Characterization of Families of Rank 3 Permutation Groups by the Subdegrees I

By
D. G. Higman

1. Introduction. The terminology and notation of [5] for rank 3 permutation groups are used throughout. We consider two cases of the problem of determining the rank 3 permutation groups for which the degree and subdegrees are specified in terms of a parameter. The results are as follows.

Theorem I. If G is a rank 3 permutation group of degree m^{2} with subdegrees 1, 2($m-1$) and $(m-1)^{2}, m \geqq 2$, then G is isomorphic with a subgroup of the wreath product $\Sigma_{m}\left\langle\Sigma_{2}\right.$ of the symmetric groups of degrees m and 2 , in its usual action on m^{2} letters.

Theorem II. If G is a rank 3 permutation group of degree $\binom{m}{2}$ with subdegrees 1 , $2(m-2)$ and $\binom{m-2}{2}, m \geqq 5$, then G is isomorphic with a 4 -fold transitive subgroup of Σ_{m} in its action on the 2 -element subsets, unless one of the following holds:
(a) $G \approx P \Gamma L_{2}^{(8), ~}$
(b) $\mu=6$ and $m=9,17,27$ or 57 ,
(c) $\mu=7$ and $m=51$, or
(d) $\mu=8$ and $m=28,36,325,903$ or 8,128 .

Concerning the exceptional cases in Theorem II, $P \Gamma L_{2}(8)$ as a subgroup of Σ_{9} is the only example of a subgroup of $\Sigma_{m}, m \geqq 4$, which is not 4 -fold transitive but has rank 3 on the 2 -element subsets (see Lemma 5). The case $\mu=6, m=9$ is realized by the group $G_{2}(2)$ and is known [4] to be the only such group. The remaining cases are undecided.
2. Rank 3 groups and strongly regular graphs. The proofs of Theorems I and II rest on the connection between rank 3 permutation groups of even order and strongly regular graphs [5, 10], and the known characterizations of the graphs of L_{2}-type [9] and triangular type [2,3] and [6, 7].

The graphs considered in this paper are finite, undirected, and without loops. A graph \mathscr{G} with n vertices is strongly regular [1] if there exist integers k, l, λ, μ such that
(1) each vertex is adjacent to exactly k vertices and non-adjacent to exactly l other vertices, k and l positive, and
(2) two adjacent vertices are both joined to exactly λ other vertices and two nonadjacent vertices are both adjacent to exactly μ vertices.

Assume that \mathscr{G} is strongly regular. Then
(3) $\mu l=k(k-\lambda-1)$,
(4) the minimum polynomial of the adjacency matrix A of \mathscr{G} is

$$
(x-k)\left(x^{2}-(\lambda-\mu) x-(k-\mu)\right),
$$

(5) A has k as eigenvalue with multiplicity 1 , and the multiplicities f, g of the roots r, s of $x^{2}-(\lambda-\mu) x-(k-\mu)$ as eigenvalues of A are respectively

$$
f=\frac{(k+l) s+k}{s-r} \quad \text { and } \quad g=\frac{(k+l) r+k}{r-s}
$$

with $f+g=k+l$, and
(6) one of the following holds
(a) $k=l, \mu=\lambda+1=k / 2$ and $f=g=k$, or
(b) $d=(\lambda-\mu)^{2}+4(k-\mu)$ is a square.

The strongly regular graph \mathscr{G} is connected if and only if $\mu>0$, and its complement $\overline{\mathscr{G}}$ is connected if and only if $\mu<k$. We say that \mathscr{G} is primitive if \mathscr{G} and $\overline{\mathscr{G}}$ are connected, so that
(7) \mathscr{G} is primitive if and only if $0<\mu<k$.

If $\mu=0$, then (identity) \cup (adjacency) is an equivalence relation on the set of vertices, hence
(8) If $\mu=0$, then $k+1 \mid n$, and if $\mu=k$, then $l+1 \mid n$.

