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Characterization of Families of Rank 3 Permutation Groups 
by the Subdegrees I 

By 

D.G. HIGMAN 

1. Introduction. The terminology and notation of [5] for rank 3 permutation 
groups are used throughout. We consider two cases of the problem of determining 
the rank 3 permutation groups for which the degree and subdegrees are specified in 
terms of a parameter. The results are as follows. 

Theorem I. I /G  is a rank 3 permutation group o/degree m 2 with subdsgrees 1, 2 (m --  1) 
and (m --  1)2, m > 2, then G is isomorphic with a subgroup o/the wreath product Zm ~ Z2 
o/the symmetric groups of degrees m and 2, in its usual action on m 2 letters. 

Theorem H. I /  G is a rank3  permutation group o/ degree ( 2 ) w i t h  8ubdegre~8 1, 
2(m -- 2) and ( m -  2) 2 , m > 5, then G is isomorphic with a 4-/old transitive subgroup 

o/•m in its action on the 2-element subsets, unless one o/the/ollowing holds: 
(a) G ~ PILL2 (8), 
(b) # ~ 6 and m ~ 9,17, 27 or 57, 
(c) / ~ = 7 a n d m = 5 1 ,  or 
(d) ~u ---- 8 and m ---- 28, 36, 325, 903 or 8,128. 

Concerning the exceptional cases in Theorem II,  PILL2 (8) as a subgroup of Z~ 
is the only example of a subgroup of Zm, m ~ 4, which is not 4-fold transitive but  
has rank 3 on the 2-element subsets (see Lemma 5). The case /~----6, m--" 9 is 
realized by  the group G2 (2) and is known [4] to be the only such group. The remaining 
cases are undecided. 

2. Rank 3 groups and strongly regular graphs. The proofs of Theorems I and I I  rest 
on the connection between rank 3 permutation groups of even order and strongly 
regular graphs [5, 10], and the known characterizations of the graphs of L2-type [9] 
and triangular type [2, 3] and [6, 7]. 

The graphs considered in this paper are finite, undirected, and without loops. 
A graph ~ with n vertices is strongly regular [1] ff there exist integers k, l, ~,/x such 
that  

(1) each vertex is adjacent to exactly k vertices and non-adjacent to exactly 1 
other vertices, k and l positive, and 
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(2) two ad jacent  vertices are bo th  joined to exac t ly  4 other  vert ices and two non- 
adjacent  vert ices are bo th  adjacent  to  exac t ly  # vertices.  

Assume t h a t  ~r is s t rongly regular. Then  

(3) ~ Z = k ( k - - 4 - - 2 ) ,  

(4) the  m i n i m u m  polynomial  of  the ad jacency  ma t r i x  A of fr is 

(x - 2) (x~ - (4 - / ~ )  x - (2 - / ~ ) ) ,  

(5) A has k as eigenvalue with mul t ip l ic i ty  2, and  ~he mul t ip l ic i t ies / ,  g of  the  roots  
r, s of  x 2 - -  (4 - -  #) x - -  (k - -  #) as eigenvalues of  A are respect ively  

] _  (k + l)s + k and  g - -  (k + l)r + k 
8 - - F  r ~ 8  

with ] + g =- k + l, and  

(6) one of the  following holds 

(a) 2 = 1 , # = 4 - ~ - 1 = 2 / 2  and ] = 9 = 2 ,  or 

(b) d ---- (4 - -  #)2 _~ 4(2 - -  #) is a square.  

The s t rongly regular  g raph  ~r is connected ff and  only i f / z  > 0, and  its comple- 

men t  ~ is connected if and  only if # < 2. We say  t h a t  ~ is primitive i f  ~ and  ~ are 
connected, so t h a t  

(7) ~r is pr imi t ive  if and  only if 0 < ft < k. 

I f  # ----- 0, t hen  (identity) w (adjacency) is an  equivalence re la t ion on the  set of  
vertices, hence 

(8) I f /~  = 0, then  2 -J- 2 [ n, and ff tt = 2, then  1 -J- 1 [n. 

