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It has been known for some time now that not every compact kfihler manifold 
of positive first Chern class admits a k/ihler-einstein metric, or even a k/ihler 
metric of constant scalar curvature. This is due to structure theorems of Matsu- 
shima and Lichnerowicz on the algebra of holomorphic vector fields on M. 
For a summary, cf. I-1]. Such metrics are special examples of the so-called extre- 
real metrics of Calabi, obtained by fixing the fundamental class [~o]EH2(M, 
R), and looking for critical points g of the functional 

I (g)= S R2 dvol 
M 

where g runs over k/ihler metrics with the given fundamental class and the 
scalar curvature and volume element are computed with respect to g. The Euler- 
Lagrange equations for I(g) can be expressed as 

ff(gradtl. Ol (R)) = 0, 

that is, the (1, 0)-component of the gradient of the scalar curvature is a holo- 
morphic vector field. The problem of finding extremal metrics is quite natural 
but quite difficult. Extremal metrics should be easier to find than k/ihler-einstein 
metrics or metrics of constant scalar curvature. Nevertheless, Calabi has proved 
some (weaker) structure theorems for the algebra of holomorphic vector fields 
on an M with an extremal kfihler metric, and M. Levine 1-8] has shown that 
these conditions are sufficient to obstruct the existence of an extremal metric 
on some M with the "wrong kinds" of algebras. In a different direction, Futaki 
has studied the very interesting interrelationship between the algebra of holo- 
morphic vector fields and the given k/ihler class [m] which was fixed in the 
definition above. 

In this note, we give examples of ruled surfaces M which have no non-trivial 
holomorphic vector fields, and yet which admit no extremal kfihler metric in 
a specifically given k/ihler class. For  such an example, an extremal metric would 
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necessarily be a metric of constant scalar curvature, and the obstruction found 
here in new in that  context as well. The obstruction involves the borderline 
semi-stability properties of hermitian vector bundles with hermite-einstein con- 
nections (cf., e.g., [7, 9]). We came across these examples as an empirical off-shoot 
of our work on the integrability of twistor spaces over four-manifolds (cf. [2]). 
We have not been able to digest a simple general principle from the calculations, 
but it is clear that the borderline stability properties play the key role. 

Acknowledgement. The authors would like to thank E. Calabi for the interest he has shown in this 
work. 

To  construct the examples, let C be a compact  Riemann surface of genus g > 2. 
Consider the complex surface So = C x F 1, and give So the k/ihler metric go, 
the product of the metric of constant curvature - 1 on C and that of constant 
curvature + 1 on PI .  It is easy to see that this metric has scalar curvature 
R = 0 .  

We write So in terms of vector bundles over C in the obvious way, namely, 
So=~(Eo) ,  where E o = C  x (E 2. We will deform Eo in order to construct new 
ruled surfaces over C. Write E o as an extension of two trivial line bundles 
over C: 

O ~ Lo ~ Eo ~ Lo --, O, L o = C x ~ .  

Since g is non-zero, one can deform L o slightly to a line bundle L over C 
such that L | 2 is non-trivial. Simultaneously, one can deform the trivial extension 
above to an extension 

O ~  L ~  E ~ L* ~ O  (*) 

over C, where L* denotes the dual bundle of L. Since g > 2 ,  Hi(C,  (P(L| 
is non-zero, and we can assume that (*) doesn't  split. Let S be the ruled surface 
P(E)  over C. 

Since S is a small, continuous perturbation of So, we can identify the topologi- 
cal cohomology groups H2(So, Z) and Hz(s,  Z), and under this identification, 
cl(So)=cl(S).  We let co o denote the k/ihler form of go on So, and note that 
by the stability of k/ihler metrics, if L is close enough to Lo in Pic(C) and 
(*) is close enough to the trivial extension 0 e H I ( C ,  d~(L| then the class 
[090] in H2(So, R ) = H 2 ( S ,  R)  is again a k/ihler class. We are finally in a position 
to state our theorem. 

Theorem. I f  S = ~(E) is a sufficiently small perturbation of So such that (*) doesn't 
split and L | 2 is non-trivial, then 

( i )  S does not admit an extremal kdhler metric g whose kdhler class= [t:J0] 
in H 2 (S, IR); 

(ii)  there are no non-trivial holomorphic vector fields on S. 

Proof The proof  is by contradiction. The proof  proceeds by a succession of 
simple observations. We first note that it suffices to prove the theorem with 
statement (i) replaced by: 

(i)' S does not admit  a k/ihler metric of constant  scalar curvature R wi~h 
k/ihler class [090] in H 2 (S, ~) .  
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Indeed, the Euler-Lagrange equation for an extremal metric is that 

~-(grad~ 1. o~ (R)) = 0, 

and thus grad"'~ is a holomorphic vector field, and by statement (ii) of 
the theorem, must be zero. Hence R must be constant. 

l_emma 1. Let g be a kdhler metric on S with kdhler form 09 and scalar curvature 
R. I f  [09] = [coo], and R is constant, then R - O. 

