n (2.8) 

to derive upper bounds for 0~Tr(t) which are then compared with (2.5). In the 
following sums, we sum such/2 e a(B) repeated according to multiplicity. Let M 
Ca(B) be the finite set of M with I/Z[ < 1 or Re/z> -C[/zl 1/3. Write 

oo 

Tr(t)= u~M ~ e~t+ i ~=, (l=,ul<l+, e " t ) <  ~ -- z~o f~(t)" 

Then f0 = ~ e~t is entire analytic and 
#eM 

107fd <=M(I+ 1)"+% -cw3t. 

Thus, comparing the sum to an integral of a function with one maximum on (0, ~ )  
yields 

107(Tr(t)-fo(t))l < ~ M(l+l)"+%-cw3t<MeCt ~ x .+%-c t~"dx  
/ = 1  ]0, m[ 

+ e"M Max (x" + % -  c,~,-)) < const .  (C t ) -  3 , -  3 N-  3 (3n + 3 N  + 2) ! e".  
[O, ce] 

Thus, Tr ~ G3(0, oo) and lim sup l(3n!)- ~ 0~Tr(t)]~/3" < (Ct)- ~. Taking t = T and 

comparing with the conclusion (2.5) of Theorem 3, we see that we must have 
C < C~. [] 

In the remainder of this section, we will derive a representation formula for 
TrZ(t). We begin with a formula of Melrose [M.2] 

TrZ( t )=20 t ~ E(t ,x ,x)dx,  t > 0 ,  

where E is the fundamental solution of []  o n  R. t • g2, that is for y ~ f2 

(02 - A~) E(t, x, y) = 0 E(t, x, Y)t(t, ~)~I~, • oo = O, 

E(o, x, y) = o E,(o, x, y) =,~(x-  y). 

There are similar kernels K• ( t , x , y )~R  • t2 x 00  associated with 
inhomogeneous Dirichlet conditions 

(02-A~)K•  SuppK•  C { + t > 0 }  K•215 

Then 

F(t,x)= ~.(. K+( t - s , x , y ) f ( s , y )d sdy  
IR x 0f~ 

is the solution of [ ] F = 0 ,  equal to f o n  ~-~-t• 
t-<__ m i n  {s: Ox)  (s, x) ~ s u p p f } .  

De f ine  k • x, y) e ~ ' ( R  x 0 0  x 0 0 )  by  

and vanishing for 

K + = O.xK + IR, • oa • oa. (2.9) 
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Then for t, x �9 R x 012, 

O,xf(t, x) = [. I k +( t -  s, x, y) f (x ,  y)dsdy 

so that k + is the kernel of the Neumann operator. Similar formulas hold for k -  and 
for f•  �9 r x at2), we can consider F • defined using k • Green's identity applied 
to these functions yields 

f l  ( f  +t?n~F--O,xf +F-)dtdx=O. 
0f~ x l l  

As this holds for arbitrary boundary data f• we have the symmetry relation 

k +(t,x, y ) = k - ( - t , y , x ) .  (2.10) 

Finally we denote by eg e ~ ' ( R  x R") the forward fundamental solution for V3, 
l-]eg =6,  suppeg C {t>0}. 

Restricting eg(t, x - y )  to R x f2 x f2 yields E apart  from a correction for the 
inhomogeneous Dirichlet data eg (t, x -  Y)l<t,x~R • 0o �9 r  x Or2): 

E(t, x, y) = eg(t, x - y ) -  E(t, x, y), 

E(t ,x,y)= ~ K+( t - s , x , z ) e~ ( s , z - y )d sdz .  
R x Of2 

From Huyghen's principle, we see that eg(t, x - y ) =  0 on a neighborhood of 
x = y when t > 0, so for t > 0 

- I E( t ,x ,x)dx= I P.(t,x,x)dx, = I ( If K + ( t - s , x , z ) e g ( s , z - x ) d s d z )  dx. 
f~ f2 f~ \ R  x O.Q / 

(2.11) 

Introduce hg(t,x) solution in R x R" to El hg = eg, supphg C {t >0}. Then 
continuing the equality (2.11), 

= f f f K + ( t - s , x , z ) ( [ ] h g ) ( s , z - x )  dsdxdz" 
017 12 R 

Integration by parts in the dsdx integral yields 

= I I I  (hgOn=K+-K+O,=hg) dsdxdz" 
0f~ 11 • 01"~ 

Taking into account the boundary values of K +, the second term is equal to 
I n~. V~hg(t,O)dx. For  t > 0 ,  hg(t, .) is smooth near zero so IZxhg(t,O ) is a fixed 

0f~ 
vector independent of x �9 Of 2 whence the above integral vanishes. Thus we have 
shown that 

- T r Z ( t ) = 2 d ,  I B(t ,x ,x)dx,  (2.12) 
0~ 

where 

B(t,x,Y) =- I I h g ( t - s , z - x ) k + (  s,z,y)dzds'  (2.13) 
R Off 
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The kernels that intervene here are the traces of the free propagat ion hff and the 
Neumann operator  k +. The proof of Theorem 3 rests on a detailed analysis of these 
kernels in sections four and five respectively. The description uses the language of 
microlocal Gevrey regularity and Lagrangian distributions of class Gevrey 3 
developed in Sect. 3. 

3. Fourier-Bros-Iagoinizer transform and conormal Gevrey distributions 

Following [S.1] we introduce the Fourier-Bros-Iagolnizer (F.B.I.) transform of 
f e S'(R"): 

Tf(y, 2) = ~ e -  a(r-x)2/2f(x)dx" (3.1) 

Tf is defined on ~" x R +  and is holomorphic with respect to y and bounded by 
Ce'qtmyl2/2(2 + lyD N. For  y = ~ + ifl, the asymptotic behavior, for 2 ~  + m, measures 
the microlocal regularity o f f  at (e, -/~) e T*(R")\{0}. For  example, it is not hard 
to show that 

(~o, flo)r WFf.r (VN> 0) (3CN) s.t. [Tf(y, 2)1 < CN e IImrl2"~/2j.-N 

holds uniformly for y in a neighborhood of c~ o -  ifl o and 2 > 1. The Gevrey s wave 
front set, WF s, is measured similarly: 

(O~o, flo) r W P  .r (3 C) s.t. I Tf(y, 2)1 < Ae ~lImyl2/z e- c~l/s (3.2) 

for all y in a neighborhood of ~ o -  iflo and 2 > 1. 
It is not obvious that the characterizations of WF in terms of Tf  are 

homogeneous with respect to the action ofF ,  + on the fibers. For  the proof  we recall 
Lebeau's inversion formula for T [L.I]  

(2n)af(x) = 1/2 ~ e-Rlr - i(r162 �9 Vr) T f ( x -  iRr162 [r 

where R > 0 is at our disposal; then: 

Tf(y, 2) = c ~$ e -  x~r- ~)~/2 - R1r (1 _ i(U1r 17y) Tf(x - iR~/lr Ir 

The crucial fact is that for any 6 > 0  the contribution from [~/2+Imyl  > 6 are 
dominated by Ce-eae~lImrl2/2 for some ~ > 0. The contribution from 1r + Imyl < 6 
is then estimated using (3.1). To see that 14/2 + Imyl > 6 is negligible, one deforms 
the dx contour. Using the bound for Tf  valid everywhere, the integrand has an 
exponential with exponent 

- 2(y - x ) 2 / 2 -  8141/2 + Ilmx - 84/141121r 

which has real part  

-- 2 [Re(y - x)] 2/2 + 2 [ Imy]  2 / 2 -  Imx(~ + 2 Imy) + (Imx) z (2 + Ir 

Deforming to I m x  = r/(~ + 2 Imy)/t(r + 2 Imy)l with 0 < r /~ 1 yields the desired 
result. 
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We next recall Sj6strand's [S1] intrinsic formulation. The holomorphic 
tangent space to Y = C "  is spanned by O/Oyl ..... ~/Oy,, with 

O/@~-l/2(O/c3ot~-iO/Oflj), ~j=Reyj,  fli=--Imyj. 

The holomorphic cotangent space is spanned by d(j defined by d(j~O/Oyk) = 6jk and 
the canonical two form ay is defined by ~ d~j ̂  dyj. Following Schapira [S.], we 
consider the R multilinear forms Re a r and Im ay, with dye-= Re d~ and d6j =- Im d(j 
we have: 

Rear= ~. d~Adctj-df~^dfl~,  Imar= ~.d6~^dct~+dyjAdflj. 

Both are symplectic forms on T'Y, the latter viewed as a C ~' manifold of 
dimension 4n. (See [S.1, pp. 77-81].) If r is a real valued C ~ function on Y, then 

A~ = {(y, - 2i E &P/OYj(Y)[Y ~ Y} 

is a C ~ submanifold of T*(C") of real dimension 2n which is always Ima  v 
lagrangian. In addition A~ is Re a v symplectic if and only if ~3&p is non degenerate. 
In this case T*(C") is its complexification. This holds in particular if ~o is strictly 
plurisubharmonic (s.p.s.h.), that is 

632(p/63yj6qYkWjW k > 0 VW ~ (~n\O. 

Suppose M is a C ~' manifold of real dimension n, Po ~ T*M\O, ~o ~ C~~ ") 
s.p.s.h., and X a C ~' canonical transformation from a neighborhood of Po to Ar 
sending Po to the point of A~ over Yo. Denote by X the complexification of M and 
X e the (local) holomorphic extension of X to a map T'X-- ,  T*Y. Then there is a 
unique holomorphic g defined on a neighborhood of (Yo, xo) (Xo = n(Po)), such that 

(i) g(Yo, Xo) = - iq~(yo) 
(ii) The graph of ;(r in T*X • T* Y is the set of points (x, y, - ag/t3x, Og/Oy) 

(iii) The function x ~ - I m g ( y , x )  has a non degenerate critical point at 

The critical value is q~(y) and the signature is (0 + ,  n - ) .  
In particular, if M = I 1  ~ and )~ is the mapping (x, ~)-o(x-i~, ~) and if ~o is the 

function ~o(y) = 1/2(Imy) 2, the function g(x, y) which satisfies the properties (i), (ii), 
and (iii) is 

g(x, y)= i(x--y)2/2 

which appears in formula (3.1). 
The above construction associates to any set (M, q~, Po, dx, X: T*M-oA~o), an 

F.B.I. transform given by: 

( T~ f )  (y, 2) = I e'XOt"~') f (x)dx " 

In the right hand side, dx is a C '~ volume element on M, g is the function defined by 
the properties (i)-(iii); 2 belongs to I t+  and is assumed to be large; f is a 
distribution (or more generally a hyperfunction) defined in a neighborhood of Xo. 
The function Txf is holomorphic with respect to y and more precisely belongs to 
the H e space of Sj6strand, that is, for y near Yo it satisfies the estimate: 

r e > o ,  3C., V2>2o, [rxf(y,2)l<C~e a~r)+"). 
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The F.B.I. transform is used to characterize the microlocal structure of the 
analytic singular support according to the 

Definition 3.1. For s~ [1, oo[ and f e e ' ( M ) ,  the Gevreys wave front set, GsWFf  
C T*M\O, is the complement of the set of  points p c  T*M\O with the following 
property: there is an F.B.I. transform T x and a neighborhood 09 of ~z(Z(p)) such that 

(3C>0)  (Vz~o ,2>  1) tTxf(z ,2) l<Ae ~((z)-c~'/'. (3.4) 

Remarks. 1) The case s =  1 yields the analytic wave front set 
2) Functions Gevrey s at 7z(p) satisfy ]d~fl < ABSI~I(s[~I)[. The constant C in (3.4) 

is a microlocal analogue of the constant 1/B. 

