Characterization of Families of Rank 3 Permutation Groups by the Subdegrees I

By

D. G. HIGMAN

1. Introduction. The terminology and notation of [5] for rank 3 permutation groups are used throughout. We consider two cases of the problem of determining the rank 3 permutation groups for which the degree and subdegrees are specified in terms of a parameter. The results are as follows.

Theorem I. If G is a rank 3 permutation group of degree m^2 with subdegrees 1, 2(m-1)and $(m-1)^2, m \ge 2$, then G is isomorphic with a subgroup of the wreath product $\Sigma_m \wr \Sigma_2$ of the symmetric groups of degrees m and 2, in its usual action on m^2 letters.

Theorem II. If G is a rank 3 permutation group of degree $\binom{m}{2}$ with subdegrees 1, 2(m-2) and $\binom{m-2}{2}$, $m \ge 5$, then G is isomorphic with a 4-fold transitive subgroup of Σ_m in its action on the 2-element subsets, unless one of the following holds:

- (a) $G \approx P \Gamma L_2$ (8),
- (b) $\mu = 6$ and m = 9, 17, 27 or 57,
- (c) $\mu = 7 \text{ and } m = 51, \text{ or }$
- (d) $\mu = 8$ and m = 28, 36, 325, 903 or 8,128.

Concerning the exceptional cases in Theorem II, $P\Gamma L_2(8)$ as a subgroup of Σ_9 is the only example of a subgroup of Σ_m , $m \ge 4$, which is not 4-fold transitive but has rank 3 on the 2-element subsets (see Lemma 5). The case $\mu = 6$, m = 9 is realized by the group $G_2(2)$ and is known [4] to be the only such group. The remaining cases are undecided.

2. Rank 3 groups and strongly regular graphs. The proofs of Theorems I and II rest on the connection between rank 3 permutation groups of even order and strongly regular graphs [5, 10], and the known characterizations of the graphs of L_2 -type [9] and triangular type [2, 3] and [6, 7].

The graphs considered in this paper are finite, undirected, and without loops. A graph \mathscr{G} with *n* vertices is *strongly regular* [1] if there exist integers k, l, λ, μ such that

(1) each vertex is adjacent to exactly k vertices and non-adjacent to exactly l other vertices, k and l positive, and

(2) two adjacent vertices are both joined to exactly λ other vertices and two nonadjacent vertices are both adjacent to exactly μ vertices.

Assume that \mathcal{G} is strongly regular. Then

(3) $\mu l = k(k - \lambda - 1),$

(4) the minimum polynomial of the adjacency matrix A of \mathscr{G} is

$$(x-k)(x^2-(\lambda-\mu)x-(k-\mu)),$$

(5) A has k as eigenvalue with multiplicity 1, and the multiplicities f, g of the roots r, s of $x^2 - (\lambda - \mu) x - (k - \mu)$ as eigenvalues of A are respectively

$$f = \frac{(k+l)s+k}{s-r}$$
 and $g = \frac{(k+l)r+k}{r-s}$

with f + g = k + l, and

(6) one of the following holds

(a)
$$k = l, \mu = \lambda + 1 = k/2$$
 and $f = g = k$, or

(b) $d = (\lambda - \mu)^2 + 4(k - \mu)$ is a square.

The strongly regular graph \mathscr{G} is connected if and only if $\mu > 0$, and its complement $\overline{\mathscr{G}}$ is connected if and only if $\mu < k$. We say that \mathscr{G} is *primitive* if \mathscr{G} and $\overline{\mathscr{G}}$ are connected, so that

(7) \mathscr{G} is primitive if and only if $0 < \mu < k$.

If $\mu = 0$, then (identity) \cup (adjacency) is an equivalence relation on the set of vertices, hence

(8) If $\mu = 0$, then k + 1 | n, and if $\mu = k$, then l + 1 | n.

