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Abstract. Variational energy minimization techniques for surface reconstruction are implemented by evolving
an active surface according to the solutions of a sequence of elliptic partial differential equations (PDE’s). For
these techniques, most current approaches to solving the elliptic PDE are iterative involving the implementation of
costly finite element methods (FEM) or finite difference methods (FDM). The heavy computational cost of these
methods makes practical application to 3D surface reconstruction burdensome. In this paper, we develop a fast
spectral method which is applied to 3D active surface reconstruction of star-shaped surfaces parameterized in polar
coordinates. For this parameterization the Euler-Lagrange equation is a Helmholtz-type PDE governing a diffusion
on the unit sphere. After linearization, we implement a spectral non-iterative solution of the Helmholtz equation by
representing the active surface as a double Fourier series over angles in spherical coordinates. We show how this
approach can be extended to include region-based penalization. A number of 3D examples and simulation results
are presented to illustrate the performance of our fast spectral active surface algorithms.

Keywords: star-shaped surfaces, active contour surface reconstruction, double Fourier series, spherical harmonics,
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1. Introduction

Partial differential equations (PDE’s) have been widely
applied to solve many computer vision and image pro-
cessing problems, such as curvature based contour flow,
edge-preserving image smoothing, image registration
via deformable models, and image segmentation. The
advantages of applying PDE methods to image analy-
sis have been summarized in [7]. In particular, some of
these problems, such as shape from shading [17], sur-
face reconstruction [35] and active surfaces [12], can be
formulated in the framework of energy minimization.
Variational principles can be applied to find the energy
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minimizing surface and lead to solving partial differen-
tial equation (PDE) of elliptic type for the minimizing
surface f

∇2 f − µ f = g, (1)

where g is surface derived from the image data, e.g., a
noisy edge map. Since direct solution of (1) can be quite
difficult, one can perform successive approximations to
(1) over time leading to a sequence of solutions { fn}n

called active surfaces. Methods which reconstruct sur-
faces by solving a sequence of PDE’s are known as
variational methods of energy minimization.

This paper is concerned with implementation of fast
variational methods for the reconstruction of smooth
star-shaped 3D surfaces. The majority of variational
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approaches to 3D object reconstruction solve PDE’s
on a rectangular domain, e.g. the plane � ∈ R

2.
Such a 2D representation is natural as a 3D surface
is simply a mapping x : � → R

3, i.e. x(v, w) =
(x1(v, w), x2(v, w), x3(v, w)), where (v, w) ∈ �.
These approaches solve the obtained PDE’s by iterative
techniques, such as finite element methods (FEM) and
finite difference methods (FDM). For example, in [10]
Cohen used FEM to solve the PDE’s in active balloons
models and in [37] Xu used FDM to solve the PDE’s
for gradient vector flow. The advantage of FEM meth-
ods is their geometric flexibility due to their ability to
perform local mesh refinement. However, FEM/FDM
have met with difficulties for practical 3D imaging ap-
plications. The large number of voxels in 3D images
causes significant growth of computation time which
is intolerable in many practical applications.

This paper presents a method for accelerating active
surface reconstruction for 3D star-shape objects. We
adopt a polar version of the active balloon framework
introduced by Cohen [10]. The surface functions of
such objects and the associated PDE’s can be defined
over the unit sphere S2 instead of a 2D rectangular do-
main, where S2 := {(x, y, z) : x2 + y2 + z2 = 1} in
the cartesian coordinate system or S2 := {(r, θ, φ) :
r = 1} in the spherical coordinate system. With the
assumption that the origin has been aligned with the
object center, any star-shaped 3D surface can be nat-
urally modelled by a single valued radial description
function, f (θ, φ) : S2 → R defined on the unit sphere.
Orthogonal functions on the unit sphere, such as spher-
ical harmonics and double Fourier series have been
widely used to decompose the radial descriptor f so
that the statistical information on the corresponding
coefficients can be used to guide other image process-
ing tasks, such as deformation analysis [16] and im-
age segmentation [32]. In fact, the radial descriptor f
can be applied to the wide class of any simply con-
nected (no hole) surface which can be embedded into
the unit sphere. For example, in [6] Brechbühler pro-
posed to parameterize the surfaces of simply connected
3D objects by defining a continuous, one-to-one map-
ping from the surface of the original object to the sur-
face of a unit sphere. The parameterization is imple-
mented via a constrained optimization procedure. In
[34], Tao proposed to build a statistical shape model of
cortical sulci by projecting sulci onto the unit sphere
and extracting intersubject variability of the shape of
the sulci and of the mean curvature along the sulcal
curves.

