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w I. Introduction 

In this note we define a global, R-valued invariant of a compact, strictly pseudo- 
convex 3-dimensional CR-manifold M whose holomorphic tangent bundle is 
trivial. The invariant arises as the evaluation of a deRham cohomology class 
on the fundamental class of the manifold. To construct the relevant form, we 
start with the CR structure bundle Y over M (see [Ch-Mo],  whose notation 
we follow). The form is a secondary characteristic form of this structure. By 
fixing a contact form and coframe, i.e., a section of Y, we obtain a form on 
M. Surprisingly, this form is well-defined up to an exact term, and thus its 
cohomology class is well-defined in H 3 (M, R). 

Our motivation for studying this invariant was its analogy with the R/Z 
secondary characteristic number associated by Chern and Simons to the confor- 
real class of a Riemannian 3-manifold N, which provides an obstruction to 
the conformal immersion of N in R 4. Though several formal analogies to the 
conformal case are valid for our invariant, this one does not hold up: specifically, 
in w below, we calculate examples which show that the CR invariant can 
take on any positive real value for hypersurfaces embedded in C 2. It is also 
clear that the invariant is neither a homotopy nor concordance invariant, but 
depends in an elusive way on the CR structure. Our inspiration came from 
the seminal papers of Chern and Moser and Chern and Simons. The idea of 
looking at secondary characteristic forms of higher order geometric structures 
in general appears in [Ko-Oc],  though with a different intention. 

In w 2 we will quickly review the definition of a CR structure, the construction 
of y and its reduction to a pseudo-hermitian structure ~ ld Webster [-We]. 

In w 3 we define the invariant and prove that it is, in fact, R-valued, and 
not R/Z-valued as in the Riemannian case. We also prove that if the invariant 
is stationary as a function of the CR structure, then M is locally CR equivalent 
to the standard three sphere in C 2, paralleling a result of Chern and Simons. 

As noted already, w 4 is devoted to the calculation of several examples. 

* Research partially supported by the National Science Foundation, grants DMS84-01978 (DB) 
and DMS 86-00338 (CE) 
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The bulk of the work on invariants of CR structures has been directed 
towards the construction of local invariants, though Donelly and S.S.-T. Yau 
have considered global invariants. Donelly's invariant is analogous to the eta 
invariant; it is a homotopy invariant, and vanishes mod Q for CR manifolds 
that locally bound complex varieties, cf. [Do].  Yau related the dimension of 
Kohn-Rossi cohomology groups of boundaries of complex varieties to the 
singularites of the variety, cf. [Y]. 

As will be clear from the construction, many such invariants can be defined 
for non-degenerate CR-structures on manifolds of any odd dimension, though 
we have not checked yet whether, e.g., the classes so defined could be R-valued. 
There is a classifying space approach to these constructions which indicates 
that these classes are markedly different from their Riemannian counterparts. 
This will be discussed in a later publication. 

For  a structure induced from an immersion in a complex manifold, the 
differential form defining the cohomology class depends on four derivatives of 
the immersion. This is of interest in light of the classical result of E. Cartan 
that a 3-dimensional CR manifold has no local invariants of derivative order 
less than six, cf. [Ch-Mo].  

Acknowledgements. The second named author would like to thank J.J. Kohn, Dave Barrett, John 
D'Angelo and Robin Graham for introducing him to CR geometry, and generously sharing their 
various personal outlooks on the subject with him. We would also like to thank Robert Bryant 
and John Scherk for pointing out corrections to the first draft of this paper. 

w 2. Background 

A CR structure on a 2 n +  I-dimensional manifold M is defined by choosing 
an n-dimensional subbundle Ta'~ of the complexified tangent bundle of M. 
This is the bundle of holomorphic tangent spaces, and must have the following 
properties: 

1) T I' ~ M c~-T--fT~ --- (0} 
2) If X, Yare two sections of TI '~ then so is [X, Y]. 

If 0 is a real one-form annihilating TI '~  0 ) ~ F 0 ~ ,  then the structure is strictly 

pseudoconvex if dO defines a positive definite pairing of TI '~  with ~1-m~. 
The form 0 is called a contact form; dO is the Levi form. If {XI . . . . .  Xn} is 
a local frame field for TI"~ and {01, ..., 0,} is a dual coframe field, then 
property 2) implies that: 

dO=ig~O~ ^ O~ +O A dp (2.1) 

where 0 ~ = ~  and ~b is a real one form; g ~ = g ~ .  If the structure is strictly 
pseudoconvex, then g ~  is positive definite. In [Ch-Mo] the equivalence problem 
for non-degenerate CR structures is solved. We will quickly review the results 
for the special case of a 3-dimensional CR manifold, already treated by E. 
Cartan [C]. 