Proof. For any compact k/ihler manifold M of constant scalar curvature, one 
can calculate R cohomologically: 

c , (M)^co  ~ - ' - ( n - 1 ) !  ~ Rdvo l  
M g M 

R ~ co., 
~ n  M 

where n = d i m c M .  For  our S, since [co]=[Ogo], cl(S)=cl(So), we get that 
R=Ro =0. 

Lemma 2. Let g be a kdhler metric on S with R - O  and [co] = [coo]. Then g 
is conformally flat, and the universal cover ~ of S, with the induced metric ~,, 
is holomorphically isometric to So = A x F 1, equipped with the induced product 
metric. Here A = the unit disk. 

Proof. Most of this was proved in [2'], but we recall briefly the argument. One 
denotes by W§ W_ the self-dual and anti-self-dual components of the Weyl 
conformal curvature tensor of g. For  a kfihler surface, R = 0 if and only if 141+ = 0. 
Furthermore, the signature tr(S) is S is given by 

and since tr(S)= a(So)= 0, W_ =0.  Thus g is conformally fiat, and more precisely, 
due to Theorem 1 of Derdzinski [5], g is locally Hermitian symmetric. A quick 
glance at the (topological) possibilities shows that ~ must be A x p1, as claimed. 
The volume of S and R = 0 fix the two constants in the Hermitian symmetric 
metric. 

At this point we conclude that S is a unitary, flat Fl-bundle  over C. That 
is, one has a homomorphism p: F ~ P S U ( 2 ) ,  where F=nl (C)=rq(S ) ,  and 
PSU(2) is the isometry group of F ~. On the other hand, S ~ F ( E ) ,  where E 
is uniquely determined up to tensoring with a holomorphic line bundle. One 
thus concludes that 

(a) p lifts to a homomorphism ~: F ~ SU(2); 
(b) the lifting ~ can be chosen so that E is isomorphic to the associated 

flat, unitary bundle E(~) over C. 

(These are because A2E ~-L| is trivial). Thus our E admits a hermitian metric 
with a compatible flat connection. 
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Finally, we return to (*). Since A2E~-L|  *, one has d e g E = 0 .  Since degL 
= 0  as well, by the borderline case of the theorem of Kobayashi-Lfibke (cf. 
[7, 9]), E must split holomorphically and metrically as a direct sum L@L* 
over C. This contradicts the assumption that (*) doesn' t  split, thereby proving 
part  (i)' of the theorem. 

Part  (ii) of the theorem is a standard cohomological calculation, which we 
include for the convenience of the reader. Let re: S ~ C be the projection, TS, 
TC the holomorphic tangent bundles of S, C respectively, and TF the line bundle 
over S of (holomorphic) tangents along the fibers of n. One has the usual exact 
sequence of vector bundles over S: 

0--+ TF ~ TS ~ re* ( TC) --,, O. 

We wish to show H~ @(re* TS))=0. 
(A) H~ (9(re* TC))~H~ re.((9(n*(TC))) 

~-H~ @(TC)) 
= 0, since g > 2. 

(B) As above, H~ (9(TF))=H~ 7r.(9(TF)). It is clear that rc.(9(TF)) ~- 
(9(sl(E)) on C, where sl(E) is the bundle of traceless endomorphisms of E. For 
any q~aH~ (9(sl(E))), let Z be the composit ion 

L ~ E  ~ >E >L*. 

Since X is a section of (L*) @2, ~(=0, since deg L* =0 ,  and (L*) @2 is non-trivial. 
Thus, every ~oEH~ (9(sl(E))) takes L to itself. The restriction of ~o to L must 
be identically zero, since otherwise the sequence (*) would split according to 
the eigenspaces of q~. Thus, q~ must induce the zero map on L* as well, since 
trace(q~)=0, and ~0 therefore factors through E ~ L *  and has its image in L. 
But by the same argument  as above, the induced homomorph i sm from L to 
L* is trivial, since L | 2 is non-trivial and of degree 0. Thus, q~ = 0, proving part 
(ii) of the theorem. 

We conclude this note with two remarks. First, if the curve C has no non- 
trivial automorphisms,  then S has no non-trivial automorphisms.  Secondly, the 
phenomenon above is sometimes generic, in the sense that the surfaces above 
form an open set in moduli, e.g., if the genus g of the base curve is 2. 
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