I f  G is a r a n k  3 pe rmuta t ion  group of  even order on a finite set  X, ] X[  ---- n, and 
if lJ and T' are the  nontr ivial  orbits of  G in X • X,  then  the  graphs  ~ = (X, LJ) and  

= (X, F )  are a complemen ta ry  pair  of  s t rongly regular  graphs,  each admi t t ing  
G as a r ank  3 au tomorph i sm ~ o u p ,  the  pa rame te r s  k, l and 4, /x being respect ively  
the  subdegrees (other t han  1) and  the  intersect ion numbers  of G [5, 10]. P r imi t iv i ty  
of  the p e r m u t a t i o n  group G is equivalent  ~o p r imi t iv i ty  of  the g raph  ~ .  

3. Proof  of Theorem I. The  wrea th  p roduc t  Zm ~ Z2 of the  symmet r i c  group Zm of 
degree m > 2 and  the symmet r i c  gToup Z2 of order  2 is cons t ruc ted  as the  split  
extension of the  group N = Zm • Zm b y  X2 ---- <~>, where ~ acts  on iV according to 
(~l, zt2) ~ = (~2, ~1), gi ~ Z m .  This group  acts as a r ank  3 pe rmu ta t i on  group on 
X • X ,  X -~ {1, 2 . . . . .  m} according to  

(i, ?')( . . . . .  ) = (i "~, j=') and (i, ])~ ---- (], i ) ,  

with 2 = 2 (m - -  2), 1 = (m - -  2) 9" and # = 2. The act ion is impr imi t ive  for rn = 2 
and pr imit ive  for m >= 3. The  graph ~fm afforded b y  the  suborbi t  of  l e n ~ h  2 (m - -  2), 
in which vert ices (a, b) and  (c, d) are ad jacen t  if  and  only ff t hey  are dist inct  and  
a = c or b = d, is isomorphic wit  h the  line graph of  the  complete  b ipar t i te  g raph  on 
2 m  vertices, i.e. the s t rongly  regular  g raph  of L2- type  on 2 m  vertices.  

L e m m a  1. Xm ~ Z2 is the ]ull automorphism group o / ~ m ,  m > 2. 
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P r o o f .  Each  ve r t ex  (a, b) is con ta ined  in  e xa c t l y  two  m a x i m a l  cliques, wi th  
ver t ices  {(a, x )[x  = 1, 2 . . . .  , m} and  {(y, b)[y -~ 1, 2 , . . . ,  m}, respect ive ly .  I f  a is an  
a u t o m o r p h i s m  of  ~ m ,  we have  two possibil i t ies.  

Case 1. (1, 1) ~ = (al, bl) a n d  (1, 2) a = (a l ,  b2). I n  th is  case (i, j)a ~ (a l ,  ?'~) and  
(i, 1) ~ ~ (i% bi) w i th  ~, f l e  Zm such t h a t  1 ~ = a i  and  1~ = bl. I f  i and  ] are  bo th  
=~ 1, t hen  (i, ~), as the  unique ve r t ex  =~ (1, 1) ad j acen t  to  (i, 1) and  (i, ~), m u s t  be 

m a p p e d  b y  a on to  the  unique  v e r t e x  ~= (a i ,  bi) a d j a c e n t  t o  (i% bi) a n d  (a l ,  ]~), i.e., 
(i, 2")~ = (i% ~) .  Hence  a = (~, fl) e h r. 

Case 2. (1, 1)a = (a i ,  bl) and  (1, 2) a = (a2, bi). I n  th is  case (1, i) a = (]~, bi) and  
(2, 1) a -= (a l ,  2 ~) wi th  (~, fl) e z r a ,  so (i, ])a ---- (i~, i a) ---- (i, ])(~'~)*. Hence  a ~ -  (cr ~ 

e Z ~  ~Z2. 

L e m m a  2. Let ~ be a strongly regular graph such that k ~ 2(m - -  1) and  1 = ( m -  1) 2 
]or some m ~ 2. Then ~ is isomorphic with ~q~m unless m = 4, in which case there is, 
up to isomorphism, exactly one exceptional graph. 