In this case (2.1) reduces to: 

dO=igl i  O l ^ Oi +O ^ qk (2.l') 
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I. The CR structure bundle 

As there is no canonical  choice of  contac t  form one is led to in t roduce the 
trivial line bundle E ~ M defined by 

M x R~(p, t) ---*(etOp, p ) e E c  T*M.  

Let m denote  the tautological  one form on E. The  C R  structure  bundle Y 
over E is then defined as the set of  coframes  (m, o n, m i, ~b) such that :  

d m = i g l i  On A mi -~-m A ~. 

The " m a t r i x "  gn i is fixed, we will hencefor th  take it to be 1. The  forms co n, 
o i are in the ideal genera ted by 0 n and 0 i pulled back  f rom T* M to T* E. 
The structure g roup  of  Y is the g roup  of  matr ices:  

v I e i~ 0 (2.2) 
0 e -i~ 

iei~vi _ i e - i ~ v  n 

where s and ~ are real. In Y one can int roduce connect ion  forms {~b~, 41, 
0} such that :  

d o '  =691 A (~b~ +60 A 41 (2.3) 
and 

dc/)=imi A ~b i +i~b i Am i + m  A ~. (2.4) 

These forms are normal ized  by 

- q~l - 4 i  = 0. (2.5) 

To determine comple te ly  the connect ion  forms one int roduces  var ious  curva ture  
forms 

and 

O1 =d@l -iml A 0 n + 2 i {,bn A m n + 1/2 0 A m 

=SI~ co n Am1+ V?I O n A m-- Vdi m i Am (2.6) 

�9 I =dq6 n -q~ A ~b I -{b I A ~bl + i/2 0 A O} I 

=VxIim IAmi+Plm n Am+Qlm i Am. 

The conditions $I i i i = V1 i i = PI i = 0 uniquely determine the connection forms. 
With these forms one can define an ~u(2, 1)-valued Car t an  connect ion form 
on y via: 

//- 1/3(41 + 4) ml 2m 
~ =  [ - - iCx  1/3(2~bl-q~) 2 i r a 1  | (2.7) 

\ -- 1/4~0 1/2 ~b' 1 / 3 ( r  I ~ ) /  
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The curvature of this connection is then: 

H = d n + n ^ n =  
- 1/3 gs~ 0 0 ) 

- i ~  2/3~]  0 

--  1 /4  ~u 1/2  ~ i  _ 1/3 ~b~ 

In three dimensions this reduces to: 

(2.8) 

I ~ ~ H =  - - i ~  0 . (2.8') 
\ -  1/47 ~ 1 /2~ '  

2. Pseudo-Hermitian structures 

In [We] a reduction of the structure group of Y to U(1) is effected (for three- 
dimensional CR manifolds) by fixing a contact form 0 and requiring q~ = 0 in 
(2.1'). We consider coframes for TI '~  {01, 0 i} so that 

dO=iO n ̂  0 i. (2.9) 

Webster defines connection and torsion forms via the equations: 

dO 1 =0  l ^ 0 1 + 0 ^ z  1 (2.10) 
normalized by: 

01+01=0 / 
and (2.11) 

z 1 ̂  0 i =0.J 

We will call the bundle of such coframes X ---} M. The curvature of this connection 
is: 

f2~ =dO~ = R  0 a ̂  0 i + WO 1 ̂  O -  WO i/x O. (2.12) 

The choice of 0 defines a section of the bundle E ~ M. The bundle Y over 
this section can be regarded as a vector bundle over X. Webster included X 
into Y by setting: 

dPl=Ol +i /4RO } 

dPl=zl +i /4ROl +EO I (2.13) 

O= o+i(Eo'-Eob.] 
The coefficient E is determined from q,l =0.  The equation for ~, is a correction 
of Eq. (3.3) in [We] where it is incorrectly asserted that ff can be made to 
vanish. The inclusion of X into Y above is a homotopy equivalence. Y and 
its connection are biholomorphically invariant, whereas the pseudo-hermitian 
structure is not. Our strategy is to define a form on Y and then via (2.13) 
pull it down to X and ultimately to M. 
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w 3. The global invariant 

Since the curvature/7 of rc is trace-free, the second Chern form of H is given 

by 1 
C2(/-/)=8~2 tr(H ^ H). 