If G is a rank 3 permutation group of even order on a finite set X, |X| = n, and if Δ and Γ are the nontrivial orbits of G in $X \times X$, then the graphs $\mathscr{G} = (X, \Delta)$ and $\overline{\mathscr{G}} = (X, \Gamma)$ are a complementary pair of strongly regular graphs, each admitting G as a rank 3 automorphism group, the parameters k, l and λ, μ being respectively the subdegrees (other than 1) and the intersection numbers of G [5, 10]. Primitivity of the permutation group G is equivalent to primitivity of the graph \mathscr{G} .

3. Proof of Theorem I. The wreath product $\Sigma_m \wr \Sigma_2$ of the symmetric group Σ_m of degree $m \geq 2$ and the symmetric group Σ_2 of order 2 is constructed as the split extension of the group $N = \Sigma_m \times \Sigma_m$ by $\Sigma_2 = \langle \tau \rangle$, where τ acts on N according to $(\pi_1, \pi_2)^{\tau} = (\pi_2, \pi_1), \ \pi_i \in \Sigma_m$. This group acts as a rank 3 permutation group on $X \times X, \ X = \{1, 2, ..., m\}$ according to

$$(i, j)^{(\pi_1, \pi_2)} = (i^{\pi_1}, j^{\pi_2})$$
 and $(i, j)^{\tau} = (j, i)$,

with k = 2(m-1), $l = (m-1)^2$ and $\mu = 2$. The action is imprimitive for m = 2and primitive for $m \ge 3$. The graph \mathscr{L}_m afforded by the suborbit of length 2(m-1), in which vertices (a, b) and (c, d) are adjacent if and only if they are distinct and a = c or b = d, is isomorphic with the line graph of the complete bipartite graph on 2m vertices, i.e. the strongly regular graph of L_2 -type on 2m vertices.

Lemma 1. $\Sigma_m \wr \Sigma_2$ is the full automorphism group of $\mathscr{L}_m, m \geq 2$.

Proof. Each vertex (a, b) is contained in exactly two maximal cliques, with vertices $\{(a, x) | x = 1, 2, ..., m\}$ and $\{(y, b) | y = 1, 2, ..., m\}$, respectively. If σ is an automorphism of \mathcal{L}_m , we have two possibilities.

Case 1. $(1, 1)^{\sigma} = (a_1, b_1)$ and $(1, 2)^{\sigma} = (a_1, b_2)$. In this case $(i, j)^{\sigma} = (a_1, j^{\beta})$ and $(i, 1)^{\sigma} = (i^{\alpha}, b_1)$ with $\alpha, \beta \in \Sigma_m$ such that $1^{\alpha} = a_1$ and $1^{\beta} = b_1$. If *i* and *j* are both $\neq 1$, then (i, j), as the unique vertex $\neq (1, 1)$ adjacent to (i, 1) and (i, j), must be mapped by σ onto the unique vertex $\neq (a_1, b_1)$ adjacent to (i^{α}, b_1) and (a_1, j^{β}) , i.e., $(i, j)^{\sigma} = (i^{\alpha}, j^{\beta})$. Hence $\sigma = (\alpha, \beta) \in N$.

Case 2. $(1, 1)^{\sigma} = (a_1, b_1)$ and $(1, 2)^{\sigma} = (a_2, b_1)$. In this case $(1, j)^{\sigma} = (j^{\beta}, b_1)$ and $(2, 1)^{\sigma} = (a_1, 2^{\alpha})$ with $(\alpha, \beta) \in \Sigma_m$, so $(i, j)^{\sigma} = (j^{\beta}, i^{\alpha}) = (i, j)^{(\alpha, \beta)\tau}$. Hence $\sigma = (\alpha, \beta)\tau \in \Sigma_m \wr \Sigma_2$.

Lemma 2. Let \mathscr{G} be a strongly regular graph such that k = 2(m-1) and $l = (m-1)^2$ for some $m \ge 2$. Then \mathscr{G} is isomorphic with \mathscr{L}_m unless m = 4, in which case there is, up to isomorphism, exactly one exceptional graph.