Lemma 3.1. The Definition (3.1) is homogeneous with respect to the ~ +  action in the 
fibers. It is also independent of Z in the sense that (3.4) is satisfied for one Z iff it is 
satisfied for all. 

Proof. If Xl are canonical transformations on A~,, i=  1,2, then there exists a 
complex canonical transformation F between the Sj6strand spaces H~, with 
F o Tz~ = Tx,. This yields the desired independence. The homogeneity is a conse- 
quence of the fact that the definitions are homogeneous for the ordinary F.B.I. as 
indicated at the beginning of this section. [] 

In our analysis, it is important to know how the constant C in (3.4) varies from 
point to point. This leads to the notion of Gevrey s with weights. We consider s = 3. 

Definition 3.3. Suppose m is a strictly positive function defined on a neighborhood of 
p in T*M\O which is Lipschitz continuous, and homogeneous of degree 1/3 in the 
fiber. A distribution f e ~'(M) is microlocaUy Gevrey 3 with weight m at p if for some 
F.B.I. transform T x there is a neighborhood 09 of n(Z(P)) such that ( re>)  (3C~) 
(V,~ > 1) (Vy ~ w) 

ITxf(y,2)l<C~e ~(y)-~/3(~(r)-~), where m - m o l r r o  z .  (3.5) 

Remarks. 1) That this is homogeneous and independent of Z follows as in 
Lemma 3.1. 

2) Since m>0,  Gevrey 3 with weight m at p implies Gevrey 3 at p. 
Next we define what is meant by a Lagrangian distribution of class Gevrey 3. 

Suppose that A E T*(M) is a C ~ homogeneous Lagrangian submanifold and 
~p:A--,IE is C O' and homogeneous of degree 1/3 with Re~p(po)> 0. Let h(x, O) by 
a C o' nondegenerate phase, which represents A (see [H.1]). The parameter 0 is 
defined in a conic neighborhood F o of 0 o in ~N. Let 

Ch = { (x, O)ldoh(x, O) = 0}, 

and j :  Ch~.4 the isomorphism defined by j(x, O) =- (x, tg~h(x, 0)) with Po =j(xo, 0o). 
Let l(x, O) be C '~, homogeneous of degree 1/3 with llc~ = W ~ We assume that Fo is 
so small that R e l >  0. 

Definition 3.4. A distribution f e ~ (M)  lies in l a at Po if for x near x o = n(Po), one A,  Ip 

has f = f l  +f2  where f2 is microlocally Gevrey a with weight m at Po such that 
m(po)> Re~p(po) and 

fl(x) = S eih(~'~176 x, O)dO, (3.6) 
ro 
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where a is an analytic symbol in the sense of Boutet de Monvel ]-BdM.] with an 
expansion 

a ~  ~ ak(X,O), (3.7) 
k= O 

where the a k are C '~, homogeneous of degree d - N/2 - k/3 in 0. The expansion (3.7) 
means that there are constants A, B and a complex conic neighborhood N of n(Po) 
in r x (U N such that for all x, 0 ~ N and k e ~,I 

a -  k~K ak ~ABKK![O[ d-N/E-tK + 1) /3 .  

k = 0  

Remarks. 1) Since Re />  0, the integral is absolutely convergent and f l  e G 3. 
2) This definition is clearly homogeneous in the fibers. 
3) The fact that the definition is independent of the choice of h and I is proved 

in Proposition 3.1 below. 
Preparing for Proposition 3.1, we introduce a canonical transformation Z as 

above and denote ~o a the unique holomorphic function defined by (cf. [L.1]): 

( Y , ~ ( Y ) )  = ;(r162 i~Oa(Yo)=~O(yo). 

Here, X C, A C denote the natural complexifications. We recall that we have 

-Imq~a(y ) =< ~o(y) and that equality holds if and only if y,~ (y) e)~(A). Let 

~p(y) be the holomorphic function on Y defined by the relation: ~p o ~ o )~e=~pc 
where lp c denotes the holomorphic extension of ~p to A ~. Then we have the 

Proposition 3.1. The following assertions are equivalent: 
(i) f belongs to l 3 A,~" 

(ii) There exists a positive constant e such that, for lY-Yol <e, Tx f admits the 
decomposition 

Tzf = e i~*aty)- al/~tr)b(y, 2) + r(y, 2), (3.8) 

where the functions r(y, 2) and b(y, 2) have the following properties: 
(a) r(y, 2) satisfies the estimate 

[r(y, 2)1 < e z*ty)- CoZ,/3, (3.9) 

with a constant C O strictly greater than Re~0(po). 
(b) b(y, 2) is holomorphic with respect to y and has, for [ y -  Yol < e an asymptotic 

expansion of the form: 

VK~N, sup b(y, 2)- ~,, bk(y),~, d-n/2-kl3 6ABKK!2a-"/2-tr+I)/3.(3.10) 
Y--YO <e k = O  

Proof. First we prove that (i) implies (ii). Since f2 is microlocally Gevrey 3 with 
weight m, the function r(y, 2)= Tzf2 satisfies the estimate (3.5), and we have: 

TZ t" - -  ~N f oi,~(O(y,x)+ h(x,~))-  ~A/3lfx, oO.~[v ~O,4xdct 
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Since e-~l '"x'~a(x,2~t) is an analytic symbol, we can use standard contour 
deformations to reduce the problem to the use of the stationary phase method at 
the unique critical point of the mapping 

(x, ~)~g(y, x) + h(x, ~) 

which is given by the relation 

(x, ~t) = (x(y), ct(y)) = j -  lZ~ '(y, (d/Pa) (Y)). 

The critical value is r and we denote by ~(y) the expression ~(y) = l(x(y), ct(y)). 
Using the variables of the Morse lemma, we have: 

T ~ f l ~  AN elaCatY)-~:/3~(Y) S e - a s z / 2 - ~ ' ~ " x ~ s ) ' ~ O ) ) - ~ y ) ) a ( y ( s ) , 2 ~ ( s ) ) J ( s ) d s .  

Isl--<q (3.11) 

In this integral J(s) denotes the Jacobian related to the change of variables. As it is 
well known we have, at the stationnary point 

J (s)[s = o = J (Y, x(y), ~t(y)) = (det Hess (g + h )/ i)- 1/2, 

where the Hessian is taken with respect to both variables x and ct and where he 
square root is determined from the square of unity equal to 1 by the homotopy 
s-~(1 - s) Hess(g + h)/i + s Id. A formal application of the method of the stationnary 
phase would give (see [Sj. 1, p. 9]) 

Tx f l  "" eiX~tr)- x''~'tr) . 2tN- ~)/2 ~ 2-  k/k ! ( 1/2A)k (e - x''ttt~' ~)- It~r), ~tr)). Ja(x, 2~)), 
k 

where A is the Laplace operator in the variables from the Morse lemma. 
To show that the above expression is not formal but satisfies indeed the 

estimates (3.10) we proceed as follow. (3.11), yields an integral of the form 

I = IsiS=< 0 e -  2s2/2 + ;t l/3sF(y, S) tr(y, s, 2)ds, 

where o is a classical analytical symbol in 2 -  ~/3. We split I into two integrals I~ and 
Iz over Isl -_< 2 -  "3C o and 2-1/3C o < Isl < Q respectively. For s > 2-1/3C o we have 
-2s2/2  + 2"aslFt < -21/3C2/2 + C0lFI therefore, I2(y , 2) satisfies the estimate (3.9) 
(Note that C O can be taken arbitrarly large and that this type of estimate works for 
terms of the form 2 ~ only for , <  1/2.) 

On the other hand, I~ is given by the expression 

I1= ~ e-~'/3t2etFtY'~-'3~ tr(y,A-~/3t,2)2-1/adt,  
Itl < Co 

which can be computed by the complex method of stationary phase with large 
p a r a m e t e r  21/3 which gives the same result as the formal expansion and which is of 
form (3.10). 

To prove that (ii) implies (i), we use the microlocal nature of the problem; the 
property (i) is invariant under any real homogeneous canonical transform and (ii) 
is invariant under any canonical transform between Sjrstrand's spaces. We can 
assume that we have A = T *R  ~ near (0,~~ I~~ = 1 and that T x is the F.B.I. 
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transform given by (3.1). In this situation, we have: 

q~(y) = 1/2(Imy) 2 , ~oa(y) = iy2/2; ~p(y) = ~ ( x  = O, 4 = iy). 

If we assume that (ii) is satisfied, there exists an analytical symbol (in the sense of 
Boutet de Monvel, i.e. holomorphic in 2 in a conic neighborhood of R+)  ~(y, 2) 
which has the same formal asymptotic expansion as b(y, 2). Since we have, for 2 > 1, 
IE-bl < e-CZ'/3(c >0), we can replace b by ~', with only a change on the term r(y, 2). 
Then we use the inversion formula, with R = 1. We introduce a small conic 
neighborhood F 0 of 4o and, microlocally near (0, Go), we can use (3.8); f is 
microlocally the sum of the two following functions: 

f2(x) = (1/2)(2n)-" I e-1~1/2(1 - -  i(~/[~12) - Ox)r)(x - i4/1~1, I~l)d~, 
ro 

fa(x)  = (2=)-" J e/x' r 1~/2)l+t- Ir + r162 ) d~. 
ro 

The term 2~~ is given by the formula: 

~(b) = (1/2) [(1 - i( ~/1~12) �9 O,)b + i4/1412(1~1(x- i4/141) + 1ltl/3 0r~) b ] . 

As in the proof of the Lemma 3.1, the function f2 is microlocally Gevrey 3 with 
a weight m, satisfying the estimate m(0, G ~ > Re~p(~~ Finally, since ~(b) (x, ~) is a 
symbol in the sense of Boutet de Monvel, one can introduce, for Ixl small, the 
change of variables ~ + i(x/2) 141, and obtain for f l  an expression in terms of the 
real phase x .~  corresponding to right hand side of (3.6). The proof of the 
Proposition (3.1) is complete. [ ]  

4. Traces of  the fundamental solutions for IS], []2 

Our goal is to analyse Tr(t) using formulas (2.12) and (2.13). In B, two kernels 
intervene, h~ and k +. The latter is the Neumann operator on Rt • f2 and the 
former is the trace on R t x dl2 of a fundamental solution to l--q 2 on R x R". In this 
section, we study this second type of kernel. 