The usual arguments show that C2( / ' / )  is a closed, basic form (with respect 
to E). Moreover, one easily shows: 

Lemma 3.1. For I1 and 7r given by (2.7) and (2.8') we have 

where 
C2 (H) = d T C2 (Tr) 

1 
TC2(re) = w - v  [tr (re ̂ / / ) +  1/3 tr0r ^ rc ̂  r0]. 

~57Z- 

(3.1) 

(3.2) 

1 
d TC2(n) = ~ [tr(d~z ^ H) - tr(n ^ dH) + tr (d~r ̂  lr ̂  ~z)] 

which, in virtue of 1) and 2), 

1 
- -  8 7g 2 [tr(drc A H)--tr(~ A 7r ̂  rr Alr)]. 

Hence, from (2.8), and 2) and 3) above it follows that: 

1 
d TC2(rc) = ~ 2  tr(/-/A H). 

As a consequence of the lemma we see that TC2(~z  ) defines a closed, biholo- 
morphicaUy invariant three form on Y If Y is homotopically equivalent to M 
• S t, one can hope to pull this closed form down to M. A priori the cohomology 

Moreover, C z (I1)-  O. 

The arguments are standard; for the convenience of the reader we include 
a proof. 

Proof of Lemma 3.1. The last assertion, that the form C2 (H) vanishes identically 
follows easily from the lower triangular form of H (of. (2.8') above; note that, 
as d imE=4 ,  this is not the tautology it usually is). To prove (3.1) we use the 
facts 

1) d F l = n ^ n - n ^ I I  
2) tr(Tr ̂ / 1  ^ 7r) = tr(zr ^ zr ̂ / / )  = 0 
3) tr(~ ^ 4 ) = ( - 1 )  kl tr(O ^ ~), if ~ is a matrix of k-forms and ~ is a matrix 

of/-forms. 
Assertion 1) is the Bianchi identity (differentiate (2.8)); assertion 2) follows by 
differentiating tr(H ^ lr)=0, which in turn follows from (2.8') and the fact that 
0) A I P =  (.oi A t~l = 0. 

To prove the lemma, we calculate that: 
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class of TC2(It ) may be affected by the circle factor. This turns out not to 
be the case. Using (2.7) one easily shows that along a section of Y where q5 
restricts to zero we have: 

TC2(x)=8-1iE(o)l  AC, bi +coi ^ 4 ) l ) ^ ~ l i - - 2 o ) ^ ( a l  ^r  (3.3) 

We have used the relation d 0 = 2 i q 9  A ~b i modo~, which is a consequence of 
(2.8) and the trace conditions on/7,  and the fact, once again, that tr(/7 ^ n)=0. 

To pull this form down to X, the pseudo-hermitian structure bundle, we 
need to determine the coefficient E appearing in (2.13); the coefficient G turns 
out to be unimportant here. Solving ~{ =0  with q~], ~b I and ~b given by (2.13), 
we obtain: 

E = R i _F 2 i Vl/ 
6 3 (3.5) 

where 
d R = R I  OI + RIOi + Ro 0 

for {0, 01, 0 i} an element of X. With these formulae we can re-express TC2(z) 
in terms of the pseudo-hermitian data: 

i 
7"C2 (~) = ~ [(i/2 R 0 i ^ 01 + E 01 A 0 "[- E 0 ~ A 0) A 0{ - -  2 0 ^ z I ^ z i] (3.6) 

Formula (3.6) defines 7"C2(r0 as a global form on X. To complete the construc- 
tion we must show that, up to an exact form TC2(=) defines a unique form 
on M. Inserting (3.5) into (3.6) we obtain: 

i /2RO i ^ 0  I +EO 1 ̂ O + E O  ~ ̂ 0  

=- - i / 2 [RO 1 ̂ Oi  + W O  1 ̂ O - V r  i ^0]  

+ 1/6 [(R1 - i W )  01 +(Ri  + i if') O i] ^ 0. 