PDE algorithms on the unit sphere have been widely
studied for the numerical simulation of turbulence
and phase transition, weather prediction and the study
of ocean dynamics. In 1970’s, spectral methods and
pseudo-spectral methods on the unit sphere emerged
as a viable alternative to finite difference and finite el-
ement methods [3, 4, 25]. It is well known that such
spectral methods (SM) have unsurpassed accuracy for
boundaryless periodic domains like the unit sphere and
enjoy a faster rate of convergence than that of FDM
and FEM for solving PDE’s [15]. To further accelerate
run-time without loss in accuracy, Cheong [9] and Yee
[38] have devised less computationally demanding al-
ternatives to the spherical harmonic basis. These results
form our prime motivation for applying fast spectral
methods to 3D surface reconstruction with degraded
image-domain information, such as broken or blurred
edge maps [10, 19].

Fourier snakes using spherical harmonic represen-
tations have been proposed for 3D deformable shape
models by Staib and Duncan [31], and Székely et al.
[33]. The Mumford-Shah energy functional [24] was
introduced by Chan to deal with blurred or broken
boundary problem [8]. An alternative approach is to
incorporate region-based grey-level information into
the reconstruction process [18] and [36]. The work de-
scribed in this paper combines and extends these ap-
proaches in several novel ways. First, we adopt a dif-
ferent total energy functional from [33] and [24] which
accounts for an incomplete edge map by using a 3D
Chamfer-like distance function [11] to enforce edge
information, and an internal energy which combines
a surface roughness penalty and a grey-scale region-
based penalty similar to that used in [13] and [18].
Second, we adopt the variational approach of [10] to
minimize the energy functional and we show that the
Euler-Lagrange equations reduce to a non-linear PDE
over the unit sphere describing the energy minimizing
surface. Third, temporal evolution of the active sur-
face is obtained directly by linearization of this PDE
via successive approximations. This linearization leads
to an evolving surface arising from successive solu-
tion of a sequence of homogeneous Helmholtz PDE’s.
Fourth, instead of spherical harmonics we apply the
faster Cheong’s double Fourier series [9] to solve each
of these successive Helmholtz PDE’s. These four at-
tributes are the essence of our fast spectral methods
(FSM).

This paper is organized as follows. In the next
section, we briefly review the use of PDE’s and
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variational principles for surface reconstruction via
3D active surfaces. In Section 3 we describe the gen-
eral spectral method on the unit sphere proposed by
Cheong. Simulation and experimental results are pro-
vided in Section 4. Finally in Section 5 we discuss
current limitations of the methods and future research
directions. The reader interested in more details and
additional applications of surface reconstruction, seg-
mentation, and registration is referred to the thesis of
the first author [22].

2. PDE’s in Surface Reconstruction

2.1. Surface Reconstruction

Let g = g(θ, φ) be a noisy radial function defined
in spherical coordinates (g, θ, φ). We call g the polar
edge map and it is obtained from coarse segmenta-
tion of a star-shaped object. The surface reconstruction
problem is to apply some form of regularization to ap-
proximate the rough edge map g(θ, φ) by a smooth
function f (θ, φ). Variational approaches to this prob-
lem specify the solution f as a stationary point which
minimizes the energy functional [12, 21]:

E( f, g) = µ

∫
S2

Y ( f, g) d�S2 +
∫

S2
Z ( f ) d�S2 , (2)

where Y measures the distance between the function
f and the polar edge map g, Z is a measure of recon-
struction smoothness, µ controls the tradeoff between
the faithfulness to the segmentation data and smooth-
ness of the surface, and d�S2 is a differential surface
element on the unit sphere. The two terms on the right
hand side of (2) represent the faithfulness to the seg-
mentation data, called the data fidelity term, and the
regularization penalty, called the smoothness term, re-
spectively. If we define the data fidelity as the L2 metric
Y ( f, g) = ( f (θ, φ)−g(θ, φ))2, the surface reconstruc-
tion problem min f E( f, g) is equivalent to penalized
least squares surface fitting. In order to enforce smooth-
ness the term Z ( f ) frequently contains the derivative
of the function f . For instance, Z can be defined to
be Z ( f ) = ‖∇ f ‖2, where ∇ is the gradient operator.
With these choices, the energy functional becomes

E( f, g) =
∫

S2
µ( f (θ, φ) − g(θ, φ))2 d�S2

+
∫

S2
‖∇ f (θ, φ)‖2 d�S2 . (3)

To minimize E( f, g) over f one applies the calcu-
lus of variations [14] to determine an Euler-Lagrange
equation for a stationary point of the above energy
functional. This equation is

∇2 f − µ( f − g) = 0. (4)

When specialized to spherical coordinates (4) becomes
an elliptic equation of Helmholtz type [2], a fact that
will be used in the sequel. When a time variable is
included in the energy minimization functional (3) the
elliptic equation becomes a function over both time and
space. When indexed by the time variable the solutions
to (4) are called an evolving surface or active surface.