The fundamental solutions e0, h0 are defined by: 

rqe~- = 6 ,  I]]2h~- = c5, s u p p e g , h g C { t > O } .  

In this section, we study the operators 

T s : ~ ' (R ,  x a f2 ) - - ,~ (R ,  x clf2) 

T l f -  [e~- * ( f |  6o~)]lR , • oa 

and ,~2 is defined with hff in place of eg. Here Of 2 is the boundary of the open set 
Rn\0  and the traces are taken from the f2 side. From the definition, we see that the 
kernels o f t  ~ which are functions of t, x, s, z e (Rt x ~I2) 2 depend only on t -  s, x, z so 
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we write as T~( t -s ,  x, y). Again from the definition, we see that 

T ~ ( t , x , z )  + = eo (t, x - z)l~o~. ~o~, 
(4.1) 

T2(t, X, Z) + = h o (t, x - z)l~,0o, ~m" 

dg2 x Rt  is non caracteristic for the wave equation and therefore, with the exception 
+ and h~- on dO x R~ is well defined and we have: of t = 0 and x = z the trace of eo 

W F(eg Io~xo~xR) C n W F(e~ )ca r*(  dg2X dg2XR~) 

and 

WF(h~ 10uxonx~,) C n WF(h~)ca T *(~OXdQ X~t) ,  

where n is the projection on T*(dOXdOXRt) .  The only difficulty for the definition 
of the trace arises near t = 0 and x = z = 0 where we will, with a change of variables, 
make an explicit computation. These computations are classical for elliptic 
problems and like in the elliptic case they give differents results when the trace is 
taken from the interior or from the exterior of the obstacle due to a change of sign 
in the determination of the square root. 

We denote by tJ(z, x, z) the partial  Fourier  transforms with respect to t, so ~J is 
holomorphic in Imz < 0, and we have 

' ~J (z ,x ,y )=(2n) -" - l  ~ (~2-z2) -Je  itx-r)r d~lx~O~,y~o~, I m z < 0 .  (4.2) 

If x ~  dO, we may relabel the coordinates so that near x ~ O is given by 
{xn> S(x')}, where x ' - ( x l  . . . . .  xn-1). With x' as coordinates for dO, the canonial 
projection T*•"--', TX*OI2 for x ~ d~2 is given by 

~', ~,, ~ '  + ~,,Vx,S(x' ) . (4.4) 

Choose a C'~(~ "-1, P- , ' - t )  function H such that 

S ( x ' ) -  S(y') = (x' - y')H(x', y'), H(x', x ')--  dx,S(x'). (4.5) 

Then, the metric form O on T*(dt2) induced by the Euclidean metric is given by 
O(x', x', �9 ) where 

0 2 ( x  ', y', v') = r  - ( v '  . I-l(x', y')2/(1 + n : ) ,  

where the scalar products on the right are R ~- ~ Euclidean. Then O is a positive 
definite form on T~(df2) provided l y ' - x ' l  is small. The glancing set is given by 
"r 2 =02(x ' ,x  ', v'), and the second fundamental form, R, by 

R(x',  v') = - Hess S(~', r [(1 + 117SI2 + l l7Sl,,)/(1 + I vsI 2)2],/:, 

where ~' is defined by 

r ~,-v'. VS/(l +lVSl2). 

The quadratic form R gives the curvature in N ~ of the dO geodesic passing 
through (x', v') when O(x; x', v') = 1. 
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In the coordinates l,x', I= x , -  S(x'), we have 6 ~ = ( 1  + IVS(x')t)l/z| Thus 
(4.2) yields 

~'~(r, x, y) = (2n)-"-  1 ~ eir ' -  r'l + i~.tx.-scx'))(1 +117S(y,)12)1/2(r _ , ~ 2 ) - ~ d 4 .  

Following a calculation which is standard in the elliptic case, we take for new 
phase variables v '=  4 '+  ~,H(x', y'), v,---4, and integrating with respect to v, and 
then letting l= x , - S ( x ' )  decrease to zero, we find that 

qAJ(z, x', y') = 2-J(2n)-" ~ e w(x'- r')(O 2 _  272)(1 - 2j)/2 [(1 + I VS(y')I 2)/(1 d- H(x'y')2)] 1/2dv," 

(4.6) 

The square root of O 2 -  T 2 is chosen with positive real part. Next, let Q(x', y') be the 
positive definite matrix such that 

0 2 ( x  ', y', v ' )= rQ - 'v'l 2 

and introduce the new variable ~ '=  Q-  %' to find 

~J(z, x', y') = f (x', y') I e~r e~*" ''~(~' - ")(4 '2 - r2) "~" d~'. 

Thus, the analytic spectrum o f t  j can be computed in terms of the inverse Fourier  
transform of the distribution (4 ' 2 - ( z - i 0 ) 2 )  "~ which is well known. In particular, 
the singular spectrum o f t  j is, for t > 0, the restriction to Of/of the propagation for 
the wave equation; therefore we have the following: 

Lemma 4.1. The analytic wave front of  the kernels TJ(t, x, z) is contained in the set 
of  the points (t,x, z; ~ , ~ )  which satisfy one of  the two following relations 

t = 0 ,  x = z ,  ~ + ~ = 0 ,  (4.7) 

or, 

t > 0 ,  3~eR" ,  e =  -P~(4), ff=P~(r t '= -T-t~/[r x=z+__tr (4.8) 

Here Px denotes the canonical projection o f  T~*(N") on T*(~30). 

Next, we use the results of Sect. 3 to study the propagat ion of Gevrey 3 
singularities on Or2. Consider the C ~ 2 n -  1 manifold M = Rt  • Or2 x Or2. In T ' M ,  
we introduce the lagrangian manifold A = A § w A -  where 

A • = {(t, x, y; z, ~, t/)l +__ z = [~1 = [ql, (x, ~) = �9 +,(y, - n)}. (4.9) 

The metric on Or2 is induced by the Euclidian metric in P," and q~ denotes the 
geodesic flow, or more precisely the flow induced on T*(Of2) by the Hamiltonian 
HI@ We will denote by Q(x, ~) the curvature of the geodesic through the point  
(x, UI~I) and by - c o  the zero of smallest modulus of the Airy function. Since 
z + ] ~ l = 0  on A • we have a,+lr I tangent to A • and we define o? on A • by 

Hr+lr177 lp t t=o=0.  (4.10) 

Our  analysis turns on the fact that several distributions entering in the description 
of T r Z  lie in 13, ~ and have leading terms which can be explicitly calculated. The 
two propositions of this section are results of that form. 
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Proposition 4.1. I f f e  D'(N t x Of2 x Of 2), suppf  C (t > 0}, has analytic wave front set 
in the union ( t=0  and x=y)tJ(Ac~(t>O)) and lies in I s for t > 0  then on a 

A , t v  

neighborhood of the set ( t>0,  Ix-z[  < t) the distributions g J, 

gi( , x, z) --- IS TJ( t - s , x ,Y ) f ( s ,Y , z )dsdy  
Rs x O~ 

have analytic wave front set in A and lie in I 3, ~. 

Proof. Since T i propagates at speed exactly equal to one and [ x - z l < t ,  the 
singularities o f f  at t = 0 do not influence those of g(t, x, z). In addition, as A lies in 
the glancing set and df2 is strictly convex, singularities in f for t > 0 are propagated 
along glancing rays, and therefore away from at2. This shows that the analytic 
wave front ofg  k is in A and in addition that for po=(to, Xo, Zo, Zo, 40, ~/o)eA the 
microlocal behavior of gJ near Po is determined by that of f near Po and the 
microlocal behavior of T k at (0, Xo, Xo, Zo, 40, --40). For the rest of the proof, we 
suppose that Po ~ A § The case Po e A - is similar. We compute in coordinates x', xn 
with t2 = {xn > S(x')} as above. We write f = fl  + f2 with f2 Gevrey 3 with weight m, 
re(p) > Re~p(po) and 

f l(s, y, z) = S e~*(~'r'z'~ ~'~ a( s, Y, z, O)dO , (4.11) 

where the phase r is defined by the eikonal equation on ~f2: 

O~o/~s = O(y, y, 0~0), ~0t~=,o = ~Oo(y, z, 0), 

where q~o is a non degenerate phase describing A + near exp(-toHl~l(Zo, -~lo)). 
In the integrals (4.6) defining Tk(z,x,y), we can take the inverse Fourier 

transform to find expressions for Tk(t, x, y). In the resulting expression, there are 
two possible sources of trouble, the vanishing of  the denominator when z2= 02 
and contributions from v, ~ o0, z2+ 02. The latter is the transform of classical 
symbol and does not affect I "k microlocally at (0, Xo, Xo, Zo, ~0, - 4o). Thus we may 
restrict attention to a neighborhood of r 2 = O 2  where we introduce the new 
variables g, v' by z = O(x, y, v)(1-a), I~l--< ~o small, and modulo a microlocally 
analytic correction we have: 

aO 
T k =  .[ (a+i0)  1/2-k J" ei~'(~-Y)+(t-~)(1-~)~ (4.12) 

- a o  Fo 

where F o is a conic neighborhood of ~o, Hk ~ C~ is homogeneous of degree 2 -  2k 
with respect to v, and we have suppressed the prime in v. Thus, 

if0 
T k =  S (ff +io)+l/2-kT~ dcr' 

- -  a o 

where T~ are Fourier integral operators with canonical relations Co determined by 
the phase r t, y, s, v) -- v. (x - y) + (t - s) (1 - tr) O(x, y, v). 

We do not need to take into account the boundary of Fo, because the point (to, 
Xo, Zo, ~o; to, x0, Zo, ~o) does not belong to the canonical relation of #.~lOro. Notice 
also that for (t, s) near (to, to), # .  induces a canonical isomorphism of T*(dK2) into 
itself, which is close to the identity. (The relation C. itself is not an isomorphism 
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but one can check that it induces a ramified canonical transformation with two 
sheets; the branching points occur at a = 0  along the glancing hypersurface c~.) 

To compute f ' f fkfl  ) (t, X, Z), we superpose the integrals (4.11) and (4.12) and use 
the classical stationary phase method to eliminate the variables (y, v). The critical 
points are given by the equations: 

yc= x + ( t -  s) (1 -a)c3  v6)(x, y c, vc) 
(4.13) 

v c = dyq~(s, yc, z, 0) + (t - s) (1 - tr) t~r O(x , Yc, vc). 