From Eqs. (2.9), (2.10) and (2.12) we see this equals: 

- 2 i/3 dOl + 1/6 d(g  0) .  (3.7) 

The local form can therefore be rewritten: 

i 
]~C2(n) = ~ - ~  2 I { -  2 i/3 dO{ + 1/6d(RO)} ^ O{ - 2 0  ^ z 1 ̂  zi].  

From (3.8) we easily see that ]~C2(~) defines a unique element in Ha(M, R): 
fix another coframe {0, 81, 0a} with connection and torsion forms {~I, ~1, ?~}. 
If 01 = e ~= ~rl, then 

O{=~{- ido: ,  and "cl=ei~'? I. 

Thus, in terms of the new data we have: 



A global invariant for three dimensional CR-manifolds 339 

1 
C2 (Tt) = 8 ~  [{ - 2 i/3 d ~ + 1/6 d (R 0)} ^ ~] - 2 0 A ~1 A 

- -  i d {(-- 2 i/3 ~ + i/6 R 0) a d~}].  (3.9) 

From these calculations and the triviality of the holomorphic tangent bundle 
of M it follows that: 

Theorem 3.1. There is a three-form TC2(~t) defined up to an exact form on a 
compact, 3-dimensional, strictly pseudoconvex CR manifold M with trivial holo- 
morphic tangent bundle, such that [TC2(Tt)] =Tt~ [7"C2(7t)] in H3(y,, R). Here ~.] 
denotes the deRham cohomology class of a closed form, and rc r is the projection 
from Y to M. 

Corollary3.2. The evaluation of ~FC2(n) on the fundamental class [M] in 
H3(M, R) is a biholomorphic invariant of the CR structure on M. 

Remarks. 1) By integrating by parts we can obtain a local form defining [TC 2 (rc)] 
that depends on four derivatives of an immersion for a locally embedded M. 
The new form is: 

i F -2 i /3d0~  ^O~+l /6ROAdO~--2OAt  I ^ t i ] + e x a c t .  

A careful check shows that the definition and normalization of 0~ requires 
three derivatives of an immersion, thereby substantiating our claim. 

To simplify the notation, let us set 

~= j" 7~c~(~). 
M 

2) If the holomorphic tangent bundle TI '~  is not trivial, but its k-th tensor 
power is trivial, then X (or Y) admits a k-fold multi-section over M, and one 
may integrate ~ C2 (n) (or T C2 (n)) over the image of this multi-section. Dividing 
this by k extends the definition of the invariant # to M with cl (TI '~  a 
torsion class. If cl(T~'~ is non-trivial in H2(M, R), then the class of TC2(n) 
is, up to a non-trivial constant factor, integral. To see this, note that if g (T 1"~ M) 
is non-trivial in H 2 (M, R), then the Gysin sequence of X over M shows that 
H3(X, R) is spanned by the inverse images in X of two-cycles in M. On such 
a three-cycle, the two base-like forms in the formula above for 7"C2(n) vanish 
identically. There remains the term involving dO~ ^0~. Integrating out 0~ in 
the fiber direction, one is left integrating dO~ over a two-cycle in M. But dO~ 
represents c~ (T 1'~ on M, substantiating the remark. 

We next consider how the invariant /~ behaves under deformation of the 
CR structure on M. We first calculate the first variation of/~ with respect 
to a smooth 1-parameter family of CR structures on M, depending on 
te(-e ,  e)~R. As a result of what has been proved above, we can calculate 
# by calculating the matrix of one forms n on M in any frame {0, 01, 01 } of 

M, and setting ~C2(n) = _ ~ l  tr(n A H + 1/3 n ^ n An). 



340 D.M. Burns and C.L. Epstein 

1 Proposition 3.3. 6 # =  4n  2 uS tr(r? A/-/). 

Proof. Differentiating the definition of #, we get 

8rr2 6 # =  ~ t r (7~A/ - - /+nA/ l+~AnAn)  
M 

(3.10) 

Differentiating the definition of H with respect to t, one gets d~ + ~ A n + n ,', 
---- f/.  Wedging with n and taking traces, one concludes 

tr(n a / I )  = tr(~ AnA n + n  A d ~ + n  A ~ ^ n). (3.11) 