Proof. In view of [9], it suffices to prove that $\mu = 2$. By (8) of Section 2 we have $\mu > 0$. By (3) of Section 2 we have

$$\mu(m-1) = 2(2m-3-\lambda).$$

Assume first that μ is even, $\mu = 2\mu_0$. Then $\mu_0(m-1) = 2m-3-\lambda$, so that $(\mu_0-2)m = \mu_0 - 3 - \lambda$. We have $\lambda \ge 0$, and since $0 < \mu \le k = 2(m-1)$, $0 < \mu_0 \le m - 1$. Hence $(\mu_0 - 2)m \le \mu_0 - 3 \le m - 4$, so that $(\mu_0 - 3)m \le -4$ and hence $\mu_0 \le 2$. If $\mu_0 = 2$, then $\lambda = -1$ which is impossible, hence $\mu_0 = 1$ and $\mu = 2$ as claimed.

Now assume that μ is odd, so that 2|m-1 and we can write m = 2t + 1, $t \ge 1$. Then $\mu t = 4t - 1 - \lambda$, that is, $\lambda = (4 - \mu)t - 1$, so that $\mu \le 3$. By (6) of Section 2 we have that $9t^2 + 4t$ or $t^2 + 8t + 4$ must be a square according as $\mu = 1$ or $\mu = 3$. But the non-negative integral solutions of the equations

$$y^2 = 9t^2 + 4t$$
 and $y^2 = t^2 + 8t + 4$

are respectively y = 0, t = 0 and y = 2, t = 0, contrary to $t \ge 1$.

Since it is known [4] that the exceptional graph in case m = 4 of Lemma 2 does not admit a rank 3 automorphism group, we have Theorem I as an immediate Corollary to Lemmas 1 and 2.

If $H \leq \Sigma_m$, $m \geq 2$, is doubly transitive, then $H \wr \Sigma_2$ is a rank 3 subgroup of $\Sigma_m \wr \Sigma_2$ on the m^2 letters. There are rank 3 subgroups of $\Sigma_m \wr \Sigma_2$ not of this type and we make no attempt here to classify them.

Of course it should be noted that Lemma 2 is purely a result about graphs with no reference to groups. The same remark applies to Lemma 4 in the next section.

4. Proof of Theorem II. The symmetric group Σ_m on $X = \{1, 2, ..., m\}, m \ge 3$, acts as a rank 3 group on the set of $\binom{m}{2}$ 2-element subsets of X, with subdegrees $k = 2(m-2), \ l = \binom{m-2}{2}$, and $\mu = 4$. The action is imprimitive if m = 4 and primitive if $m \ge 5$. The graph \mathscr{J}_m afforded by the suborbit of length 2(m-2), in

which two 2-element subsets S and T are adjacent if and only if $|S \cap T| = 1$, is isomorphic with the line graph of the complete graph on m vertices, i.e., the graph of triangular type on $\binom{m}{2}$ vertices.

Lemma 3. Σ_m is the full automorphism group of \mathcal{J}_m , $m \geq 5$, while Σ_4 has index 2 in the automorphism group of \mathcal{J}_4 .

Proof. The maximal cliques of \mathcal{J}_m containing a vertex $\{a, b\}$ are of two types.

(I)
$$\begin{cases} [a] = \{\{a, x\} \mid x \in X - \{a\}\} \\ [b] = \{\{y, b\} \mid y \in X - \{b\}\} \end{cases}$$

and

(II)
$$\{a, b\}, \{b, z\} \text{ and } \{a, z\}, z \notin \{a, b\}.$$

If σ is an automorphism of \mathscr{J}_m and $\{a, b\}^{\sigma} = \{c, d\}$, then, if $m \geq 5$, $[a]^{\sigma} = [c]$ or [d]. Here we define $a^{\pi} = c$ if $[a]^{\sigma} = [c]$. Then it is easy to verify that $\pi \in \Sigma_m$ and π induces σ . In case m = 4 there are involutions in the automorphism group of \mathscr{J}_4 interchanging the two types (I) and (II) of maximal cliques, e.g., α mapping $\{1, 3\}$ onto $\{2, 4\}$ and fixing all other vertices. We see that $\langle \Sigma_4, \alpha \rangle$ is the full automorphism group of \mathscr{J}_4 .