We will denote by Vo the vector t3xtp(t , x, z, 0). To compute the critical value, we 
assume that the function S which describes dr2 near x, satisfies 

S(x  + u) = - ' u  A u  + O(lul 3), 

where A is a non degenerate positive symmetric matrix. In this situation, we have 
the relations: 

O(x,x, v)=-Ivl, OxO(x,x, v)=-~yO(x,x, v ) -O,  ~vO= v/Ivl (4.14) 

and the Hessians 2 2 2 OxxO, t~rrtg, 0xyO are all equal to -1/[v{( t. Av) 2. Finally the 
curvature of the geodesic through (x, v/lv{) is given by the relation 

Q(v,  x )  = 2~v - Av/M 2 . 

Using these formulas, we obtain the expression: 

T k f l ( t ,  X, Z) = ~ e i~'tt . . . . .  o)-l~t . . . . .  O) bk(t, x,  z, O)dO, (4.15) 

where the b k are given by the relations 

. b k ( t , x , z , O ) =  ~ (f f+iO)l/Z-kda~eigO( . . . . . .  )+l(t . . . . .  o) 
1 - a o ,  a o [  

x Q(Hka e -  "~''" z, 0))ly = r . . . . . .  ds.  (4.16) 

Q denotes the operator from the asymptotic expansion in the stationary phase 
method; H k is the function defined by the formula (4.12) and g e C  ~ is homo- 
geneous of degree zero with respect to 0 with: 

g(s, t, x, z, a, 0) = a(s - -  t ) -  (1/3) (1/8)(s-- t)3o2(x, Vo) + O((s --  0 4 + a ( t - -  s)2). 
(4.17) 

With (4.13), we have: 

l(t, x, z, 0 ) -  l(s, y~, z, O) --- ( t -  s) (Otl(t, x,  z, 0 ) -  O~O(x, x, Vo)Oxl(t, x,  z, 0)) 

+ o ( ( t -  s) ~ + ~ ( t -  s)), 

and using (4.10), we obtain: 

l(t, x, z, O) - l(s, Yo z, O) = (t - s)(6)(x,  x,  Vo)) l/3 qz/3(x, vo)ei"/62-1/3o~ 

+ O ( ( t -  s) 2 + a ( t -  s)). 

Finally, the relation (4.15) is valid mirolocaUy near Po if the integration with 
respect to s in (4.16) is done in a neighborhood of t o which is small compared to a o, 
that is [ao[ >> ( t -  s) 2 (see (4.17)). 
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We denote by 2 the expression ~9(x, x, Vo) and instead of (tr, t -  s), we introduce 
the new variables (#, g) with the following properties: (#, ~) depend analytically on 
z, 0/101, t, x, A- 2/3, and satisfy the relations: 

81~=0-=0, ~l,=s-0, g > 0  

if and only if t > s, and 

g(s, t, x, z, 0 ) -  i 2 -  213 [l(t, x,  z, 0 ) -  l(s, Yc, z, 0)] = - 8g + g3/3 - -  i2- 2/3~a(t, x, z, 0/101;~ ). 

This reduces the study of the right hand side of (4.1 5) to the asymptotic evaluations 
of the integrals: 

I k ( 2 )  = SSei~(-~'~+~3/3-1'~-2/3~a(~)f(8, g , ,~,)(#+iO)l /2-kd~dg,  (4.18) 
C 

where f denotes an analytic symbol in 2 which is classical in ),1/3 and where C is 
the ~2  neighborhood of the critical point (or, s)=(0, 0) defined by: 

181<8o; Igl<go with 8o>>~o 2. 

We denote by �9 the function 

�9 (8, ~) = -- 8 .  ~ + g3/3, 

and we notice that we have ~ : # 0  for g= +go, and ~ : ~ 0  i f ~ = 0  or 8 =  - ~ o ;  
finally on every vertex of ~C, we have �9 ~ 0. Therefore the boundary of C does not 
contribute microlocally near P0. The only contribution comes from the critical 
point (#, g) = (0, 0). With an integration by part, we can reduce the case k = 2 to the 
case k = 1, which is considered below. The change of variable 8 = u 2, 2du = 8 - 1/2 d~, 
yields an integral with a holomorphic symbol and a phase given by 

�9 (u, L 2) = - uZg+ g3/3 - i 2 -  2/3ga. (4.19) 

This phase has an isolated critical point at (u, g)= (0, 0), for 2-2/3= 0. We use the 
division theorem for symbols [BdM.] with the Jacobian ideal of (4.19), spanned by 

O~a 
- -  2 u ~ ,  - u 2 + g2  _ i 2 -  2/3 O-~-' 

Near zero z = 2 -  2/3 is an holomorphic parameter. For  z = 0 the quotient is spanned 
by the four functions l, u, g, g2 since the right hand side of (4.19) depends only on u 2 
there are no terms in u. Therefore we reduce the study 0f(4.18) to the case where f is 
a linear combination of the functions 1, s, s 2 with coefficients which are analytic 
with respect to z = 2-1/3. 

Finally the right hand side of (4.19) is holomorphic with respect to the zero 
order term of the Taylor expansion ofa. Deriving with respect to this parameter we 
reduce the study of (4.18) to the case where f is constant. Then we write 

e -  ia~ + iO)- l/2dtr = Constant(2s +) - 1/2 ..~ e-ia,o~ T + (2s) - e ia'~ T -  (2s). 
] - ~ro, oo[ 

Here, T+(2s) is given by: 

T +(2s) = T (2 + ao)- 1/2 e -  iX~'dx, 
0 
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which is holomorphic in the sector - n - ~  < Args < e, s + 0 and which satisfies in 
this region the estimate 

[T+(2s)l < Constant(1 + 12s[- 1/2). 

Therefore, a contour deformation with respect to s in the half plane Ims < 0 shows 
that the contribution of T § is microlocally zero near P0; the same remark holds for 
the term T- .  Finally, it is enough to study the integral 

1(2) =2-1/2 S eia(s3/3-i'~-z/3sa)s-1/2ds" 
I0,sll 

In the right hand side, we replace a by ao + als using a change of variable which 
leaves the origin unchanged and which is analytic with respect to 4-2/3; then we 
replace Sl by + oo. We remark that: 

ei=r + ir 1/2 d4 = a Ai(2- 2/3 e-  2ilt/3 Z) Ai(2- 2/3 Z) (4.20) 
0 

with ~=3-5/6ei=/12F(1/6)(Ai(O)) -2, because the two sides of (4.20) satisfy the 
differential equation: 

- f ' "  +z f '  + f / 2=O,  (4.21) 

whose solutions are products of Airy functions and the identification is completed 
by noticing that the left hand side of (4.20) is bounded for e < A r g z < n - e .  
Therefore, up to a function with exponential decay in 4,1(4) is given by the series: 

S ( 2 ) = 2  -2/3 ~ ((al2-1/3)k/k!)'(--it~z)2k[~Ai(2-2/3e-2in/3z) 
O_<k~oo 

x Ai(2- 2/3Z)]Iz= -iao" 

The series converges because the derivatives of order 2k are bounded by Ck(2k/3)I 
< (2k/3)! �9 (k I) < ek/3k- k/3. 

It remains to show that Tkf2 is microlocally Gevrey 3 with weight m', m'(po) 
>Re~p(po). The analytic singular support of f is, by hypothesis, contained in 
{t = 0, x = y} w {A c~(t > 0)}, we deduce from (4.7) and (4.8) that we can assume that 
analytic spectrum off2 is arbitrarily close to Po. The result is then a consequence of 
the following lemma applied to the distribution kernel T i ( t - s ,  x, y). fi~ = o,. 

Lemma 4.2. Let k(x, y) be a distribution kernel with the following properties: 
(i) The analytic singular support SS(k) satisfies the relation: 

{SS(k)n4 = 0} • {SS(k)nr/= 0} C {4 = r/= 0}. (4.22) 

(ii) For any e > 0 there exists a neighborhood V of (x o, 4o) such that the relations 
(x, ~, y, rl) ~ SS(k) and (y, - rl) e V imply 

I(x, 4)-(y, -,t)l-<_~. 

Then for any ct>0, there exists a neighborhood W of (x o, 40) such that for any 
function with analytic singular support containted in W, and which is microlocally 
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Gevrey 3 with weight molr/I 1/a on FV, the function: 

g(x)-- ~ k(x, y) f (y)dy 

is microlocally Gevrey 3 at (Xo, 40) with weight too(1-~)l~l 1/3. 

Proof. We just sketch the proof. Using (4.22), we can assume that k(x, y) is the 
boundary value of a function h which is holomorphic in the region: 

( Imx--  Imy)- 4o > 6o [llm x[ + Ilmyl]; Ilmxl, Ilmyl < 61, 

with 6o as small as we wish and, replacing k by A-  Nk, we may assume that k is 
bounded. Then we have: 

e-  ~ -  x~2/2 k(x, y)dx = F(z, y, 2), 

where F is a holomorphic function in z and y which satisfies the estimate: 

IF(z, y, "~')t <= e~(lm~- Olrny)2/2, 

provided z is close to Xo-  ir Rey is close to Xo, 0 < 1 close to 1 and Imy-  4o(1 - 0) 
< -6ol lmyl ,  Ilmyl <60/2. 

Then the ordinary F.B.I. transform of g is given by 

~ e-zt:-x)~/2 k(x, y) f (y)dydx = ~ F(z, y, 2)f(y)dy. 

The demonstration is completed by expressing f using the inversion formula for 
the F.B.I. transform, and then deforming the contour in y. []  

The next proposition describes the action of the operators T k on the symbol of 
f ~  Iaa. ~. 

Proposition 4.2. Let f = f~ + f2 ~ I~.~ with f2 microlocally Gevrey 3 with weight 
larger than ReW(po) and with f l  having symbol a 

fl(t, x, z) = ~ e ir ..... o)-t,t ..... ~ x, z, O)dO 

and let bk(t, x, z, O) be the symbol of T k f  

(~kf)  1 (t, X, Z) = ~ e i~(' ..... o)- z(t ..... O) bk(t, x, z, O) dO. 

Then, the symbol b k can be computed from the symbol a according to the formula 

b k--T'~a-- 0 2/3-4k/3 ~ o-n~3 Qkn(a) ' 
n=O 

where 

Ok(t,x,z,O/lOl, D,,D~): E Qk.a(t,x,z,O/lOI))O~x 
I#l_-<n 

is a differential operator of degree less than or equal to n, and, the coefficient Qk ~ are 
holomorphic functions satisfying the estimates: 

k IO,,al ~ C"(n-IBI)! �9 (4.23) 
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Furthermore Q~ is identically equal to zero and for the principal symbol denoted by a, 
we have the relations 

a('ff 1 a) = C 10 - 10-1 {z -- O, a(a)}, a(~2a) = C20  - 20- 'a(a), (4.24) 

where C 1 and C 2 are universal constants in C\O and where 0 = O(x, x, Vo). 