Inserting (3.11) in (3.10) gives 

8 n 2 6 # =  ~ t r ( ~ A H + n ^ d ~ + 2 n A ~ ^ n + ~ r A n A n )  
M 

which by integration by parts and the symmetry of the trace 

= ~ t r ( ~ A H + d n A ~ + 3 n A n A ~ )  
M 

--- --2 ~ t r (~A//) ,  
M 

this last by the definition of H again, since tr(H A n)= 0. 
Since there are no integrability conditions for a CR structure on a three- 

dimensional manifold, it is quite easy to construct deformations of a given CR 
structure on M. We describe one method to do so, though point out that, 
by a theorem of J.W. Gray  [G], this method gives the most general deformation 
of CR structure on M. We fix a smooth function f = f ( x ,  t) defined for (x, t) 
in M x ( - e ,  e ) c M  x R and such that f ( x ,  0 ) - 0  on M. Fix a coframe {0, 01, 0 i} 
on M such that d 0 = i 01 A 0 i on M. Define a new structure for I t[ ~ 1 by declaring 
that the new structure has the same contact form 0, while the new f r : w ~  
is defined by the vanishing of 0 and 01 +fO i. If we define 

0}=(1 -Ifl2) - 1/2(01 +fOi), 

it is easy to check that 
ao=io}^o). 

For  our purposes here, it suffices to consider f of the form f ( x ,  t) = tf(x),  where 
f (x )  is an arbitrary smooth function on M. Then, at t = 0, 

?t r t= * 2i 0 �9 

Taking into account (3.4) above, we get for 6 # at t = 0 in this direction: 

- -4n  2 6#=i[.(fQl +fQ})  0 A 0' A 0 i. 
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Since f is arbitrary, we conclude immediately from this and the Bianchi identity: 

Proposition 3.4. The invariant # is stationary for a CR structure on M if and 
only if the corresponding curvature 1 7 - 0  on M. In particular, if M is simply 
connected, # is stationary if and only if M is CR-equivalent to the unit sphere 
in C 2. 

Remark. These propositions are analogues of Theorem 6.9 and Proposition 6.14 
of [Ch-Si]. It is useful in understanding why several examples of computable 
# in w below seem to give "topological"  answers. 

A calculation similar to that in Proposition 3.3 above gives the second varia- 
tion 6 2/~ directly: 

Proposition 3.5. - 4 n 2 62/~ = S tr (/( ̂  H + ~ ^ d r~ + 2 r~ ̂  ~ ^ n). The first term on 
m 

the right drops out at critical points of #. 

Remarks. 1) One will notice that for several examples where # is calculated 
in w 4 below, it appears to take on an absolute minimum, among the examples 
calculated, at M with 17=0. We have checked that, at highest order terms, 
the second variation is non-negative at the standard structure on the unit sphere. 

2) Consider the exotic contact structures of Lutz ILl  on the three-sphere, 
and a non-degenerate CR structure on the sphere which has such an exotic 
structure as its underlying contact structure. This structure cannot be deformed 
to a CR structure with 17 =0.  To see this, one notes that such a deformation 
would be CR equivalent to the standard sphere, and the underlying contact 
structures would have the same homotopy invariant as the standard structure, 
a contradiction. This last is by Cerf's theorem that the group of orientation 
preserving diffeomorphisms of S a is connected. We do not know whether such 
exotic structures can be embedded as hypersurfaces in C 2. 

w Examples 

In this section we will calculate the invariant /~ for several families of CR- 
manifolds. The first set of examples are locally homogeneous. The form 7"C2 (Tr) 
can thus be calculated simply in terms of a left invariant form on a three- 
dimensional Lie group. There are two especially interesting examples here: the 
structures studied by Rossi in [Ro] on S 3 =SU(2),  and a family of structures 
on a solvable group, some of which cover the boundary of a tube neighborhood 
of the torus ] z J = ] w ] = 1 in C 2. For  the first family, the value of # is minimal 
exactly as the structure is embeddable in C 2. The second family shows that 

is not, however, constant on all embedded perturbations of a given embedded 
hypersurface in C 2. We note here that the hypersurfaces of this second class 
ar~. locally CR-equivalent, but are distinguished globally by the invariant #. 
Se~'eral examples considered here have H = 0  (i.e., are spherical in the sense 
of EBu-Sh]). One of these families is recalculated below in a larger context. 

The second set of examples are based on a calculation for the boundaries 
of Remhardt domains in C 2. This gives a second calculation for the tube neigh- 
borhoods of the torus I zl = I wl = 1 as above, but also shows that Reinhardt 
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perturbations of the standard structure on S aCC 2 will vary the value of #. 
Thus, # is not simply measuring something about the fundamental group of 
an embedded hypersurface (e.g., a holonomy invariant). 