Lemma 4. Let \mathscr{G} be a strongly regular graph with k = 2(m-2) and $l = \binom{m-2}{2}$, $m \ge 4$. Then $\mu = 4$ unless

$$\begin{array}{ll} \mu = 6 & and & m = 7, \, 9, \, 17, \, 27 \, \ or \, 57 \, , \\ \mu = 7 & and & m = 51, \quad or \\ \mu = 8 & and & m = 28, \, 36, \, 325, \, 903 \, \ or \, 8, 128 \end{array}$$

Proof. If $\mu = 0$, then m = 4 by (8) Section 2 and hence $\lambda = 3$ by (3), which is impossible by (6). Hence $\mu > 0$. By (3) we have

(*)
$$\mu(m-3) = 4(2m-5-\lambda).$$

We consider two cases according as μ is even or odd.

Case 1. $\mu = 2\mu_0$. In this case $\mu_0(m-3) = 2(2m-5-\lambda)$, so that $0 \le 2\lambda = (4-\mu_0)m + 3\mu_0 - 10$. Hence, since $\mu_0 \le (m-2)$, we have

$$(\mu_0 - 4) m \leq 3 \mu_0 - 10 \leq 3 (m - 2) - 10 \leq 3 m - 16.$$

Hence $(\mu_0 - 7)m \leq -16$ and $\mu_0 < 7$. If $\mu_0 = 5$ or 6, then $\lambda = \frac{5-m}{2}$ or 4-m so that m = 5 or 4 respectively. In the first case, $\mu_0 = 5 > m - 2 = 3$ and in the second $\mu_0 = 6 > m - 2 = 2$, so both are ruled out. The remaining possibilities are:

μ_0	1	2	3	4
μ	2	4	6	8
λ	$\frac{3m-7}{2}$	m-2	$\frac{m-1}{2}$	1
d	$\frac{9m^2-34m+25}{4}$	$(m-2)^2$	$\left(\frac{m+3}{2}\right)^2$	8m + 1

By (6) of Section 2, the entries in the last row are squares.

For $\mu_0 = 1$ we have the equation $4y^2 = 9m^2 - 34m + 25$, for which the (non-negative integral) solutions are y = 1, m = 3 and y = 0, m = 1, both of which are impossible.

If $\mu_0 = 3$ we have by (4) and (5) of Section 2 that $r = \frac{m-5}{2}$ and s = -4, so that $f = \frac{4m(m-2)}{m+3}$. Since (m+3, m) | 3 and (m+3, m-2) | 5, we have that $m+3 | 4 \cdot 3 \cdot 5$ giving m = 7, 9, 12, 17, 27, or 57. If m = 12, then $\lambda = 13/2$, so this case is impossible.

If $\mu_0 = 4$, we have the equation $y^2 = 8m + 1$. Writing y = 2w + 1, we have $m = \binom{w+1}{2}$, $k = w^2 + w - 4$ and $l = \frac{1}{8}(w^2 + w - 6)k$, and since $\lambda = 1$ and $\mu = 8$, we get r = w - 3 and s = -w - 4 by (4) of Section 2. Hence by (5) of Section 2,

$$f = \frac{w(w+2)(w+3)(w^2+w-4)}{8(2w+1)}$$

and since $w \ge 3$ and (2w+1, w+2) | 3, (2w+1, w+3) | 5 and $(2w+1, w^2+w-4) | 17$, we must have $2w + 1 | 3 \cdot 5 \cdot 17$, giving

$$w = 7, 8, 25, 42 \text{ or } 127$$

i. e.,

$$m = 28, 36, 325, 903$$
 or $8,128$

Case 2. $\mu \equiv 1$ (2). In this case (*) implies that $4 \mid m-3$, and we write m = 4t+3. Then by (*), $\lambda = (8 - \mu)t + 1$ and $\mu \leq 9$. The possibilities are:

μ]1	3	5	7	9
λ	7t + 1	5t + 1	3t + 1	t+1	0
d	$49 t^2 + 32 t + 4$	$25t^2 + 12t$	$9t^2 + 8t + 4$	$t^2 + 20 t + 16$	85

Again, the entries in the last row are squares by (6) of Section 2, so $\mu \neq 9$. The nonnegative integral solutions of the equations $y^2 = 49t^2 + 32t + 4$, $y^2 = 25t^2 + 12t$ and $y^2 = 9t^2 + 8t + 4$ are y = 2, t = 0, y = t = 0 and y = 2, t = 0 respectively, so these cases are ruled out. Finally, the equation $y^2 = t^2 + 20t + 16$ has just the solutions y = 4, t = 0, which is ruled out, and y = 20, t = 12, giving m = 51.