Proof We follow the idea of the proof of the Proposition 4.1 using coordinates as in 
(4.13). With T* given by (4.12), we have: 

Hk(x, y, o', v) = 2-~(2n)-" [19(x, y, v)] 2 - 2k(2 __ 0.)1/2 - k  r ( 1  At- ( (~y.  S)2)/(1 q_ (H(x,y))2)] 1/2. 
(4.25) 

Let 

fk(t, X, Z, O, a, S) ---- e l(s' y~ z, O)Q(Hk a e-l(s, y, z, o))1 r =r . . . . . .  

the function which appears in (4.16) and we have: 

f k  = E 101- m/3 F.,( Hg a) , 
O < m < ~  

where Fm is a differential operator of degree 2m/3. Since 19(x,x,v)= Ivl and 
det [O~, ~(x, x, v)] = 0, we have: 

Fo = (2n)"- 1(1 + O(( t -  s)2)). (4.26) 

The coefficients bk(t, x, z, O) are obtained from the asymptotic expansion, with 
respect to O(x, x, Vo) of the expression 

I exp {iO [a(s-- t)-- 02(s-- t)3/24 + O((s-- t) 4 -t- a(s - -  t)2)] 
lma>O 

+ 19  113 [(t - -  S)Q 2/3 ei~/62 - 11309 + O((s -- t) r + o(s -- t)z)] } o "1/2 - kfk(a, s)dads.  

To obtain the asymptotic expansion, it is convenient to introduce the change of 
scale: 

a = 1 9 -  z/3fl, ( t_s)=19-1/37.  

The terms 0 [ ( s - 0 4 +  a ( s - t )  z] of the phase then contribute only lower order 
terms to the symbol fk  and we denote ~k the new symbol which is obtained in this 
way. We have to compute the principal term of: 

1(19) = 192k[3 - 4 / 3  ~S ei[)'302/24+y(-i~176 ~ l  

Imfl>O 

X f l l /2-kfk(o -z/3fl, t -- 19 - U3y)dydfl. 

We obtain the formal expansion 

I(19) = 19z~/3-4/3 .y~. 19-as, +s2)/3((_ 1)s2/[j~ !)(12 !) 
Jl,J2 

• (O~9~fk(a ' S))o = o,, =,(2 e - 2/s)i~-i, +k- 1/2. Cj,j~(ek -~,/3 22]3 (D). 

Here k Ci~j~(z ) denotes the entire function of z given by: 

CJd2(z)= Seitr162162 ~ e-i~r 
Imx>0  
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From the formula (4.27), we deduce that the Qk are differential operators of degree 
at most n, because n is the maximum of 2m/3 +Jl +J2 under the condition 
2j l  + J2  + m =  n; it is obtained for m =Jl  = 0 and J2 = n. The estimations (4.23) are 
consequences of the Proposition 4.1 which implies that T k is a continuous 
mapping of the space of regular symbols with respect to O 1/3 to itself. The fact that 
Q~ is identically zero is a consequence of the formula (4.20) which implies that one 
has: 

Co l, o(Z) -- Constant.  Ai(e- 2i•/32 - 2/3 Z) Ai(2- 2/3)Z) 

and with z = 2 2/3 e - ix /3co  we have: 

Ai(e- 21"/32- 2/3(z)) = Ai( - co) = 0. 

The leading term of T~a is obtained for j~ = 0  and J2 = 1 

Co l, i = Constant 0z(Ai (e- 21~/a2 - 2/3 z) Ai (2- 2/3 z))l~ = 2~-~-,.,,o. 

Similarly, the leading term of T2a is obtained for j l  =J2  = 0 and it is also of the 
form: 

C2, o = Constant 0~(Ai(e- 2i"/32- 2/3 z) Ai (2- 2/3 z))[~ = 2~'e-'"'~," 

The relations (4.24) follow form (4.25), (4.26), and (4.27). 

5. Proof that k+(t,x,y)EPA, w 

This section is devoted to proving that k + ~ 13, ~ in t > 0 with A, ~v defined in Eqs. 
(4.9), (4.10). The proof has two major steps, first the result is obtained for small t 
(Proposition 5.2), using a parametrix construction of Lebeau [L.2]. The result is 
extended to all times using the methods of second microlocalization as in 
[L.2, w [L.2, w [S.K.K.] and [S.1] and a transport equation involving the 
operators ~ of the last section. 

The. parametrix is constructed using families f ( t , x ,  2), 2_->2o of functions 
holomorphic with respect to t, x. 

Suppose f :  co x (20, oo), co a neighborhood in IE, x IEx of(to, Xo), is holomorphic 
in t, x and satisfies: 

OC>O) Jf( t ,x ,2)l<e c~ , t ,x,2~co x [2o, oo], (5.1) 

(qNo) (Ve) (3C~) IO~,xf(t,x,2)l<C~A N~ t ,x,)l.e(conll x I2) x [2o, oo]. 
(5.2) 

(The exponential versus polynomial growth in these relations comes from the fact 
that in (5.1) x and t are complex while in (5.2) they are real.) 

Definitions 5.1. The asymptotic singular spectrum of  f (t, x, 2), denoted by SSof  is 
the closed set of  T*(R t x O0)u T*(R t x f2) defined as follows: An interior point 
P0 ~ T*(Rt x ~2) does not belongs to SSo i, there exists a F.B.I. transform: 

f ~ I eiagl"t'*) f (  t, x, 2)dx, 
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with value in the space H , ,  related to the canonical transform: 

Z: (T*(R t x t2), po)--.(A,, Zo) , 

for  which f satisfies in some complex neighborhood too o f  Zo, and with some strictly 
positive constant C O , the following estimate: 

VZ ~ toO, V2 ~ 20, [f eigg(z, t, x~f(t, X, 2)dtdx[ < Ce xtq'(~- Co~. (5.3) 

A boundary point qo ~ T*(•t x Of 2) does not belong to S S o f  i f  in a system of  C ~' 
local coordinates x', l with f2= {l>0} there is a tangential F.B.I. 

f ~ ~ eiXgc~"'"~'~ f (t, x', l, 2)dx' dt ,  

with values in H~, related to the canonical transformation 

Z' : (T* (R  t x 0f2), qo)~(A , , ,  Z'o) 

and C, C O > 0 such that for  all z' ~ to o C IE"- 1 a complex neighborhood o f  Z'o, 0 < l < l o, 
and 2 > 20 

If ela~ t' x') f ( t, x', l, 2 ) dt dx'] < C e ~ '  ~'~ - co). (5.4) 

We say that f is an asymptotic solution i f  there exists constants C, C O > 0 so that 

t(3~ - A ~)f(t ,  x, ~o)l < C e -  cox (5.5) 

for  all t , x ,~ to ,  2>2o .  

We denote by qo e T*(R, x Of 2) a point of the form qo = (to, Xo, - to, -- ~ )  with 
% = 1~;1 and, for q e T*(R, x dE2) near qo, we define the incoming flow F-(q) .  The 
definition is different in the elliptic ([z[ < [~'[), hyperbolic ([rl > 1~'[), and glancing 
([T[ = 1~'1) sets. 

I f  q is elliptic, then F - ( q ) =  {q}. (5.6)~ 

I f  q is hyperbolic or glancing, then F - ( q ) =  {q} ~ expsH,~_lr (5.6)i i 
s > O  

where ~ = (to, Xo, ~, ~', ~,) is the characteristic point projecting to q such that the 
bicharacteristic expsH~_ iel~(q) lies over 12 for s >0 .  Notice that on bicharacter- 
istics dt/ds ~ - -21~1 < 0  so s > 0  corresponds to the past. 

Definition 5.2. We say that f (t, x, 2) is an incoming asymptotic solution i f  it is an 
asymptotic solution such that fo(t, x', 2)-= f ( t ,  x', O, 2) satisfies 

SS(fo) C too, a small neighborhood o f  qo in T*(P.~ t x Ol2) (5.7) 

where G =-the glancing set. 

In Fig. 1, we sketch the projection on (t, x) of the singularities which correspond 
to the relation (5.8) and which come from the points (to, xo, ~, ~), for (z, ~) near 
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(Zo, ~o) e G. This set is the union of  a par t  of the wave cone coming from (to, Xo) and  
of the rays which are glancing a long the backward  geodesic th rough  Xo. 

One  can find (cf. [S 2] a system of coordina tes  and a posit ive function a(x) such 
that,  near  Xo, one has:  

a -  1 o A x o a = ~2 + B(x' ,  l, Dx,), (5.9) 

where I denotes  the var iable  normal  to Of 2 and where B is a second order  elliptic 
opera to r  with 

tr(n) (x', 0, ~') = - 14't 2 . (5.10) 

Therefore,  after a con juga t ion  with the function a, the wave ope ra to r  becomes:  

P = a -  I(A x - d2t)a = (82) + ((B(x', l, Dx) - (dr 2) (5.11) 

with symbol  p = - r + (B(x', l, ~') + z2). 
After this reduction,  we make  a tangent ia l  F.B.I. t ransform 

T f  (z, l, 2) - S ei~g~ t. ~'~ f (t, x', l, 2) dx '  dt (5.12) 

for z near  Zo in IE n. The  t ransform is related to a canonical  t ransform 

Xo : T * ( R  t x gf2) ~ ( IE  n, -2i~-&po ), ~Po = 1/2(Imz) 2, Xo(G)= {z]Imzl = 0}. 

As in [L.2], the ope ra to r  P is t ransformed to 

P = a 2 + 22R(l, z, ~, 2), (5.13) 

where R is a classical C ~ symbol  of degree zero, 

R ~ ,  Z R f l ,  z ,2)  ~ - j .  
j>=O 
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The characteristic variety, 0 =  a (P)=  R 0 - 7  "2 (7" dual to/), is given by 

l =  - q(z ,  4, ~ )  = - ~'~ + e(z ,  ~)~z + O(/") (5.14) 

with e(0, 0) > 0. 
Incoming asymptotic solutions to the wave equation are constructed in two 

steps, following [L.2, Prop. 3.3 and 4.2.3.]. First incoming asymptotic solutions of 
P = 0 are constructed, then an inverse tangential F.B.I. is applied. The next result 
lifted from [L.2] accomplishes the first step. Note that T*(R t x 0s and IE~" are 
identified using Xo. 