The final set of examples arise as the unit holomorphic tangent bundles 
for metrics of strictly positive or negative Gauss curvature on a compact Rie- 
mann surface. When the curvature of the given metric is constant, one recovers 
some of the spherical examples already encountered in the first set of examples 
above. Here the invariant # takes an interesting form in terms of the curvature 
of the base Riemann surface. One also sees here again the tendency of p to 
minimize at the spherical M (case of constant Gauss curvature). 

I. Local ly  homogeneous  examples  

A. We start with the examples on SU(2), due to E. Cartan [C] and studied 
in the context of non-embeddability by Rossi [Ro].  Let ot, fl, and ~ denote 
a basis of left-invariant one forms on SU(2), with relations: 

dot= - fl ^ 7, d fl = -- T A ot, d ? = -- ot ̂  fl . 

Setting 0 = 7, 01 = 1/V2(fl + i ot), we have: 

d O = i 0 1 ^ O  i, d 0 a = i 0 A 0 1 .  

This choice of 0, 01, describes the usual CR structure on Sa; in terms of the 
usual coordinates (z, w) on C 2, one can identify: 

O= - 2 i ( ~ d z + ~ d w ) ,  01 = ~ / - 2 ( z d w - w d z ) .  

The set of all SU(2)-invariant CR structures is obtained from the construction 
of w 2 with f =  1, i.e., with 

0 1 = ( 1 - t 2 ) - l / 2 ( O l + t O i ) ,  t e ( -  1, 1). 

. .  / l + t 2 \  2t  
To simplify notation in what follows, set c=ctO=|~l,,~__~, s=s(t)=i-2-~. The 

structure equations become 

a0=i0  ^ 0L 

dO: = 0 :  A ( - - i c O ) + O  A ( - - i s )  0~. 

Thus, 01 = -- i c 0; ~1 = _ i s 0:. We calculate that 

aOl=cO,  ^ o 

and therefore R = c. The local form defining # is therefore: 
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7"C2 (rt) = ~ i ( -c2/2 + 2 s 2) 0 A O~ A Oit 

1 1 
16 lr 2 (1 - 3 s z) 0 ^ dO= - 27r ~ (1 - 3 s 2) dVol, 

where dVol denotes the volume form of the unit sphere. Thus , / t=  - ( 1 -  3 s2). 

B. Next we consider two spherical cases on three dimensional Lie groups. First 
we consider the nilpotent case, i.e., the three-dimensional Heisenberg group, 
N. Let c~, fl, ? be basis of left invariant forms with dc~=dfl=0, d?=2CCAfl. 
Set 0=?,  01=~+ifl.  Then dO=iOIAO ~, dO~=O, and so 0~=0, C = 0 .  Thus 
the structure is spherical, and the local form TC2(Tr)~0. On the other hand, 
it is known that there are many discrete subgroups F c N such that M = F \ N  
is compact. For all such M, #=0 .  These M can be interpreted geometrically 
as the unit circle bundle in a positive holomorphic line bundle over a compact 
Riemann surface of genus 1, this bundle equipped with a special hermitian 
metric (cf. [Bu-Sh]). 

We next consider a structure on SL(2, R). We take a basis of the left invariant 

one froms co, fl, 7 such that dcc=2yAfl, dfl=--2?AC~, dT=2ccAfl. (This basis 
\ 

is dual to the basis (~ ~), (~ _~ ) ,  and ( _ ~  ~ ) o f  ~I(2, R) . )Set  0=27,  0 x 

=V~2(~+ifl). Then dO=iOIAO i, and dOt=--iOAOL Comparing this with 
example 3 below, we see that this is the CR structure on the unit holomorphic 
tangent bundle of a Riemann surface of constant curvature -- 1. We can also 
consider as above the deformations 01=(1-tz)-~/z(O~+tOi). The structure 
equations are identical up to a sign to those in example 1. A above. One finds 

1 
7"C2 (rr)= - l ~ z 2  (1 - 3 s 2) 0 A dO. 

The evaluation of/~ for s = 0 is carried out in example 3. 