Although FDM and FEM have been employed to
solve the elliptic equation (4) they must be imple-
mented iteratively at each time point. The FSM ap-
proach that will be introduced in Section 3 provide a
non-iterative solution and therefore has lower compu-
tational complexity. In Section 2.2 and 2.3, we will
show that a non-linear PDE similar to (4) can be used
to reconstruct 3D star-shaped surfaces with missing or
broken edges. Due to the non-linearity of this PDE we
will see that FSM must be implemented sequentially
in time producing an evolving surface.

2.2. Parametric Active Surfaces on the Unit Sphere

Parametric active surface methods can be applied to si-
multaneously perform image segmentation and surface
reconstruction. Let x be a general parametric descrip-
tion of a surface in R

3, i.e., it is a mapping x : � → R
3,

where � is a subset of R
2. We can represent a propa-

gating surface as a parametric active surface x which
minimizes the associated energy functional E ,

E(x) =
∫

�

(Pext(x) + [α‖∇x‖2 + β‖∇2x‖2]) d� (5)

where α and β are parameters controlling the smooth-
ness of x and Pext represents a potential function,
e.g. the first term in the right side of (2). The term∫
�

α‖∇x‖2 +β‖∇2x‖2 d�, which does not depend on
the data g extracted from the image, is called internal
energy. The term

∫
�

Pext(x) d�, which is computed
from the image data and the parametric surface x, is
called the external energy. The force generated by the
internal energy discourages excessive stretching and
bending of the surface. By suitably designing the func-
tion Pext(x), the force generated by the external energy
can attract the surface towards extracted features of ob-
ject, e.g. the edge map or grey level map. The surface
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x deforms under these two kinds of forces and con-
verges to a minimizer of the energy functional E . Note
that, as compared to (2), the representation (5) of the
energy function is in a more standard form involving
regularization parameters α and β which multiply the
two surface roughness penalties.

The external force plays an important role in active
surface methods. Typically, active surfaces are drawn
towards the desired boundary by the external force
which could include one or more of the following com-
ponents: a traditional potential force, obtained by com-
puting the negative gradient of an attraction potential
defined over the image domain [12, 19]; a pressure
force, used by Cohen in his balloon model [12], which
could be either expanding or contracting depending on
whether the surface is initialized from inside or outside
of the obect; or a gradient vector flow, used by Xu [37]
and obtained by diffusion of gradient of the edge-map.
The role of the external force is to impose sufficient
boundary information to extend the capture range to
the initial surface.

Let I : R
3 → R represent the grey scale im-

age volume to be segmented, g := {xg, yg, zg} be
the set of all edge points detected in I which we
call an edge map, and d(g, (x, y, z)) be the dis-
tance from a point (x, y, z) in the evolving sur-
face x to the nearest edge point. Specifically, d can
be written:. d(g, (x, y, z))

�= min(xg,yg,zg)∈g ‖(x, y, z)−
(xg, yg, zg)‖. Figure 1 illustrates these relations. Poten-
tial functions designed to ensure fidelity to the edge
map usually have a global minimum at the object
boundary. Two common types of potential functions

I

ogf

d(g,f)

g

x

f

Figure 1. A grey level image I , the set of edge points g detected in
I , a propagating contour f (parameterized in polar coordinates), and
the distance d(g, f ) between the propagating contour and its nearest
edge point.

are:

P(1)(x) = h1(∇ I (x)), (6)

P(2)(x) = h2(d(g, x)), (7)

where h1 and h2 are functions making P(1) and P(2)

convex at the location of object boundary. For in-
stance, P(x, y, z) = −|∇ I (x, y, z)|2, P(x, y, z) =
−|∇Gσ (x, y, z)∗ I (x, y, z)|2 and P(x, y, z) = 1

1+|∇ I |p

belong to the type of P(1) [1]. In fact, |∇ I | serves
as an edge detector which locates sharp intensity
changes in image I . Potential functions of the type
P(1) have the disadvantage that the resulting external
force has very small capture range because P(1) ≈ 0
in homogeneous intensity areas. Potential functions
of type P(2) increase the capture range by attracting
the surface to the edge points, e.g. extracted by lo-
cal edge detectors. Some common choices of P(2) are
P(x, y, z) = d2(g, (x, y, z)), P(x, y, z) = −1

d(g,(x,y,z))

and P(x, y, z) = −e−d2(g,(x,y,z)) [1]. In our experi-
ment, we chose d2(g, x), a P(2)-type potential function,
to generate the external force for the active surface.
This external force will make the active surface evolve
towards the boundary along a path of minimal distance.