Proposition 5.1. There exists a linear operator K which maps the set of function fo 
satisfying the relations }fo(z,A)[<e ~*~ and, for Iz1>6/2, O>0 small {fo(z,2){ 
<e ~*~ C>0 .  To the set or incoming asymptotic solutions of P = 0  with the 
following properties: 

(Kf) (0, z, 2) = f0(z, 2) + O(e- cz), 

and 

0,(K f)(0,  z, ,~) = (,t/2~)"- '  I dy' ^ d~' 
2~/3 

x ~ eia(z'-r162162162 2)dya+O(e-C~). 
- 2~/3 

for z near (z ~ 0), z ~ ~ 1~, Z~ > r o > 26. The holomorphic function H(z, ~') satisfies the 
relation 

~z H(z ,  r = oJ e-i~/3(e(z, r = 0, ~,)p/3, 

where e(z,~) is given by (5.14). k is an analytic symbol in a small neighborhood W 
(independent of 6 and ro) of zl =0,  Yl =0,  z '=0 ,  ~ '=0.  In addition, there exists a 
family k j of holomorphic functions defined in W which satisfy the following estimate: 

]kJ[<ABJj!, ko]~l=y~-= i, 
! ! t k(zl,z,yl,~' , 2 ) -  o<~(<i kZ(zl, z ,  Yl, ~ ) 21-1/3 < A(ro)B(r j j  ! 2a -~/3. 

Remark 5.1. Near qo=(to, X'o,-%,--~'o), the incoming asymptotic solutions 
propagate singularities in the direction of negative times; they coincide with the 
outgoing solutions in the sense of [L.2]. Indeed, with P given by (5.13), they 
propagate the singularities to the right along the bicharacteristic. We have used the 
minus sign in front of ~o to recover the definition given in [L.2]. 

There exists an analytic, elliptic, classical symbol, do, of degree zero such that 
the F.B.I. 

f ~ T -  x f = 2" ~ e-  t~oo~, t, ~,) ao(t ' x, z, )~)f(l, z, 2) dz 

is a formal inverse of the F.B.I. defined by (5.12). 
For (z, - 2iO, qJo(Z)) ~ x(T~* ~)(R~ x 0~2)), the function z-o Im go(z, t, x') + q~o(Z) has 

its critical points transversally non degenerate, and the critical value is zero with 
signature (n+,0-). Then if f(I ,z,2) is an incoming asymptotic solution with 
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SSof(O, z, 2) C [ z -  Zol < ~o/4, the function given by 

f ( t ,  x, 2) = a(x)2" I e-i~~176 l, z, 2)dz (5.16) 
Z~O 

with 

Zo = {zl(z, - 2i,~,~po(Z)) = z(t ,  x ;  ~, 4), I(~, 4 ) -  ( -  ~o, - 4o)1 _<- to} 

is an incoming asymptotic solution of the wave equation, for 

[(t,x)-(to, Xo)[<~l, ~1~.~. 

Let q~o a)-=(to, x~; Zo, ~o) be the antipodal of qo and let 

f --* T1 f = S ei;~o dz't' x') f ( t, x', 2 ) dx' dt 

be a F.B.I. transform related to the canonical transform 

Z~ : (T*(R, x 0~); q(oa))~(~ ", (2/i)OOqh). 

For z near z 1 (considered as a parameter), and (t, x) near (to, Xo) we denote by 
f ( t ,  x; z, 2) the incoming asymptotic solution, described above, which satisfies the 
boundary condition: 

f ( t ,  O, x'; z, 2) = a(0, x')e i~'~ t, x,)- ~.q,l(z) -b O(e-cx). (5.17) 

For  [ z -  zl[ <~ ~2, f decays exponentially with respect to 2 for t > to + ~2. The kernel 
K+( t - s , x , y )  from (2.9) has its support contained in the cone ]x-y[<l t - s] ,  
therefore, if [to-s[ and [xo-y[  are small enough, we have 

to+~2 
O(e-C~) - S dx ~ dt[(a2t-Ax) f ( t ,x ,z ,2)]K+(t-s ,x ,y) .  

D - -o0  

Integrating by parts in the right hand side yields 

dx' S dt a(O, x')e i~g~ (~' t, ~,)- ~,,<~)k + (t - s, x', y') = c~,f(s, y', z, 2) + 0 (e-c~). 
a f t  

(5.18) 

This duality argument leads to 

Lemma 5.1. The analytic singular spectrum of k + (t, x', y') is, for t > O, contained in 
A. 

Proof. Since k + is real, it is enough to prove the relation: {SS(k § c~t>0c~ >0} 
C A +. For t small, one applies to both sides of the formula (5.18), a F.B.I. transform 
with respect to the variables (s, y'), and uses the result of Sj6strand [S.2] describing 
the propagation of analytic singularities. [] 

3 Proposition 5.2. For t > 0  small enough, the kernel k + belongs to the class I A, ~. 

Proof It suffices to consider A +. For  s < to and [ z -  zx[ ~ t o -  s, we deduce from the 
formulas (5.15) and (5.17) that for (w, -2iO~po(w)) near Xo(exp((to- s)H,_ ICq(qo)), 
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one has 

(eiXgo( .... r')(a(0 ,y,))- 1 c3f(s  ,y,, z, 2)dsdy' 

= (V2n)"- 1 ~ du' ^ d~' ~ du 1 e i ~ ' - " ' ~ ' -  i~']~tm~. r m,. ~')1 

x k(wl, w', u 1, 4', )0 ~. ei~~176 iagl(~,t,~')- x~,~(Z)dtdx," (5.19) 

The phase go + gl which appears in the right hand side defines an F.B.I. transform 
related to the canonical transform. 

;(l| : T*(Rt x 0f2x, ) x T*(P~ t x 0f2y,)-~A~l x A~oC T*(C~) • T*(C~). 

Therefore we can use the results of the Sect. 3. First notice that thc phase 

(u', 4'; u t, t, x')-~ (w ' -u ' ) .  4'+ go(U, t, x') + g t(z, t, x') 

has, for each (z, w), a non degenerate critical point. The critical value ~(z, w) is the 
p.s.h, function which is canonically related to the Lagrangian manifold: 

Zl | [-{(t, x', ~, 4') = exp IH,_ i+,l(s, y', - ~, - q'); �9 = 14'[, r = -I t ( I}] .  (5.20) 

This follows from the fact that thc phase 

(t, x')~go(u, t, x') + gl(z, t, x') 

has a non degenerate critical point, and the critical value G(u, z) satisfies 

{(z, u; G'z, G',)} = (Z~ | Z0)(A,a). (5.21) 

Here Ata is the Lagrangian manifold t=s ,  x '=y ' ,  z+r  ~ '+ t / '=0 .  This 
Lagrangian intersects transversally the manifold ~ = Lr 

The weight function ~o, homogeneous of degree 1/3, is computed from the right 
hand side of (5.19) as is done in Theorem 1 of [L.2]. That is, ~p is obtained upon 
integrating the 1-form ei"/62- t/3o~j along the bicharacteristics following G. Here d 
satisfies: 

(a ,  s-/m _,~) = { { x . -  S(x ') ,  r - +~}, r - +~}~:~1{ {x. - S(x ') ,  r - +~}, x . -  S(x ' )} ' /~ .  

That this yields the ~p defined in (4.10) is verified by performing the above 
computation in coordinates satisfying (4.13). This completes the proof Proposition 
5.1. [ ]  

To extend this result to all positive times, we will use the notion of partial 
Gevrey 3 regularity on a C '~ involutive submanifold VC T*M\O.  Toward this end 
suppose that VC T*NN\0 is an involutive manifold with its natural Hamilton 
foliation. In our example, V will be 

V + = [(t, x, y, ~, 4, I7) ~ T*(Rt  x Of 2 x go)\0l~ = 140, 

and the leaves of the foliation are the integral curves of H+_lr I. Let P be the 
manifold obtained upon complexifying the leaves. Suppose m =  P ~ R  is pluri- 
harmonic on the leaves of P and homogeneous of degree 1/3. In our example, m will 
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be the function Re~p: ~ ' + ~ R  defined by (4.10). Note that V + D A  + and the 
restriction of W to A is the weight defining 13 A,tp"  

Definition 5.3. Suppose that V and m are as above and that T is an F.B.I. transform 
associated with M,  Z, tp, dx, Po ~ T* M and let tp v be the p.s.h, defined by Z(F') cf. [L.1, 
w Then f e D ( M )  is partially Gevrey 3 on V with weight m at Po if  for z in a 
neighborhood o f  z o = n o Z(Po) and 2 >  20, T x f  satisfies: 

(Ve>0)(3C,) IT f (z ,2) l<C~e z*v~)-z'/3m~+`z'/3, 

where m is defined by r~ o 7r z o Z C = m. 

We write f is V.m.p.G 3 at Po. To show that k ~ 13. ~ for all t > 0, we must show 
that k is in this space microlocally at all points 

p(t; y', ~l') = (t, x'(t), y'; z, ~'(t), rl'), (x'(t), ~'(t)) = e x p -  tnlr - t/'), (5.22) 

where y', r/'~ T*(df2) and t > 0 is arbitrary. It is sufficient to show that if k e I3.~ 
microlocally at all such points for 0 < t < to then the same is true for t = to. The first 
step is partial Gevrey 3 regularity. 

Lemma 5.2. I f  for  all 0 < t < t o ,  and y',~l' ~ T*(dt2), we have k~I3+,~  at p(t;y' ,~f) 
then for  all (y',t/')e T*(00), k is partially Gevrey 3 on V with weight Reap at 
p( to, y', ~f ). 

Proof. Choose 0 e Ga/2(R) with 0 = 0  on [ - o o ,  - 1 ]  and 0 = 1 on [1, 0o]. For  q~ 
= (to, X'o; Zo, ~'o) e T * ( R  t x dr2) with (x~, ~ )  = e x p -  tH 1~61(y~, - r/~) let f ( t ,  x, z, 2) be 
the incoming asymptotic solution (5.16) with boundary values given by (5.17). For 
6 small and 0 < e < 6 define we(t, x, y'), t, x,  y' e R t x R "  x ~I2, by 

(t~ 2 -- A~)w~= O((t-- t o + 6)/e)k + (t, x', y')|  

w , = 0  for t < t o - - 6 - e .  
The asymptotic incoming solution f ( t ,  x, z, 2) decays exponentially in 2 away 

from the projection on R t x R ~  of a small neighborhood of F- [ (qo)  
L 

u (~U expsH~_Ml~(qo))]. Therefore, an integration by parts in a small neighbor- 
/_J 

hood of Xo in f2, yields (cf. formula (5.18)): 

~. ~. dx  dt a(O, x') e i~g~t~''' ~'~- a~,,t~ t3, w,(t, x, Y')l~e~ 

= ~.(. t3,~f(t, x; z, 2)w,(t, x, y ' ) l ~ o d t d x '  + O(e-C~). (5.23) 

Since for t > t o - 6 + e  or xe I2  

(02 - A~) [K +(t, x, y ' ) -  w,(t, x, y')] = 0, 

and K § and w, have no singularities for t < 0, we deduce from the strict convexity 
of OI2 that, for t > t o -  6 + e, we have 

p(t; Y'o, rl'o) (~ SS [(K + -- w~)l~ot~ +] 
(5.24) 

p(t; Y'o, rl'o) q~ SS  [ t ~ n ~ ( K  + - -  W~)lx~ot~§ ].  
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Therefore in the left hand side of (5.23), we can replace d,w, by k+(t, x', y'). Since 

w,l~o~ = T I(O, k § ), 

the relation 

k+el3+,to for t < t  o 

implies that w,{x~0~ is microlocally Gevrey 3 with weight 1#+o(1) near 
p ( t o -  60, Y'o, rl'o), with o(1) going to zero with e (use Lemma 4.2). From (5.24), we 
deduce that w, is microlocally zero near the points p(t; Y'o, rfo) if t > t o - 6 o  + e. To 
conclude the proof, we estimate O , f ( t , x ' , z , 2 )  for z near zl=noxl(q(o")),  t near 
t o - 6 o  and x' near ;('(t o -  60; y~, -q~). Using (5.19) and (5.20), we obtain: 

e i2e  1(z)63 n f (s, y', z, 2) = e ~'~'e~(s' y ' '  z) - ~,,/3w(s, y', z)~(s, y' ,  z, ,~). 