C. We next consider the case of solvable three-dimensional G. We limit ourselves 
to the following example admitting a cocompact discrete subgroup. We take 
the group G to be the affine Euclidean group on R2: 

/ / 
0 

We take a basis of left invariant one-forms o~=dp, f l = c o s p d x - s i n p d y ,  ? 
sin p d x + cos p d y. Thus: 

dc~= 0, d f l=  - - ~ ^ ? ,  dT=c~ ̂  ft. 
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Set 0=27 ,  0 l = e + i f l ,  so that dO=iO 1 AO i, and 

dO 1 =01 A(--i/40)+O ^(i/40i), 

SO that 01=-i/40, zl=i/40i. From this one calculates easily ~C2(z ) 
= 3/256 rr 2 i 0 A 01 A 0 i. Let Lbe  a lattice subgroup of G, i.e., the set of all transla- 
tions of R 2 by elements in a lattice L in R 2, and let M = L\G. Then for this 
M,/~ = 3/64 rr Area(L\R2).  For L with orthogonal generators, M can be embed- 
ded as a (Reinhardt) tube neighborhood of I zl=lwl = 1 in C 2. We thus see 
that there is no possible integrability condition on # for embedded hypersurfaces. 

Remark. The deformed structures defined by 0t ~ in 1.A and 1.B above are realized 
geometrically by two-sheeted covers of the intersection of the SO(3)- (resp., 
S0(2, 1)-) invariant quadric in C 3 with the level sets of the corresponding invar- 
iant hermitian form on C 3. They can also be interpreted as the level sets of 
the metric form in the natural complex structure on the real tangent bundle 
of a rank one symmetric space. 

2. Reinhardt domains 

A Reinhardt domain D in C 2 c a n  be described in terms of its generating curve 
in the (~, ~/)-plane, where, as usual, log lz l= r log lwl=r/. If (r r/(s)) is the 
generating curve, the boundary M of D is given as {(e Ct~+i~, e"(~+i~')}. M is 
strictly pseudoconvex if and only if the generating curve is strictly convex in 
R 2 (in the standard Euclidean sense). These examples were suggested by Dave 
Barrett, see [Ba]. 

We normalize our parameter to be arc-length: ~2+02=1.  Thus, (~,/j)= 
x(-O, ~), where x is the curvature of the generating curve. On M, the contact 

form O=Oddp-4dd/, and we take 01=V~(i~dqb+iOdO+ds), so that dO 
= i 01 ^ 0 i. One calculates that the connection form is 

O~ = i ( ~  (~ d q~ + O dlp)--~-) 

= 1 - o i ) -  i/2(  o). 

and the torsion form is z 1 = ix/2 0 i. The pseudo-hermitian curvature is obtained 
from 

d 0 1 = [ 2  (log_x)s~]01^0i 3i(logtc)~ 4 ~ / ~  [01AO--Oi ^ 0]" 

Therefore R = [x/2-- (log tc)~/x], and the local form is given by 

1 1 
TC2 (~z)= ~ 2  [ ~ - [ ( l o g  x)s]2 + ~ (log X)ss+ 1 [ ~ ]  2] 

Integrating out the angular variables we obtain: 

0 ^ 0 ~ ^ 0  i. 



A global invariant for three dimensional CR-manifolds 345 

1 ] 
St = ~  ! K ~ x2_  [(log x)~]2 + g  (log x),~ + d s, 

where (a, b) is the interval of parametrization of the generating curve. If we 
3n 

consider the special cases to -  1/r then we obtain 8-~r 2 . These are the same exam- 

ples as in 1.C above. We remark once again that these examples show that 
there is no integrality condition on # for embedded surfaces, and that since 
the generating curves for different values of r are affinely equivalent by a homo- 
thety, the corresponding boundaries of Reinhardt domains in C 2 are locally 
CR equivalent, and are distinguished globally by the invariant St. 

We pursue this a bit further and consider the unbounded generating curve 
in R 2 corresponding to the unit ball in C z, and consider Reinhardt perturbations 
of this domain. We will consider compactly supported variations of the curve 
C = {e 2 r -F e 2 q ---- 1 }. Let r = r (s), q = r/(s) be the parametrization of C by arc-length, 
and consider one-parameter families of curves (~(s, t), q(s, t)) with ~/+r~2-=l, 
where �9 --the s-derivative. The first variation of such a curve is given by 

6 d , (6 4, ~/) = ~  (4 q) t=o' where 

d 
~ = ~ -  (~/,~) ~ ~ 0 as, 

and 6 r is arbitrary in cr save for the constraint 

d 

- - o 0  

It will be convenient to calculate in terms of u:=logx.  In order for a function 
v to be 6 u for a variation of C we must have 

/~ d 2 ~2 d 
v = -  ~2 (~ 0. 