P r o o f .  I n  view of  [9], i t  suffices to  prove  t h a t / ~  = 2. B y  (8) of  Sect ion 2 we have  
# > 0. B y  (3) of  Sect ion 2 we have  

# ( m - -  I) = 2 ( 2 m - -  3 - -  2). 

Assume first t h a t  /~ is even, /i ~ 2#0. Then /~o(m --  i)  ~- 2m --  3 --  2, so t h a t  

(#o - -  2)m ----- ~uo - -  3 - -  2. W e  have  2 > = 0 ,  and  since 0 < / ~ k = 2 ( m - -  1), 
0 < / z o ~ m - - l .  Hence  (#o - -  2)m --< /zo - -  3 --< m - -  4, s o t h a t ( / i o - - 3 ) m ~ - - 4  
and  hence #o ----< 2. I f /~o = 2, t h e n  ~ = - -  1 which is impossible ,  hence #0 ----- 1 a n d  
/l ---- 2 as  c laimed.  

Now assume t h a t / ~  is odd,  so t h a t  2 [ m - -  1 and  we can wri te  m = 2 t + 1, t _>-- 1. 
Then /~ t  = 4t  - -  1 - -  ~, t h a t  is, ~ = (4 - - / z ) t  - -  1, so t h a t / z  ~ 3. B y  (6) of  Sect ion 2 
we have  t h a t  9 t  2 -+- 4 t  or t 2 ~- 8t  + 4 m u s t  be a square  according as  # = 1 or/~ ---- 3. 
Bu t  t he  non-nega t ive  in teg ra l  }olutions of  the  equat ions  

y2 _-- 9 t  2 + 4 t  a n d  y2 = t 2 .~_ 8t  -}- 4 

are  respec t ive ly  y ---- 0, t ---- 0 a n d  y ---- 2, t ~ 0, c o n t r a r y  to  t _--> 1. 
Since i t  is k n o w n  [4] t h a t  the  excep t iona l  g r a p h  in case m = 4 o f  L e m m a  2 does no t  

a d m i t  a r a n k  3 a u t o m o r p h i s m  group,  we have  Theorem I as an  i m m e d i a t e  Corol lary  
to  L e m m a s  1 a n d  2. 

I f  H ~ Zm,  m --_> 2, is doub ly  t rans i t ive ,  t hen  H ~27u is a r ank  3 subgroup  of  Zm ~Z2 
on the  m 2 le t ters .  There  are  r a n k  3 subgroups  of  Zm l Z2 no t  of  th is  t y p e  and  we m a k e  
no a t t e m p t  here to  classify them.  

Of course i t  should  be no ted  t h a t  L e m m a  2 is pu re ly  a resul t  a b o u t  graphs  wi th  no 
reference to  groups.  The  same r e m a r k  appl ies  to  L e m m a  4 in the  nex t  section. 

4. Proof  of Theorem l I .  The symmet r i c  group 2:m on X ---- {1, 2 . . . . .  m}, m --> 3, 

acts  as a r a n k  3 group: on ~the set  of  ( 2 ) 2-e lement  subsets  of  X,  wi th  subdegrees  

k ~- 2 (m - -  2), 5- - - - (m-2 2 )  , a n d  ~u - -  4. The  ac t ion  is impr imi t i ve  i f  m ---- 4 a n d  
g 

pr imi t ive  ff m _-- 5. The  g raph  J m  afforded b y  the  snborb i t  of  l eng th  2 (m - -  2), in  
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which two 2-element  subsets  S and  T are  a d j a c e n t  ff a n d  only  ff IS  n T[ ---- 1, is 
i somorphic  wi th  the  line g raph  of  the  comple te  g raph  on m vert ices,  i .e . ,  the  gTaph of  

o o  (;) vertices.  

L e m m a  3. Zm is the [ull automorphism group o / J m ,  m > 5, while •4 has index 2 
in the automorphism group o / j 4 .  

P r o o f .  The  m a x i m a l  cliques of  J m  conta in ing  a ve r tex  {a, b} are  of  two types .  

[a]---~ { { a , x } l x e X -  {a}}, 

(I) [b] = { {y ,  b)  l Y e Z - -  { b ) )  
and  

(II)  {a ,b} ,  {b,z} and  {a ,z} ,  z ~  {a ,b} .  

