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Characterization of Families of Rank 3 Permutation Groups

by the Subdegrees I

By
D. G. Hicmax

1. Introduction. The terminology and notation of [5] for rank 3 permutation
groups are used throughout. We consider two cases of the problem of determining
the rank 3 permutation groups for which the degree and subdegrees are specified in
terms of a parameter. The results are as follows.

Theorem L. If G is a rank 3 permutation group of degree m2 with subdegrees 1, 2(m —1)
and (m — 1)2, m = 2, then G is isomorphic with a subgroup of the wreath product Xy 1 Xy
of the symmetric groups of degrees m and 2, in its usual action on m2 letters.

Theorem ILI. If G is a rank 3 permutation group of degree

2

<7;> with subdegrees 1,
2(m — 2) and (m ; ), m = 5, then G is isomorphic with a 4-fold transitive subgroup

of L'y in its action on the 2-element subsets, unless one of the following holds:
(a) G~ PI'Ls (8),
(b) uw=06andm=29,17,27 or 57,
(¢) mw="Tandm=>51,or
(d) u =8 and m = 28, 36, 325, 903 or 8,128.

Concerning the exceptional cases in Theorem II, PI'Ly(8) as a subgroup of Xy
is the only example of a subgroup of X, m = 4, which is not 4-fold transitive but
has rank 3 on the 2-element subsets (see Lemma 5). The case u =6, m = 9 is
realized by the group G2 (2) and is known [4] to be the only such group. The remaining
cases are undecided.

2. Rank 3 groups and strongly regular graphs. The proofs of Theorems I and I rest
on the connection between rank 3 permutation groups of even order and strongly
regular graphs [5, 10], and the known characterizations of the graphs of La-type [9]
and triangular type [2, 8] and [6, 7].

The graphs considered in this paper are finite, undirected, and without loops.
A graph & with n vertices is strongly regular [1] if there exist integers , I, , u such
that

(1) each vertex is adjacent to exactly k vertices and non-adjacent to exactly !
other vertices, k¥ and I positive, and
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(2) two adjacent vertices are both joined to exactly 1 other vertices and two non-
adjacent vertices are both adjacent to exactly u vertices.

Assume that ¥ is strongly regular. Then

(3) pl=k(k—A—1),

(4) the minimum polynomial of the adjacency matrix 4 of ¢ is

(—k)@*— (A —pz—(k—p),

(6) A4 has k as eigenvalue with multiplicity 1, and the multiplicities f, ¢ of the roots
r,s of 2 — (A — p)x — (k — p) as eigenvalues of 4 are respectively

_Gkeths+k g=(k+l)r+k

f s—r r—s
with f+g=Fk -+, and

(6) one of the following holds
(@) k=Luy=A+1=k2 and f=g=k or
(b) d= (4 — u)?2+ 4k — u) is a square.

The strongly regular graph & is connected if and only if 4 > 0, and its comple-
ment & is connected if and only if 4 < k. We say that ¢ is primitive if & and ¥ are
connected, so that

(7) % is primitive if and only if 0 < u < k.

If 4 = 0, then (identity) U (adjacency) is an equivalence relation on the set of
vertices, hence

(8) If 4 =0, then k + 1|n, and if y =%, then 7 4 1|n.

If G is a rank 3 permutation group of even order on a finite set X, | X| = », and
if 4 and I" are the nontrivial orbits of G in X X X, then the graphs ¥ = (X, 4) and
@ = (X, I") are a complementary pair of strongly regular graphs, each admitting
G as a rank 3 automorphism group, the parameters k, I and 4, u being respectively

the subdegrees (other than 1) and the intersection numbers of G [5, 10]. Prinmitivity
of the permutation group & is equivalent to primitivity of the graph .

3. Proof of Theorem L. The wreath product X', 1 X5 of the symmetrie group Xy, of
degree m = 2 and the symmetric group Zs of order 2 is constructed as the split
extension of the group N = X}, X 2, by Xo = {7, where 7 acts on N according to
(721, 7w2)T = (72, 1), 7y € Zyp. This group acts as a rank 3 permutation group on
XxX, X =1{1,2,...,m} according to

(¢, j)(n;,m) = (™,§™) and (3,7)7 = (j, ),
with & =2(m — 1), 1 = (m — 1)% and y = 2. The action is imprimitive for m = 2
and primitive for m = 3. The graph £, afforded by the suborbit of length 2{m — 1),
in which vertices (a,d) and (¢, d) are adjacent if and only if they are distinct and

@ = ¢ or b == d, is isomorphic with the line graph of the complete bipartite graph on
2m vertices, i.e. the strongly regular graph of Ls-type on 2m vertices.

Lemma 1. X, 1 25 is the full automorphism group of Lm, m = 2.
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Proof. Each vertex (a,d) is contained in exactly two maximal cliques, with
vertices {(a,z)|z = 1,2, ..., m} and {(y,b)|y = 1,2, ..., m}, respectively. If ¢ is an
automorphism of #,,, we have two possibilities.