In the right hand side, ~(s, y', z) denotes the holomorphic phase which describes 
the lagrangian manifold 

(Z~|  , - a , -  r/'); z = [~'1, or= --Iq'l] �9 

lp is given by integrating the one-form ei~/62 - 1/3 j from ~ to fl along a leaf of G ~ 
where ct and fl are given by 

= (z,  ~'~(s, y', z ) ) ,  p = (s, y',  - ~' , , , (s ,  y', z))  

with an implicit identification by the isomorphism Z~ |  The symbol or(s, y', z, 2) 
is C ~' and classical with respect to 21/3. To complete the proof, one estimates the 
right hand side of(5.23). This is done using the fact that w, is microlocally Gevrey 3 
with weight Re ~ + o(1) near the point p(to - 6; Yo, r/o) and the inversion formula for 
the F.B.I. transform (cf. Fig. 2). [ ]  

Fig. 2 

2E I 

/ 

I , P(to,y~,q~ ) | (t;,Xo) 
~ [  .................... t O 

. . . . . . . . . . . . . . . . . . .  to-6 o 

~ " '~  
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Lemma 5.3. With notations from Lemma 5.2, we suppose that f is V § 3 on V + 
and microlocally Gevrey 3 with weight m' at Po with m'(po)> m(po). Let F o C V § be 
the bicharacteristic through Po. Then there is a weight m"> m such that f is 
microlocally Gevrey 3 on F o with weight m". 

Proof. Since the Definition 5.2 does not depend on the F.B.I. transform choosen, 
we can work in the standard setting: 

z=(z',z"), qg=(Imz)2/2, V + = {Imz'=O}, q~v=(Imz")2/2, 

F o = {(z', O)llmz' = 0}. 

We consider a real C ~ weight function m(z', z") pluriharmonic with respect to z'. 
Let f (z;  2) be a holomorphic function which satisfies the two estimates 

Ve > O, 3C~, If(z, 2)1 < C, e ~'(lmz'')2/2 - 2 ' / 3 m ( z "  z " ) +  s '/3 , 

For  
Izl < ~0, I f(z ,  2)1 < e 2(Imz)2/2-C~ with Co > m(0, 0). 

The maximum principle implies the existence of two positive constants Q~ > 0 
and C1 >m(0,0), such that: 

If(z, 2)1 < e 2(Imz'')2/2 -c"~1/3 ~/z, Iz[ ~ Ol" 

Let G(z', z") be a function holomorphic with respect to z' which satisfies ReG = m. 
Let F be the function 

F(z', z", 2) = f (z ' ,  z"; 2) e 21/3G(z'' z"). 

Then, 

Ve > 0, 3C,, IFI <= Ce e xtlmz'')2/2 + ~'~'/3, (5.25) 

and 

[Fl<=e ~~ with C2~>0 for Izl<oz.  (5.26) 

Since F is holomorphic with respect to the variable z' a second application of the 
maximum principle shows that (5.25) and (5.26) suffice to complete the proof  of the 
Lemma 4.3. [ ]  

The next proposit ion passing from local to global in time is a major step in our  
proof. 

3 Proposition 5.3. For any positive t the kernel k + belongs to the class I a+ ~. 

Proof. We have to show that k § belongs to the class 3 Ia+,~ near the points 
p(t o; y', rl' ), t > O, (y', rf) ~ T'at2. 

Near p(t; Yo, qo), t < to, we have k + = k +' 1 + k +' 2 where k +' 2 is microlocally 
Gevrey 3 with weight m > Reap and k +' ~ has a representation as in (3.6). From the 
definitions o f k  § I" 1, we see that k § satisfies the hypothesis of the Proposit ion 4.1 
and that 1" l(k +)= 0 microlocally near A for t > 0 so if ~+ is the symbol of k L + we 
have 

~1(~+)___0. 
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From Proposit ion 4.2, we deduce that the formal operator  -~1 has simple 
characteristics on V § (it is analytic-classical with large parameter 21/3 instead of 2), 
therefore ~§ can be extended to a neighborhood of to and therefore we may assume 
that k § 1 is also defined in a neighborhood of to. By Lemma 5.2, k § is V+.m.p.G 3 

t t 3 near p(to; yo, t/o). Since k +'~ belongs to IA+,~, it is also V.m.p.G 3 near the same 
point. Therefore, the same property holds for r = k - k  4, 

Applying Lemma 5.3 to r completes the proof of Proposit ion 5.3. [ ]  

Remark 5.3. Except for the formula (2.13), where they are used to reduce the 
problem to dr2, the proof  of the Proposit ion 5.3 is the only place where the 
operators "ff~ play an essential role. 

6. Proof of the Theorem 3 

We recall that Tr(t) is for t > 0  a C ~ function, given by the formulas (2.12), (2.13): 

- Tr(t) = 2 (t3/0t) ~ B(t, x, x)dx 

with B(t, x, y) given by 

B( t , x , y )=  ~ ds ~ T 2 ( t - s , x , z ) k + ( s , z , y ) d z .  
- o o  Of 1 

Since we have proven, in Proposit ion 5.2, that k § belongs to 13 in t > 0 ,  we A,~ 
deduce from Proposit ion 4.1 that in t > 0, Ix-Yl < t 

SS(B) C A (6.1) 

and 

B ~ 13. ~. (6.2) 

Choose e so that { I t -  T[ < e} contains only T from the length spectrum of Ol2. We 
deduce from (4.2), and part  (i) of Theorem 3 that in a neighborhood of t = T we 
that we have. 

SS(Tr(t)) C {(t, x), 3(x, O, (t, z, x, 4, x, - 4) ~ A} 

and this proves part  (ii). 
Now suppose that y is a closed geodesic of length T o which satisfies the 

hypothesis of part  (iii). We use the arc length s as a parameter  on 7. The lift of 7 in 
T*(Of2) is the union of the two bicharacteristics curves 

F • = {x = ~(s), 4 = +- k(d~,/ds), k > 0}. 

Proposition 6.1. For t near To, one has Tr(t)eI3ao.~o with 

To 

A0 = T~o(R); ~oo(To, 0 = 1~1"3 einSign(O/6 2-1/30~ J Q2/a(s)ds 
0 
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in addition, microlocally near (To, + 1), one has 

oo 

Tr(t) = S ei(t- TO)-- wo(To. O a(z)dz + r(t), (6.3) 
1 

where a is an analytic symbol in 2-1/3 of degree zero and r(t) is microlocally Gevrey 3 
with weight strictly greater than RelPo(To, z) near (T o, + 1). 

Proof. Since Tr(t) is real, it is enough to consider the case z > 0. Furthermore, for 
any (x, 4) 6 F • one has ~(T, x, 4) = ~0o(T, I~l). Since ? is non degenerate and since To 
is isolated, the fixed points of the mapping 

e x p -  ZoH{r : T*~O\O~T*~f2\O 

are the points of F • and these fixed points are clean in the sense of [D.G.]. 
Therefore the principal part of the right hand side of (2.12) can be computed, for 
(t, ~) near (T, 1), by the classical method of I-D.G.], IC.], provided the computation 
of (7.5) in [D.G.] is replaced by the following lemma. 

Lemma 6.1. Let f (s, x) be an analytic function defined for s ~ S 1 and x e R p, Ixl < r 
and let l(s, x) be an analytic function which satisfies 

l(s, O) = C te ~- l o . 

Suppose that f satisfies 

Re f ( s , x )>O for Ixl~:O,f(s,O)=-O, IZf(s,O)--O. (6.4) 

f is transversally non degenerate on S '  x {0}. (6.5) 

Then, for any analytic symbol, a(s, x, 2), classical in 2 t/3 and of degree d, the integral 

Ia(2) --- s, • ~Sllx <=r} e-  ~y(s,x)- z,,,~.X) a(s, x, 2)dsdx , 

is equal to e-XV~t~ where b(2) is an analytic symbol, classical in ~1/3, of degree 
d-p~2. Furthermore, the principal symbol is given by 

b~ = (2n) p/2 ~, O(s) a~ O) ds, O(s) -- (det f " ( s ,  0))- 1/2, 

where the square root is chosen to converge to 1 when u goes to zero in the homotopy 

u-,(1 -u)ld + uJ~'~. 

The proof of this lemma, using the Morse lemma and the method of steepest 
descent is ommitted. Proposition 6.1 is a straightforward consequence. [ ]  

Proposition 6.2. The principal part ao of the symbol a(z) in (6.3) is not equal to zero. 

Proof. The principal symbol ao is the sum of two terms ao = a~- + a o, where ao ~ 
corresponds to the contribution of F• We know that for t > 0 the kernel k + (t, x, y) 
belongs to I~,~. We denote by k +' ~ x, 0 the leading term of its symbol (which is of 
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degree 1), when it is written in the form (4.11). 

k + (t, x, y) ~ f e~t" ~' r, ~)- .,, ~, r, r (t, x, r d~, 

with phase q~ defined by 

Ot~o=O(x,x, Otp/Ox), q g ( O , x , y ) = ( x - y ) . ~ .  

From Proposit ion 5.1, we deduce that the mapping t ~ k  +' ~ x, r can be extended 
to t = 0  and that we have k+'~ ~)ei lR*.  