I f  a is an  a u t o m o r p h i s m  of  J m  and  {a, b} a = {c, d}, then,  i f  m > 5, [a]a = [c] or [d]. 
Here  we define a n = c i f  [a] a = [c]. Then  i t  is easy  to  ver i fy  t h a t  zr e •m and  ~z 
induces  a. I n  case m ---- 4 there  are involu t ions  in  the  a u t o m o r p h i s m  group of  ] 4  
in te rchang ing  the  two t y p e s  (I) and  (II)  of m a x i m a l  cliques, e.g. ,  ~ m a p p i n g  {1, 3} 
onto  {2, 4} and  fixing al l  o ther  vert ices.  W e  see t h a t  <Z4, cr is the  full  a u tomorph i sm  

group of  f14. 

L e m m a  4. Let ~ be a strongly regular graph with k = 2 (m - -  2) and l = ( m ; 2 ) ,  " " 

m > 4. Then ~t -~ 4 unless 

/ x = 6  and m = 7 , 9 , 1 7 , 2 7  or 57,  

# = 7  and m = 5 1 ,  or 

/.t = 8 and m = 2 8 , 3 6 , 3 2 5 , 9 0 3  or 8,128. 

P r o o f .  I f  ~u = 0, t hen  m ---- 4 b y  (8) Sect ion 2 and hence ), ---- 3 b y  (3), which is 

imposs ib le  b y  (6). Hence  # > 0. B y  (3) we have  

(*) # ( m - -  3) ---- 4 ( 2 m - -  5 - -  4). 

W e  consider  two cases according as /~  is even or  odd.  

Case 1. #----2/xo.  I n  th is  case / x o ( m - - 3 ) = 2 ( 2 m - - 5 - - ~ ) ,  so t h a t  0_--<2)~ 
= (4 - - / x 0 ) m  + 3/~0 - -  10. Hence,  since /~o < (m - -  2), we have  

( ~ o - -  4 ) m  < 3 / / o - -  10 ~ 3 ( m - -  2) - -  10 < 3 m - -  16. 

5 - m  
Hence  (/~o - -  7) m =< - - 1 6  and  ~uo < 7. I f  # 0 : 5 o r 6 ,  t h e n  2 - -  ~ o r 4 - - m s o  

t h a t  m = 5 or 4 respect ive ly .  I n  the  first  case, /x0 = 5 > m - -  2 = 3 and  in  the  
second/xo = 6 > m - -  2 = 2, so bo th  are  ru led  out .  The remain ing  possibi l i t ies  a re :  

2 
3 m - - 7  

9 m 2 --  34 m -f- 25 

2 3 

4 6 
m - - 1  

m - - 2  2 

(m -- 2) ~- 

B y  (6) of  Sect ion 2, the  entr ies  in the  las t  row are  squares.  

8 m + l  
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For  /x0 ---- 1 we have the  equa t ion  4y  2 = 9m 2 - -  34m -~ 25, for which the (non- 
negat ive  integTal) solutions are y ---- 1, m ---- 3 and y ---- 0, m = 1, both  of which are 

impossible. 
m - - 5  

If/x0 ---- 3 we have by  (4) and  (5) of Section 2 tha t  r - -  ----if-- and  s = - -  4, so t ha t  

] _ 4 mm§ - 2) . Since (m + 3, m) 13 and  (m -~ 3, m - -  2) 15, we have t ha t  m ~- 3 ] 4- 3- 5 

giving m ---- 7, 9, 12, 17, 27, or 57. I f  m = 12, t hen  2 ----- 1312, so this case is impossible. 
I f  #0 ---- 4, we have the  equa t ion  y2 ---_ 8ra ~- 1. Wr i t i ng  y ---- 2w + 1, we have (w+,) 

m---- , k = w  2 ~ - w - 4  and  l-----~(w 2 - ~ w - 6 ) k ,  and  since 2 = 1  and  

/~ ~-- 8, we get r = w --  3 and  s = - -  w - -  4 by  (4) of Section 2. Hence by  (5) of 

Section 2, 
f = w(w + 2) (w + 3) (w2 § w - 4) 

S(2w + 1) 

a n d  since w _= 3 and  (2w + 1, w + 2) 13, (2w § 1, w + 3) 15 and  (2w + 1, w 2 + w - -  4)]17, 
we mus t  have 2w ~- 113 �9 5 �9 17, giving 

w = 7, 8, 25, 42 or 127, 

i .e. ,  
m---- 28, 36, 325, 903 or 8,128. 