In (5), α‖∇x‖2 and β‖∇2x‖2 separately control the
active surface’s elasticity and rigidity. The regulariza-
tion effect coming from α‖∇x‖2 can be interpreted as
imposing a curvature based flow which has attractive
geometric smoothing properties [20, 26]. A theorem
in differential geometry states that any simple closed
curve moving under its curvature collapses to a circle
and then disappears [28]. Increasing α makes the ac-
tive surface resistive to stretching, and introduces an
intrinsic bias toward solutions that reduce the surface
area. On the other hand, increasing β makes the active
surface more resistant to tensile stress and bending. To
allow second-order discontinuity in the active surface,
we set β = 0. Equation (5) is then reduced to

E(x) =
∫

�

α‖∇x‖2 + d2(g, x) d�. (8)

For star-shaped surfaces the parameterization is most
naturally expressed in an object-centered spherical co-
ordinate system. As we will see, this representation per-
mits computational acceleration by application of spec-
tral methods. When there are missing or broken edges
the edge map g is not specified for all angles θ, φ and the
data fidelity term in (8) cannot be directly implemented.
To deal with this we follow a similar procedure to that
of Cohen et al. [11] and use a Chamfer-like distance
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function to compute the data fidelity term. Specifically,
we define a modified data fidelity term as

d(g, x) = d(g, f ) = ‖ f (θ, φ) − g f (θ, φ)‖, (9)

where g f (θ, φ) is defined as the point in the edge map
g which is closest to the point f (θ, φ) on the evolving
surface

g f (θ, φ)
�= ∥∥ argmin

(xg,yg,zg)∈g
‖(xg, yg, zg) − f (θ, φ)

× (sin θ cos φ, sin θ sin φ, cos θ )‖ − (xo, yo, zo)
∥∥,

(10)

and (xo, yo, zo) represents the coordinates of the object
center which is assumed known. The function g f will
be referred to as the closest edge map (see Fig. 1).

Equation (8) can now be rewritten as:

E( f ) =
∫

S2
α‖∇ f ‖2 + ( f − g f )2 d�S2 . (11)

Although Eq. (11) is analogous to Eq. (3), its associ-
ated Euler-Lagrange equation is not the same as (4).
Since g f is a non-linear function of f , the calculus of
variations leads to a more complicated Euler-Lagrange
equation:

α∇2 f − f = −( f − g f )
∂g f

∂ f
− g f , (12)

where ∂g f /∂ f is a suitably defined variational of the
closest edge map as a function of the evolving surface.
While it would be worthwhile to explore conditions for
existence of this variational we will sidestep this issue
by making the approximation |( f − g f ) ∂g f

∂ f | � g f in
(12). This approximation can be justified in cases that
the edge surface g f encloses a large region and that f
is close to g f . To apply FSM in Section 2.4, the elliptic
PDE (12) will have to be linearized so that it becomes
a homogeneous Helmholtz-type PDE.

2.3. Region-Based Penalization

Traditional parametric and geometric active surfaces
solely rely on the local edge detector to slow surface
propagation. These methods do not use any region-
based or volume-based information in the image. Such
active surfaces can only segment and reconstruct ob-
jects whose boundaries are well defined, e.g. by the
magnitude gradient |∇ I | of the image. For objects
with blurred or broken boundaries, traditional active
surfaces may extrude through holes in boundary. In

[8] Chan proposed to use a Mumford-Shah energy
functional [24] to deal with this “boundary leakage”
problem. Other approaches [18] and [36] explicitly in-
clude region-based information into the segmentation.
We use the same method as in [8] to incorporate the
region-based information into the energy functional of
3D parametric active surface. The region-based infor-
mation is introduced as an additional penalty function.
Define a new external energy functional Evol( f ) asso-
ciated with f as:

Evol( f ) = γ

( ∫
inside( f )

(I − uin)2dV

+
∫

outside( f )
(I − uout)

2 dV

)