If G is a rank 3 permutation group of even order on a finite set $X,|X|=n$, and if Δ and Γ are the nontrivial orbits of G in $X \times X$, then the graphs $\mathscr{G}=(X, \Delta)$ and $\bar{G}=(X, \Gamma)$ are a complementary pair of strongly regular graphs, each admitting G as a rank 3 automorphism group, the parameters k, l and λ, μ being respectively the subdegrees (other than 1) and the intersection numbers of $G[5,10]$. Primitivity of the permutation group G is equivalent to primitivity of the graph \mathscr{G}.
3. Proof of Theorem I. The wreath product $\Sigma_{m} \backslash \Sigma_{2}$ of the symmetric group Σ_{m} of degree $m \geqq 2$ and the symmetric group Σ_{2} of order 2 is constructed as the split extension of the group $N=\Sigma_{m} \times \Sigma_{m}$ by $\Sigma_{2}=\langle\tau\rangle$, where τ acts on N according to $\left(\pi_{1}, \pi_{2}\right)^{\tau}=\left(\pi_{2}, \pi_{1}\right), \pi_{i} \in \Sigma_{m}$. This group acts as a rank 3 permutation group on $X \times X, X=\{1,2, \ldots, m\}$ according to

$$
(i, j)^{\left(\pi_{1}, \pi_{2}\right)}=\left(i^{\pi_{1}}, j^{\pi_{2}}\right) \quad \text { and } \quad(i, j)^{\tau}=(j, i),
$$

with $k=2(m-1), l=(m-1)^{2}$ and $\mu=2$. The action is imprimitive for $m=2$ and primitive for $m \geqq 3$. The graph \mathscr{L}_{m} afforded by the suborbit of length $2(m-1)$, in which vertices (a, b) and (c, \bar{d}) are adjacent if and only if they are distinct and $a=c$ or $b=d$, is isomorphic with the line graph of the complete bipartite graph on $2 m$ vertices, i.e. the strongly regular graph of L_{2}-type on $2 m$ vertices.

Lemma 1. $\Sigma_{m} \backslash \Sigma_{2}$ is the full automorphism group of $\mathscr{L}_{m}, m \geqq 2$.

Proof. Each vertex (a, b) is contained in exactly two maximal cliques, with vertices $\{(a, x) \mid x=1,2, \ldots, m\}$ and $\{(y, b) \mid y=1,2, \ldots, m\}$, respectively. If σ is an automorphism of \mathscr{L}_{m}, we have two possibilities.

Case 1. $(1,1)^{\sigma}=\left(a_{1}, b_{1}\right)$ and $(1,2)^{\sigma}=\left(a_{1}, b_{2}\right)$. In this case $(i, j)^{\sigma}=\left(a_{1}, j^{\beta}\right)$ and $(i, 1)^{\sigma}=\left(i^{\alpha}, b_{1}\right)$ with $\alpha, \beta \in \Sigma_{m}$ such that $1^{\alpha}=a_{1}$ and $1^{\beta}=b_{1}$. If i and j are both $\neq 1$, then (i, j), as the unique vertex $\neq(1,1)$ adjacent to $(i, 1)$ and (i, j), must be mapped by σ onto the unique vertex $\neq\left(a_{1}, b_{1}\right)$ adjacent to $\left(i^{\alpha}, b_{1}\right)$ and $\left(a_{1}, j^{\beta}\right)$, i.e., $(i, j)^{\sigma}=\left(i^{\alpha}, j^{\beta}\right)$. Hence $\sigma=(\alpha, \beta) \in N$.

Case 2. $(1,1)^{\sigma}=\left(a_{1}, b_{1}\right)$ and $(1,2)^{\sigma}=\left(a_{2}, b_{1}\right)$. In this case $(1, j)^{\sigma}=\left(j^{\beta}, b_{1}\right)$ and $(2,1)^{\sigma}=\left(a_{1}, 2^{\alpha}\right)$ with $(\alpha, \beta) \in \Sigma_{m}$, so $(i, j)^{\sigma}=\left(j^{\beta}, i^{\alpha}\right)=(i, j)^{(\alpha, \beta) z}$. Hence $\sigma=(\alpha, \beta) \tau$ $\in \Sigma_{m} \backslash \Sigma_{2}$.

Lemma 2. Let \mathscr{G} be a strongly regular graph such that $k=2(m-1)$ and $l=(m-1)^{2}$ for some $m \geqq 2$. Then \mathscr{G} is isomorphic with \mathscr{L}_{m} unless $m=4$, in which case there is, up to isomorphism, exactly one exceptional graph.