Since we have, for t > 0, I"1k = 0, Proposition 4.2 (and in particular the formula 
(4.24)) implies that k +' 0 is constant along the geodesic flow. Finally, using formula 
(4.24), B = T  2. k and the method of [D.G.] for the computat ion of the principal 
symbol of the function B = f B(t, x, x)dx, yields a~ = a + i "~, where ct • denote two 
non zero complex numbers with the same argument while a+ are the Maslov 
indices related to the curves F • The proof is therefore a consequence of the 
equality a + = a -  which is proved in the Appendix 1. [ ]  

We are now ready to prove the final assertion (2.5) of Theorem 3. If (2.5) were 
not true there would exist e > 0 and r/> 0 such that one has both: 

1-~ sup 1 d"Tr(t) x/3. 
,~oo , - r  <~ 3n! dt" <=(C'T+~)- t  

and 

li-'m s up  ~ d"r(t) 1/3. 
n~oo It-Tl<e dt n < ( C r T + e ) - 1  

Choose zeGevrey2(R),  SuppxC { I t -  Zol <e}, Z~ 1 near T o. Then f ( t ) - Z ( t ) T r ( t )  
satisfies 

}ira-- sup 3nil d"f(t)dff ,/3. =<(CrT+e) - ' .  (6.6) 

In addition, for z e r near To- i ,  one has with a C > 0, 

jT(z, 2) _-__ ~e-Z(z-t)2/2f(t)dt= ~ e-a(z-t?/2Tr(t)dt+O(e-Ca). 
]To-e, To+e[ 

The integral defining jr is equal to 

and using (6.6), 

(2n2)- 1/21 ei'z -r2/2af(z) dz 

If(01 ~ A((3n)!)/(z"(C o T o + ?/)3n) 

which in turn implies 

If(Zo, 2) e -  a/21 < A " e -  az,/3, fl > C o To . (6.7) 
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On the other hand, from (6.3), one has as 2~oo  

e-~/2f(z ,  2) e 'v/3'p~176 ~ a o 4=0. (6.8) 

Since Re~Po(To,/) = CoTo, the contradiction between (6.7) and (6.8) completes the 
proof. []  

Appendix 1 

Proposition 1. Let  F be a closed geodesic on M = c9s and let 

F + = {x = 7(s), ~ = +_ dT/ds} C T*(M) 

be the two bicharacteristics projecting on F, parametrised by the arclength. Then the 
Maslov indices a+ and a_ related to the curves F + and F -  coincide. 

Proof. Starting from x o = 7(0)= 7(T), we define the phase function: q~ + (x, y, r t) by 
the eiconal equation: 

~,~o = I~o'l (A.1) 

and the initial condition: 

,p(x, y, r 0) = ( x -  y). r (a.2) 

The Eq. (A.1) is defined in the complementary of the focal points (x l, x= . . . . .  XN) 
which are of finite number. At each focal point xp, Vplr/2 is added to the phase ~o. 
Since the Maslov index is an integer, it is enough to prove the result for a sligthly 
perturbed hamiltonian on aM. With this perturbation, we may assume that y(T) is 
not a focal point. We denote by ~pp the phase on the arc (Xp, Xp+ 1). ~Pp is a real non 
degenerate phase; and from 0 to T, microlocally near (?(0), ?'(0)), the identity 

S el(x- r)r d~, 

is changed into the operator 

i~1 + v2 + . . . . .  ~ e i(~'~(x" r Y" r b + d~, 

where b+, constructed by the transport equation, is a real positive symbol. 
Now we notice that, since ~oN(x, r T) is a real non degenerate phase, a 

microlocal identity is given by 

T = ~ e l(~(x' o -  ~(y, r d~, (A.3) 

microlocally near (7(0)=7(T), 7'(0)=7'(T)), where b is a real positive symbol. We 
use this form of the identity to construct a microlocal parametrix on F - ,  starting 
from (7(0), -7'(0)), this changes the exponential appearing in T into its conjugate, 

T = ~ e i~N(r' r ~(x,  r b d~. 
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Reversing the time, we see that passing through any focal point xp introduces a 
factor i -vp. Therefore 

e -  i~Ntx, ~) = ei~(x. ~) 

is changed into i v' + v2 + .. . .  p e -  ixr 
Thus we have shown that on F § the identity is changed into: 

T+ = i~1 § ~2 + .... "~ e i~Ntx'O-irgb +d~ (A.4) 

and that on F - ,  it is changed into: 

T -  = i ~ + ~ + .... ~ ~ e i~N(y" r - ixr b_ d~ , (A.5) 

Taking x = y in the right hand side of (A.4) and (A.5) and integrating over x gives 
the result. 

Appendix 2 

In this appendix, we briefly discuss the genericity of the geometric hypothesis of 
Theorem 2. Denote M = 0(9, S*M = T * M \ ( 9 / R §  the cosphere bundle of M and ~o t 
the geodesic flow on S*M. 

Proposition 1. The condition of  Theorem 2 is open in the sense that if  ~ is a closed 
geodesic satisfying the hypotheses (1), (2) of  Theorem 2, then all C ~ obstacles C a 
close to cq(9 possess a closed geodesic 7 close to 7 satisfying the same conditions. 

Proposition 2. The conditions of  Theorem 2 are satisfied for a dense set of  M in the 
following sense. Any M has a closed geodesic ~ and for any such ~ and any k > 4 there 
are analytic manifolds arbitrarily close to M in the C k topology with a closed geodesic 
close to ), satisfying the conditions of  Theorem 2. 

Sketch of  Proof  of  Proposition 1. Let y• be the two liftings ofy to S*M. Since 1 is a 
simple eigenvalue of the differential of the Poincar6 map; a perturbat ion theorem 
of Poincar6 implies that nearby obstacles have nearby dosed  geodesics ~ with 
period and first return map close to those of y. In addition, there are no other 
geodesics o f / ~  which are close to ~. 

On the other hand, compactness implies that given an open neighborhood of 
~+u~_ in S ' M ,  there is a 3 > 0  so that [qgr(p)-p[>6 for p outside that 
neighborhood and thus for M close to M there are no closed geodesics of length 
near T which lie close to this neighborhood. Combining the above two observa- 
tions yields the proposition. [ ]  

Sketch of  proof o f  Proposition 2. It  is well known that by a small perturbation of M 
we can insure that the non degeneracy condition (2) is satisfied. We therefore 
suppose that (2) is satisfied and consider (1). 

We construct perturbed analytic manifolds M§ as follows. For  f e  C~176 
small in C 4 norm, one defines 

M f  = {x + f (x )n(x) :  x e M}  , (A.6) 
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where n(x) is the outward unit normal to M. We consider those f such that 

Vx ~ y, Vial < 2, D~f(x) = 0. (A.7) 

Since f ly = 0, one sees that 7 e MI.  Since dflr = 0, we see that for x e 7, n(x) is also 
normal to My. Since V is geodesic in M, the osculating plane of 7 is spanned by its 
tangent and n(x). As n is also the normal to My, ~ is also geodesic in My, closed and 
of length T. Since D2flv = 0, we see that 7 satisfies the non degeneracy condition (2) 
of Theorem 2. 

We denote q~{ the geodesic flow in S*M I. We identify S 'My and S*M by the 
parametrization (A.6). Let B be the closed subspace of Ck(M) consisting of 
functions satisfying (A.7), and let B~= { f e B :  Ilflf ~e}. 

We choose e so small that M y is a regular convex obstacle satisfying condition 
(1) for all f eB , .  We will show that  there exist arbitrarily small f ~  B, such that M y 
also satisfies condition (1). 

As in the proof  of Proposi t ion 1, there is a neighborhood r of 7 + u~_ in S'M, 
and a 6 > 0  such that for e sufficiently small, f~B~, p~&o, [t--Tl<6, we have 
Iq~f(p)-pl>~. We must find arbitrarily small f such that this is true for 
peS*MS\~o=-K with, perhaps, a smaller ft. 

The crucial step is to show that for any q e K, the point r can be perturbed 
in any direction along S*M by suitable small f. 

Lemma. For q ~ K and any vector u tangent to S* M at r there is an f ~ B such 
that 

d~q~rS(q)l~=o=U. (4) 

Assuming the lemma, we complete the proof  of Proposi t ion 2. Since K is 
compact, we can find a finite dimensional linear subspace F of B with the property 
that for any q e K  the differential at f = 0  of the map B~f--*qg~q)~S*M is 
surjective. Thus, shrinking e if necessary, we see that in S* x S* x F the subvarieties 

A={(q ,q , f ) :q~K, f~B~nF}  and C={(q,q)~q) , f ) :q~K,f~B~nF},  

with d imA = d imC = dimS* + d i m F  intersect transversally. Thus either A nC is 
empty or  AnC is a submanifold of dimension equal to d imF.  In the first case, 
y ~ M = M 0 satisfies the hypotheses of Theorem 2. In the second case, we consider 
the projection n of A n C  on F. 

If (q, q , f )  ~ A c~C, then the same is true of (qgfq, rpfq, f )  so if 6q is the tangent to 
the geodesic q~{(q) at t = 0 the (6q, 6q, 0) is tangent to A n C. Thus ~z.(Ttq ' ~. y), (An C)) 
has dimension at most d i m F -  1 in TI(F). The theorem of Sard implies that z(A 
nC) is nowhere dense in F. Thus, we may  choose f e F  arbitrari ly small so that f 
r z(Ac~C). For  such f, y ~ M I satisfies condition (A.2) of Theorem 2. It remains to 
prove the lemma. 

Sketch of Proof of Lemma. Fix q ~ K  and let ~,a=tp~(q)~S*M. In local 
coordinates a product  of balls in R ~, lYc-xl<r, lu-al<r,  defines a small 
neighborhood of ~, I/. We will construct f with support  in B(r), the subset of B 
consisting of functions supported in Ix--xl  < r. We must show that  the differential 
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Fig. 3 

of the map  

B(r) ~ f --, qalr(q) E S* M 

is surjective. It suffices to show that there is an rl e ]0, r] and C > 0 such that for all 
x,u with I x - ~ l < r l ,  lu--~l<r~, there is an f e B ( r )  with 

qJr(q)=(x,u), Ilfll < C ( I x -  ~ l+lu-al ) .  

Choose discs in M as in Fig. 3. We will construct f with support in AwB. 
From (x, u) as above trace the backward geodesic till it intersects OB • l u -  f~l < r at 
(xl, ul). Let Xo, Uo be the point in ~ot(q) where 7 enters B. Choose a smooth curve on 
M near 7 joining x o to xl  and with cotangent passing from Uo to u r  For  any k this 
can be done with the C k distance to 7 being O( l (x-  ~, u -  t~)l). Choose f of the same 
order, supported in B so that this curve is a geodesic to M. To do this, one needs 
only deform M so that the normal to M is transformed to the principal normal of 
the curve. Having done this, the geodesic on the deformed M arrives at x, u in time 

with 7 ' -  T =  O(lx-~ ,  u -  t~l). Next deform M by choosing f in A so as to speed 
up or slow down the time spent through A to compensate for the time lag. Here it is 
crucial that M is strictly convex in A. The construction is complete. [ ]  
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Note added in proof 

The authors want to thank Prof. V. Petkov for having pointed to them the following fact: The first 
indication of a polynomial bound (in the spirit of inequality (1.4)) for the resolvent set seems due Babic 
and Grigor'eva (cf. V. M. Babic and N. S. Grigor'eva: The analytic continuation of the resolvent of the 
exterior three dimensional problem for the Laplace operator to second sheet Funkcional Analysis i 
Prilozon. 8. (1974) n ~ 1, 71-74). 