Case 2. # -= 1 (2). I n  this case (*) implies t h a t  4 1 m - - 3  , and  we write m = 4 t - ~ 3 .  
Then  by  (*), ~ ---- (8 - - /~ ) t  ~ 1 and  ~u ~ 9. The possibilities are:  

] 1 3 5 7 9 

7 t - ~ l  5 t ~ l  3 t ~ - i  t ~ - I  0 
d 49 t2 -~ 32t-~- 4 25 t2~12 t  9t2 ~ 8t-}- 4 t2 -}- 20t ~ 16 85 

Again,  the entries in  the las t  row are squares by  (6) of Section 2, so/~ :~ 9. The non-  
negat ive  in tegra l  solutions of the equat ions  y2 _-- 49t 2 -b 32t ~- 4, y2 _-- 25t 2 ~ 12t 
and  y2 = 9t2 ~_ 8t + 4 are y = 2, t = 0, y---- t = 0 and  y = 2, t = 0 respectively,  
so these cases are ruled out .  F inal ly ,  the equat ion  y2 - -  t2 ~_ 20t ~- 16 has jus t  the 
solutions y ---- 4, t = 0, which is ruled out, and  y = 20, t = 12, giving m ~ 5t .  

Lemma 5. I /  G ~ •m, m ~ 4, has rank 3 on the 2-element subsets, then G is 4-/old 
transitive unless m = 9 and G ~ PI~L2 (8). 

n k l  
P r o o f .  The cases m ---- 4 and  5 follow from the fact t h a t  (b-~ divides I G]. Assume 

t h a t  m > 5 and  t h a t  G is no t  4-fold t ransi t ive.  Clearly G is t rans i t ive  on the  set of 
4-element  subsets,  i.e., G is 4-homogeneous, and  ff S is a 2-element subset,  t h e n  Gs 
is t rans i t ive  on the  4-element  sets conta in ing S. Hence ff A is a 4-element  set, 
GA: GA, S ~-- 6. Hence  G A l A  has order 12, and  we have b y  KA~TO~'S result  [8] t h a t  
possibilities are 

m G 

6 PSL2(5), PFL2(5) 
9 PSL2 (8), PFL2 (8) 

33 PI'L2 (32). 
n k l  

The divis ibi l i ty  ~ [G[ rules out  aU bu t  the  case m = 9, G ---- P F L 2  (8). 
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N o t e .  The result s tated by  KA~TO~ in [8] is proved there only under  the addit ional  
assumpt ion  tha t  GA[ A has order ~: 8, which is quite sufficient for our purposes. 

According to [2, 3] and [6, 7] if ~ is a s trongly regular graph with ]c ---- 2 (m - -  2), 

2 a n d / z  ~- 4, then ~ ~ J m  unless m ---- 8, in which case there are exact ly 

three exceptions. Since none of  these exceptional graphs  admits  a rank 3 auto- 
morphism group [4], and since the complement  of  ~r in the case/z ---- 6, m ---- 7 has the 
parameters  of  J 7 ,  Theorem I I  follows by  Lemmas  3, 4 and 5. 

We remark  tha t  for m ~ 4, any  rank 3 permuta t ion  group with subdegrees 1, 4, 1 
is either isomorphic with Z4 or the full au tomorphism group of  J 4 .  

The exceptional case ~u ----- 6, m ~ 9 is realized by  the group G2 (2). I t  is in fact  
known tha t  there is just  one strongly regular graph with these parameters  which admits  
a rank 3 au tomorphism group, and tha t  G~ (2) is its full au tomorphism group, no 
proper subgroup of  which has rank 3 [4]. The question of  the existence (even of  
graphs) for the remaining exceptional eases is undecided. 
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