Proof. In view of [9], it suffices to prove that $\mu=2$. By (8) of Section 2 we have $\mu>0$. By (3) of Section 2 we have

$$
\mu(m-1)=2(2 m-3-\lambda)
$$

Assume first that μ is even, $\mu=2 \mu_{0}$. Then $\mu_{0}(m-1)=2 m-3-\lambda$, so that ($\left.\mu_{0}-2\right) m=\mu_{0}-3-\lambda$. We have $\lambda \geqq 0$, and since $0<\mu \leqq k=2(m-1)$, $0<\mu_{0} \leqq m-1$. Hence $\left(\mu_{0}-2\right) m \leqq \mu_{0}-3 \leqq m-4$, so that $\left(\mu_{0}-3\right) m \leqq-4$ and hence $\mu_{0} \leqq 2$. If $\mu_{0}=2$, then $\lambda=-1$ which is impossible, hence $\mu_{0}=1$ and $\mu=2$ as claimed.

Now assume that μ is odd, so that $2 \mid m-1$ and we can write $m=2 t+1, t \geqq 1$. Then $\mu t=4 t-1-\lambda$, that is, $\lambda=(4-\mu) t-1$, so that $\mu \leqq 3$. By (6) of Section 2 we have that $9 t^{2}+4 t$ or $t^{2}+8 t+4$ must be a square according as $\mu=1$ or $\mu=3$. But the non-negative integral solutions of the equations

$$
y^{2}=9 t^{2}+4 t \quad \text { and } y^{2}=t^{2}+8 t+4
$$

are respectively $y=0, t=0$ and $y=2, t=0$, contrary to $t \geqq 1$.
Since it is known [4] that the exceptional graph in case $m=4$ of Lemma 2 does not admit a rank 3 automorphism group, we have Theorem I as an immediate Corollary to Lemmas 1 and 2.

If $H \leqq \Sigma_{m}, m \geqq 2$, is doubly transitive, then $H \backslash \Sigma_{2}$ is a rank 3 subgroup of $\Sigma_{m}>\Sigma_{2}$ on the m^{2} letters. There are rank 3 subgroups of $\Sigma_{m} \backslash \Sigma_{2}$ not of this type and we make no attempt here to classify them.

Of course it should be noted that Lemma 2 is purely a result about graphs with no reference to groups. The same remark applies to Lemma 4 in the next section.
4. Proof of Theorem 1I. The symmetric group Σ_{m} on $X=\{1,2, \ldots, m\}, m \geqq 3$, acts as a rank 3 group on the set of $\binom{m}{2} 2$-element subsets of X, with subdegrees $k=2(m-2), l=\binom{m-2}{2}$, and $\mu=4$. The action is imprimitive if $m=4$ and primitive if $m \geqq 5$. The graph \mathscr{J}_{m} afforded by the suborbit of length $2(m-2)$, in
which two 2 -element subsets S and T are adjacent if and only if $|S \cap T|=1$, is isomorphic with the line graph of the complete graph on m vertices, i.e., the graph of triangular type on $\binom{m}{2}$ vertices.

Lemma 3. Σ_{m} is the full automorphism group of $\mathscr{J}_{m}, m \geqq 5$, while Σ_{4} has index 2 in the automorphism group of \mathscr{F}_{4}.

Proof. The maximal cliques of \mathscr{J}_{m} containing a vertex $\{a, b\}$ are of two types.

$$
\left\{\begin{array}{l}
{[a]=\{\{a, x\} \mid x \in X-\{a\}\}} \tag{I}\\
{[b]=\{\{y, b\} \mid y \in X-\{b\}\}}
\end{array}\right.
$$

and

$$
\begin{equation*}
\{a, b\}, \quad\{b, z\} \quad \text { and }\{a, z\}, \quad z \notin\{a, b\} . \tag{II}
\end{equation*}
$$

If σ is an automorphism of \mathscr{F}_{m} and $\{a, b\}^{\sigma}=\{c, d\}$, then, if $m \geqq 5,[a]^{\sigma}=[c]$ or $[d]$. Here we define $a^{\pi}=c$ if $[a]^{\sigma}=[c]$. Then it is easy to verify that $\pi \in \Sigma_{m}$ and π induces σ. In case $m=4$ there are involutions in the automorphism group of \mathscr{J}_{4} interchanging the two types (I) and (II) of maximal cliques, e.g., α mapping $\{1,3\}$ onto $\{2,4\}$ and fixing all other vertices. We see that $\left\langle\Sigma_{4}, \alpha\right\rangle$ is the full automorphism group of \mathscr{J}_{4}.