Case 1. (1,1)0 = (a3, b1) and (1, 2)¢ = (a1, b3). In this case (4, §)° = (a1, j8) and
(¢, 1) = (%, b1) with «, § € 2, such that 1% = g3 and 18 = by. If ¢ and j are both
=1, then (4, §), as the unique vertex = (1, 1) adjacent to (¢, 1) and (¢, ), must be
mapped by ¢ onto the unique vertex =+ (@, b1) adjacent to (¢%, b1) and (a1, j8), i.e.,
(3, 7)° = (i*, j#). Hence 0 = (x, f) e N.

Case 2. (1,1)% = (a1, by) and (1, 2)° = (a2, b1). In this case (1, )¢ = (j8, b;) and
(2, 1)¢ = (a1, 2%) with («, f) € Zn, so (i, j)° = (j8, i%) = (¢, §)*P). Hence o= («, f) T
€ Zm l 22.

Lemma 2. Let & be a strongly regular graph such that k = 2(m — 1) and [ = (m — 1)2
for some m = 2. Then ¥ is isomorphic with £ m unless m = 4, in which case there is,
up to isomorphism, exactly one exceptional graph.

Proof. In view of [9], it suffices to prove that u = 2. By (8) of Section 2 we have
u > 0. By (3) of Section 2 we have

pm—1)=22m—3 - 1).

Assume first that g is even, u = 2yo. Then uo(m — 1) = 2m — 3 — A, so that
(4o — 2)m = o — 3 — 1. We have 1 =0, and since 0 < u <k = 2(m — 1),
0 < po=m— 1. Hence (up — 2)m = o — 3 = m — 4, so that (ugg — 3)m < — 4
and hence ug =< 2. If yp = 2, then 1 = — 1 which is impossible, hence po = 1 and
4 = 2 as claimed.

Now assume that g is odd, so that 2|m — 1 and we can write m = 2¢ - 1,¢ > 1.
Then put = 4t — 1 — A, thatis, 1 = (4 — u)t — 1, so that g < 3. By (6) of Section 2
we have that 942 4 4 or {2 4 8¢ + 4 must be a square according as 4 = 1 or g = 3.
But the non-negative integral solutions of the equations

y2 =092 4 4f and y2 =142+ 8t 44

are respectively y = 0, = 0 and y = 2, { = 0, contrary to ¢ = 1.

Since it is known [4] that the exceptional graph in case m = 4 of Lemma 2 does not
admit a rank 3 automorphism group, we have Theorem I as an immediate Corollary
to Lemmas 1 and 2.

If H<2y, m =2, is doubly transitive, then H1X; is a rank 3 subgroup of 2,12
on the m? letters. There are rank 3 subgroups of X', 1 25 not of this type and we make
no attempt here to classify them.

Of course it should be noted that Lemma 2 is purely a result about graphs with no
reference to groups. The same remark applies to Lemma 4 in the next section.

4. Proof of Theorem 1. The symmetric group X on X = {1,2, ..., m}, m = 3,

acts as a rank 3 group on the set of (7;) 2-element subsets of X, with subdegrees

k= 2(m —2), Z=(”‘2_2

primitive if m = 5. The graph #,, afforded by the suborbit of length 2(m — 2), in

, and u = 4. The action is imprimitive if m = 4 and
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which two 2-element subsets S and T are adjacent if and only if |[S N 7| =1, is

isomorphic with the line graph of the complete graph on m vertices, i.e., the graph of

triangular type on (ZL) vertices.

Lemma 3. X, is the full automorphism group of Fm, m = 5, while X4 has index 2
in the automorphism group of Za.

Proof. The maximal cliques of ¢, containing a vertex {a, b} are of two types.

o { [e] = {{a,z}|x e X — {a}},
; ] = {{z. b} |y e X — {b}}

(IT) {a,b}, {b,z} and f{a,z}, z¢{a,b}.
If ¢ is an automorphism of £, and {a, b}9 = {c, d}, then, if m = 5, [a]® = [¢] or [d].
Here we define a® = ¢ if [a]® = [c]. Then it is easy to verify that we X, and =
induces . In case m = 4 there are involutions in the automorphism group of #4
interchanging the two types (I) and (II) of maximal cliques, e.g., « mapping {1, 3}
onto {2, 4} and fixing all other vertices. We see that (X, «) is the full automorphism
group of #4.
Lemma 4. Let 4 be a strongly regular graph with k = 2(m — 2) and 1 =(m2_2) R
m = 4. Then u = 4 unless
u=6 and m=71,9,17,27 or 57,
u="7 and m=>51, or
u=238 and m=28,36,325 903 or 8,128.
Proof. If y = 0, then m = 4 by (8) Section 2 and hence 1 = 3 by (3), which is
impossible by (6). Hence u > 0. By (3) we have
(*) pim —3)=4@2m—5— 7).
We consider two cases according as u is even or odd.
Case 1. p = 2uo. In this case pg(m — 3)=2(2m — 5 — 1), so that 0 = 22
= (4 — wo)m + 3uo — 10. Hence, since ug = (m — 2), we have
(o —4)m =Buo—10=3(m—2)—10=3m — 16.