,~ Ts~ (~r 

Since x and r~ are never 0 along C, we see that the set of such v is of codimension 3 
in ~ .  We calculate easily the second variation of St with respect to such varia- 
tions: 

[l{a_L  2 d 2 

v~here A, B are real analytic functions of s. Thus 621/ is essentially positive, 
ar~.d on any finite interval [-a, b] of s, we may thus find an infinite dimensional 
family of admissible 6 r and corresponding 6 u such that 6 2 St > 0 in that direc- 
tion. Thus St is not constant on smooth perturbations of the sphere in C 2. 
In particular, St is not a holonomy-type invariant for embedded hypersurfaces. 
(Equation (4.6) below, suitably interpreted, gives a more precise statement on 
the positivity of 0 2 St.) 
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3. Tangent circle bundles over Riemann surfaces 

In this last set of examples, we consider a compact Riemann surface 2; with 
a hermitian metric h. Let M be the unit circle bundle in TI"~ the holomorphic 
tangent bundle to I2. M is a U(1) bundle over 27, and on it there is a canonical 
C-valued one-form 0 1, the dual coframe. Since dim27=2, h is a K/ihler metric, 
and there is therefore a unique torsion free connection form O~ so that 

dO 1=01  ^ O~. (4.1) 

The form 6/I is i R-valued, and U(1)-invariant on M. The Gauss equation implies 
that 

dOl  = K O  1 ̂  0 i (4.2) 

where K is the Gauss curvature. If we begin with (4.2) it says that - i O I  and 
01 define a CR structure on M; it will be non-degenerate if K never vanishes. 
With this assumption on K, set 

0=/s ign(K)  Of ,  01 = 1 1 / ~  01 (4.3) 
so that: 

dO=iO 1 ̂  0 ~. (4.4) 

To compute the pseudo-hermitian connection, we use (4.1) and (4.3) to obtain: 

dO 1 =01 ^ [�89 I g l h  01- �89 IKI)i 0 i - i  sign(K) 0]. (4.5) 

From (4.5) it follows that the torsion is 0. We consider first the special case 
of constant K. Then the pseudo-hermitian curvature R is sign(K), and for the 
local form we get: 

Integrating over the fiber gives sign(K). 2 7r i and thus the value of the characteris- 
tic number is: 

- 1 S IKI dArea -12r 
8re 4 ' 

here )~(Z) is the Euler characteristic of 27. This agrees with our earlier calculations 
above in 1.A and 1.B: in particular, R P  3 is the unit tangent bundle for the 
standard Riemannian structure on S 2 and S 3 is a double cover, so /~ should 
be - 1 / 2 .  Note that the value of # is independent of the conformal structure 
on 27, consistent with 3.4 and example 1.B above. 

To compute the general case we need to compute dOl from (4.4). We obtai,a: 

0 1 0 i 
d 01 = d((Iog I K I)1) ̂  T -  d((log I K Ih) ^ T 

dO 1 dO i 
+ (log I K I)1 T -  (log I K I)i T -  i sign (K) d 0. 
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As log I K I  is a function on 2, 

d((log [KI)I) ^ 01 =(log IKl)11 01A 01. 

On the other hand, (log tK 1)1 d01 = (log 1K })1 01 ^ 01, and so: 

dOl =(K--(log IKI)10 O 1 ̂  O x 

=(sign(K) (l~ OI 

Thus, the pseudo-hermitian curvature is 

R = (sign(K) (l~ IK-[)'i-~. 
IKI ] 
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The local form becomes: 

TC2(~t)= v, ~ i  [ @ ( 1  ( l~  ( s i g n ( K ) K  (l~ ] J 

Simplifying, 

TC2(r~)=~rt-~ - -z  4 3 K + 6 ~  K- 0A01 A 0  i 

i [ 14  1 (loglK[), i F6((logIKI)li~2]iKO 1 0 '  0 i. 
= •  3 K K ] ]  1^ A 

Integrating over M, we get 

- Iz( I : ) l  1 ~ dArea (4.6) 
# -  4 +2-~ U~t(l~ Igl 

For a surface of fixed genus we see that the minimum of this functional is 
attained only at the constant curvature metrics. 
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