Lemma 4. Let \mathscr{G} be a strongly regular graph with $k=2(m-2)$ and $l=\binom{m-2}{2}$, $m \geqq 4$. Then $\mu=4$ unless

$$
\begin{aligned}
& \mu=6 \quad \text { and } \quad m=7,9,17,27 \text { or } 57 \\
& \mu=7 \quad \text { and } \quad m=51, \quad \text { or } \\
& \mu=8 \quad \text { and } \quad m=28,36,325,903 \text { or } 8,128 .
\end{aligned}
$$

Proof. If $\mu=0$, then $m=4$ by (8) Section 2 and hence $\lambda=3$ by (3), which is impossible by (6). Hence $\mu>0$. By (3) we have

$$
\begin{equation*}
\mu(m-3)=4(2 m-5-\lambda) \tag{*}
\end{equation*}
$$

We consider two cases according as μ is even or odd.
Case 1. $\mu=2 \mu_{0}$. In this case $\mu_{0}(m-3)=2(2 m-5-\lambda)$, so that $0 \leqq 2 \lambda$ $=\left(4-\mu_{0}\right) m+3 \mu_{0}-10$. Hence, since $\mu_{0} \leqq(m-2)$, we have

$$
\left(\mu_{0}-4\right) m \leqq 3 \mu_{0}-10 \leqq 3(m-2)-10 \leqq 3 m-16
$$

Hence $\left(\mu_{0}-7\right) m \leqq-16$ and $\mu_{0}<7$. If $\mu_{0}=5$ or 6 , then $\lambda=\frac{5-m}{2}$ or $4-m$ so that $m=5$ or 4 respectively. In the first case, $\mu_{0}=5>m-2=3$ and in the second $\mu_{0}=6>m-2=2$, so both are ruled out. The remaining possibilities are:

μ_{0}	1	2	3	4
μ	2	4	6	8
λ	$\frac{3 m-7}{2}$	$m-2$	$\frac{m-1}{2}$	1
d	$\frac{9 m^{2}-34 m+25}{4}$	$(m-2)^{2}$	$\left(\frac{m+3}{2}\right)^{2}$	$8 m+1$

By (6) of Section 2, the entries in the last row are squares.

For $\mu_{0}=1$ we have the equation $4 y^{2}=9 m^{2}-34 m+25$, for which the (nonnegative integral) solutions are $y=1, m=3$ and $y=0, m=1$, both of which are impossible.

If $\mu_{0}=3$ we have by (4) and (5) of Section 2 that $r=\frac{m-5}{2}$ and $s=-4$, so that $f=\frac{4 m(m-2)}{m+3}$. Since $(m+3, m) \mid 3$ and $(m+3, m-2) \mid 5$, we have that $m+3 \mid 4 \cdot 3 \cdot 5$ giving $m=7,9,12,17,27$, or 57 . If $m=12$, then $\lambda=13 / 2$, so this case is impossible.

If $\mu_{0}=4$, we have the equation $y^{2}=8 m+1$. Writing $y=2 w+1$, we have $m=\binom{w+1}{2}, k=w^{2}+w-4$ and $l=\frac{1}{8}\left(w^{2}+w-6\right) k$, and since $\lambda=1$ and $\mu=8$, we get $r=w-3$ and $s=-w-4$ by (4) of Section 2. Hence by (5) of Section 2,

$$
f=\frac{w(w+2)(w+3)\left(w^{2}+w-4\right)}{8(2 w+1)}
$$

and since $w \geqq 3$ and $(2 w+1, w+2)|3,(2 w+1, w+3)| 5$ and $\left(2 w+1, w^{2}+w-4\right) \mid 17$, we must have $2 w+1 \mid 3 \cdot 5 \cdot 17$, giving

$$
w=7,8,25,42 \text { or } 127
$$

i. e.,

$$
m=28,36,325,903 \text { or } 8,128
$$

Case 2. $\mu \equiv 1$ (2). In this case (${ }^{*}$) implies that $4 \mid m-3$, and we write $m=4 t+3$. Then by $\left(^{*}\right), \lambda=(8-\mu) t+1$ and $\mu \leqq 9$. The possibilities are :

μ	1	3	5	7	9
λ	$7 t+1$	$5 t+1$	$3 t+1$	$t+1$	0
d	$49 t^{2}+32 t+4$	$25 t^{2}+12 t$	$9 t^{2}+8 t+4$	$t^{2}+20 t+16$	85

Again, the entries in the last row are squares by (6) of Section 2, so $\mu \neq 9$. The nonnegative integral solutions of the equations $y^{2}=49 t^{2}+32 t+4, y^{2}=25 t^{2}+12 t$ and $y^{2}=9 t^{2}+8 t+4$ are $y=2, t=0, y=t=0$ and $y=2, t=0$ respectively, so these cases are ruled out. Finally, the equation $y^{2}=t^{2}+20 t+16$ has just the solutions $y=4, t=0$, which is ruled out, and $y=20, t=12$, giving $m=51$.