Hence (uo — 7)m = — 16 and uo < 7. If po = 5 or 6, then l=5;m or 4 — m so

that m = 5 or 4 respectively. In the first case, yg =5 > m — 2 = 3 and in the
second o = 6 > m — 2 = 2, so both are ruled out. The remaining possibilities are:

Ho 1 | 2 ; 3 [ 4
u 2 4 ‘ 6 ‘ 8
-2
2 "= 2 !
2 __ 2
J 9m 3:m+25 m— 22 5 (m-2+-3) 1 —

By (6) of Section 2, the entries in the last row are squares.
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For pg =1 we have the equation 4y2 = 9m2 — 34m + 25, for which the (non-
negative integral) solutions are y = 1, m = 3 and y = 0, m = 1, both of which are
impossible. _s

If 4o = 3 we have by (4) and (5) of Section 2 that r = 2 and s = — 4, so that

f= ”Jﬁ(—+_'32')‘ Since (m+3,m)|3 and (m+ 3, m —2)|5, we have that m +3|4-3-5

giving m = 7, 9,12,17, 27, or 57. If m = 12, then 1 = 13/2, so this case is impossible.
If 4o =4, we have the equation y2 = 8m - 1. Writing y = 2w 4 1, we have

m=(w+1), k=wuw?2+w—4 and I =} (w24 w— 6)k, and since 1 =1 and

2
n=28,weget r=w—3and s=—w— 4 by (4) of Section 2. Hence by (5) of
Section 2,

f= w(w 4+ 2)(w+ 3) (w2 +w —4)
82w+ 1)

and since w = 3 and 2w+ 1, w+2)|3, (2w+1,w+3)|5and(2w+1,w2+w—4)|17,
we must have 2w + 1|3-5-17, giving

w=717,8, 25, 42 or 127,

ie.,
m = 28, 36, 325, 903 or 8,128.
Case 2. u =1 (2). In this case (*) implies that 4|m —3, and we write m = 4¢--3.
Then by (*), A = (8 — u)t + 1 and x =< 9. The possibilities are:

v 1 3 5 7 9
7 Tt 41 5+ 1 3t41 t4+1 0
d 4942432644 25124+ 12¢ 912+ 8¢+ 4 24206+16 85

Again, the entries in the last row are squares by (6) of Section 2, so y = 9. The non-
negative integral solutions of the equations y2 = 4912 4- 32t - 4, y2 = 25¢2  12¢
and Y2 =912 4 8t +d4arey=2,t =0,y =1t =0 and y = 2, { = 0 respectively,
so these cases are ruled out. Finally, the equation y2 = {2 + 20¢ 4 16 has just the
solutions y = 4, ¢ = 0, which is ruled out, and y = 20, t = 12, giving m = 51.

Lemma 5. If G < X, m = 4, has rank 3 on the 2-element subsets, then G is 4-fold
transitive unless m = 9 and G ~ PI'Ls (8).

Proof. The cases m = 4 and 5 follow from the fact that —— "D l) divides |G|. Assume

that m > 5 and that @ is not 4-fold transitive. Clearly G is transitive on the set of
4-element subsets, i.e., G is 4-homogeneous, and if § is a 2-element subset, then Gg
is transitive on the 4-element sets containing 8. Hence if A is a 4-element set,
G4: G4 5= 6. Hence G 4| /A has order 12, and we have by KaNTOR’s result [8] that
possibilities are
m G
6 PSLy(5), PI'Ly(5)
9 PSL2(8), PI'Ly(8)
33 PI'Ly(32).

The divisibility '(nkilf |G| rules out all but the case m = 9, @ = PI'Ls (8).
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Note. The result stated by KaNToR in [8] is proved there only under the additional
assumption that G 4| /A has order = 8, which is quite sufficient for our purposes.
According to [2, 3] and [6, 7] if & is a strongly regular graph with k = 2(m — 2),

= (m 2— 2) and y = 4, then ¥ ~ ¢, unless m = 8, in which case there are exactly

three exceptions. Since none of these exceptional graphs admits a rank 3 auto-
morphism group [4], and since the complement of & in the case y = 6, m = 7 has the
parameters of #7, Theorem II follows by Lemmas 3, 4 and 5.

We remark that for m = 4, any rank 3 permutation group with subdegrees 1, 4, 1
is either isomorphic with 24 or the full automorphism group of #4.

The exceptional case w = 6, m = 9 is realized by the group G2(2). It is in fact
known that there is just one strongly regular graph with these parameters which admits
a rank 3 automorphism group, and that G5 (2) is its full automorphism group, no
proper subgroup of which has rank 3 [4]. The question of the existence (even of
graphs) for the remaining exceptional cases is undecided.
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