Lemma 5. If $G \leq \Sigma_m$, $m \geq 4$, has rank 3 on the 2-element subsets, then G is 4-fold transitive unless m = 9 and $G \approx P \Gamma L_2$ (8).

Proof. The cases m = 4 and 5 follow from the fact that $\frac{nkl}{(k,l)}$ divides |G|. Assume that m > 5 and that G is not 4-fold transitive. Clearly G is transitive on the set of 4-element subsets, i.e., G is 4-homogeneous, and if S is a 2-element subset, then G_S is transitive on the 4-element sets containing S. Hence if Λ is a 4-element set, $G_{\Lambda}: G_{\Lambda,S} = 6$. Hence $G_{\Lambda} | \Lambda$ has order 12, and we have by KANTOR'S result [8] that possibilities are

The divisibility $\frac{n k l}{(k, l)} |G|$ rules out all but the case $m = 9, G = P \Gamma L_2$ (8).

D. G. HIGMAN

Note. The result stated by KANTOR in [8] is proved there only under the additional assumption that $G_A | \Lambda$ has order ± 8 , which is quite sufficient for our purposes.

According to [2, 3] and [6, 7] if \mathscr{G} is a strongly regular graph with k = 2(m-2), $l = \binom{m-2}{2}$ and $\mu = 4$, then $\mathscr{G} \approx \mathscr{J}_m$ unless m = 8, in which case there are exactly three exceptions. Since none of these exceptional graphs admits a rank 3 automorphism group [4], and since the complement of \mathscr{G} in the case $\mu = 6$, m = 7 has the parameters of \mathscr{J}_7 , Theorem II follows by Lemmas 3, 4 and 5.

We remark that for m = 4, any rank 3 permutation group with subdegrees 1, 4, 1 is either isomorphic with Σ_4 or the full automorphism group of \mathcal{J}_4 .

The exceptional case $\mu = 6$, m = 9 is realized by the group $G_2(2)$. It is in fact known that there is just one strongly regular graph with these parameters which admits a rank 3 automorphism group, and that $G_2(2)$ is its full automorphism group, no proper subgroup of which has rank 3 [4]. The question of the existence (even of graphs) for the remaining exceptional cases is undecided.

References

- R. C. BOSE, Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13, 389-419 (1963).
- [2] L. C. CHANG, The uniqueness and nonuniqueness of the triangular association scheme. Sci. Record 3, 604-613 (1959).
- [3] L. C. CHANG, Association schemes of partially balanced block designs with parameters v = 28, $n_1 = 12$, $n_2 = 15$, $p_{11}^2 = 4$. Sci. Record 4, 12-18 (1960).
- [4] M. HESTENES, D. G. HIGMAN and C. C. SIMS, Rank 3 permutation groups of small degree (in preparation).
- [5] D. G. HIGMAN, Finite permutation groups of rank 3. Math. Z. 86, 145-156 (1964).
- [6] A. J. HOFFMAN, On the uniqueness of the triangular association scheme. Ann. Math. Stat. 31, 492-497 (1960).
- [7] A. J. HOFFMAN, On the exceptional case in a characterization of the arcs of a complete graph. IBM J. Res. Develop. 4, 487-496 (1961).
- [8] W. M. KANTOR, 4-homogeneous groups. Math. Z. 103, 67-68 (1968).
- [9] S. S. SHRIKHANDE, The uniqueness of the L₂-association scheme. Ann. Math. Stat. 30, 781-798 (1959).
- [10] C. C. SIMS, On graphs with rank 3 automorphism groups. J. Comb. Theory (to appear).

Eingegangen am 18.7.1969

Anschrift des Autors: D. G. Higman Department of Mathematics University of Michigan

Ann Arbor, Mich. 48104, USA