Lemma 5. If $G \leqq \Sigma_{m}, m \geqq 4$, has rank 3 on the 2-element subsets, then G is 4 -fold transitive unless $m=9$ and $G \approx P \Gamma L_{2}(8)$.

Proof. The cases $m=4$ and 5 follow from the fact that $\frac{n k l}{(k, l)}$ divides $|G|$. Assume that $m>5$ and that G is not 4 -fold transitive. Clearly G is transitive on the set of 4 -element subsets, i.e., G is 4 -homogeneous, and if S is a 2 -element subset, then G_{S} is transitive on the 4 -element sets containing S. Hence if Λ is a 4 -element set, $G_{A}: G_{\Lambda, S}=6$. Hence $G_{\Lambda} \mid \Lambda$ has order 12, and we have by Kantor's result [8] that possibilities are

m	G
6	$P S L_{2}(5), P \Gamma L_{2}(5)$
9	$P S L_{2}(8), P \Gamma L_{2}(8)$
33	$P \Gamma L_{2}(32)$.

The divisibility $\frac{n k l}{(k, l)}\left||G|\right.$ rules out all but the case $m=9, G=P \Gamma L_{2}$ (8).

Note. The result stated by Kantor in [8] is proved there only under the additional assumption that $G_{A} \mid \Lambda$ has order $\neq 8$, which is quite sufficient for our purposes.

According to $[2,3]$ and $[6,7]$ if \mathscr{G} is a strongly regular graph with $k=2(m-2)$, $l=\binom{m-2}{2}$ and $\mu=4$, then $\mathscr{G} \approx \mathscr{F}_{m}$ unless $m=8$, in which case there are exactly three exceptions. Since none of these exceptional graphs admits a rank 3 automorphism group [4], and since the complement of \mathscr{G} in the case $\mu=6, m=7$ has the parameters of \mathscr{J}_{7}, Theorem II follows by Lemmas 3,4 and 5 .

We remark that for $m=4$, any rank 3 permutation group with subdegrees $1,4,1$ is either isomorphic with Σ_{4} or the full automorphism group of \mathscr{J}_{4}.

The exceptional case $\mu=6, m=9$ is realized by the group $G_{2}(2)$. It is in fact known that there is just one strongly regular graph with these parameters which admits a rank 3 automorphism group, and that $G_{2}(2)$ is its full automorphism group, no proper subgroup of which has rank 3 [4]. The question of the existence (even of graphs) for the remaining exceptional cases is undecided.

References

[1] R. C. Bose, Strongly regular graphs, partial geometries and partially balaniced designs. Pacific J. Math. 13, 389-419 (1963).
[2] L. C. Chang, The uniqueness and nonuniqueness of the triangular association scheme. Sci. Record 3, 604-613 (1959).
[3] L. C. Chang, Association schemes of partially balanced block designs with parameters $\nu=28, n_{1}=12, n_{2}=15, p_{11}^{2}=4$. Sci. Record 4, 12-18 (1960).
[4] M. Hestenes, D. G. Higman and C. C. Sims, Rank 3 permutation groups of small degree (in preparation).
[5] D. G. Higman, Finite permutation groups of rank 3. Math. Z. 86, 145-156 (1964).
[6] A. J. Hoffman, On the uniqueness of the triangular association scheme. Ann. Math. Stat. 31, 492-497 (1960).
[7] A. J. Hoffman, On the exceptional case in a characterization of the arcs of a complete graph. IBM J. Res. Develop. 4, 487-496 (1961).
[8] W. M. Kantor, 4-homogeneous groups. Math. Z. 103, 67-68 (1968).
[9] S. S. Shrikhande, The uniqueness of the L_{2}-association scheme. Ann. Math. Stat. 30, 781-798 (1959).
[10] C. C. Stus, On graphs with rank 3 automorphism groups. J. Comb. Theory (to appear).
Eingegangen am 18. 7. 1969
Anschrift des Autors:
D. G. Higman

Department of Mathematics
University of Michigan
Ann Arbor, Mich. 48104, USA