= γ

( ∫
S2

( ∫ f (θ,φ)

r=0
(I − uin)2r2 dr

+
∫ B(I )

f (θ,φ)
(I − uout)

2r2 dr

)
d�S2

)
, (13)

where I = I (r, θ, φ) is the gray level intensity of the 3D
image, B(I ) represents the boundary (assumed spheri-
cal for simplicity) of the image volume, and uin and uout

are the mean intensities in the interior of the evolving
surface f and outside f respectively.

uin =
∫

inside( f ) I dV

vol(inside( f ))
, uout =

∫
outside( f ) I dV

vol(outside( f ))
. (14)

Here the denominators in (14) are the volumes inside
and outside the evolving surface. With the assumption
that the image intensity is nearly homogeneous inside
and outside the object boundary, the new external en-
ergy functional (13) has the same minimizer as (11),
which is the surface of the object. The functional (13)
can be adjoined to the Lagrangian (11) by aggregating
the integrals over S2:

E( f, g) =
∫

S2

{
α‖∇ f ‖2 + ( f − g f )2

+ γ

[ ∫ f

0
(I − uin)2r2 dr

+
∫ B(I )

f
(I − uout)

2r2 dr

]}
d�S2 (15)

which is called the region-penalized energy functional.
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Next calculus of variations is applied to obtain the
necessary condition for minimization of this penalized
Lagrangian

α∇2 f − ( f − g f )

(
1 − ∂g f

∂ f

)
− γ z( f, I ) = 0, (16)

where

z( f, I ) = f 2 · [(I ( f ) − uin)2 − (I ( f ) − uout)
2]

+ 2

(
δuin

δ f

) ∫ f

0
r2(I − uin) dr

+ 2

(
δuout

δ f

) ∫ B(I )

f
r2(I − uout) dr, (17)

and

δuin

δ f
=

∫
S2 f 2 I ( f ) d�S2 − uin surf( f )

vol(inside( f ))
, (18)

δuout

δ f
= −

∫
S2 f 2 I ( f ) d�S2 − uout surf( f )

vol(outside( f ))
, (19)

and surf( f ) = ∫
S2 f 2d�S2 is the surface area of the

evolving surface.

2.4. PDE Linearization

Comparing Eq. (16) with (4), it is clear that the Euler-
Lagrange equation (16) is no longer a homogeneous
Helmholtz PDE due to two factors: 1) g f is non-linear
in f , 2) the additive region-based penalization term z
is not linear in f . The same issue was encountered in
[18] and the authors circumvented the problem by im-
plementing an iterative approach which linearizes f
about the surface computed in the previous step fol-
lowed by update propagation. Update propagation is a
kind of successive approximation scheme for which,
at iteration n + 1, we update fn in terms of the past
iterate fn(θ ′, φ′), if fn+1 for (θ ′, φ′) has not yet been
computed, and a partial update fn+1(θ ′, φ′), if fn+1 for
(θ ′, φ′) has been computed. This succesive approxima-
tion idea can be similarly applied to (16) to transform it
to of a homogeneous linear Helmholtz equation. Com-
bining all the non-linear terms in the PDE into a single
term and moving this term to the right side of the equa-
tion, (16) can be rewritten as:

α∇2 f − f = γ z( f, I ) − ( f − g f )
∂g f

∂ f
− g f . (20)

Invoking the assumed dominance condition |( f −g f )
∂g f

∂ f )| � g f , and replacing the right hand side of (20)
with the value of fn , we obtain a linearized homoge-
neous Hemholtz equation

α∇2 fn+1 − fn+1 = γ z( fn, I ) − g fn . (21)

This evolution equation bears some similarity to the
surface evolution equations used in FDM, e.g.,

ft+�t = ft +
[
α∇2 ft − ( ft − g ft )

(
1 − ∂g ft

∂ ft

)

− γ z( ft , I )

]
�t (22)

where �t is the FDM time step which indexes the se-
quence of evolving surfaces.

3. Fast 3D Spectral Approach

As we have discussed in the introduction, FDM [37]
and FEM [12] have been used to solve the Euler-
Lagrange equations associated with active surfaces.
However, all of these methods have difficulties for 3D
images due to the inherently large required grid sizes.
Spectral methods for solving PDE’s over a 2D rectan-
gular domain are renowned for their faster rate of con-
vergence and higher accuracy as compared to iterative
FEM and FDM. These SM approaches take advantage
of symmetries by transforming the equation into the
spectral domain. They only require O(N 2 log N ) op-
erations for a 2D problem on a N × N grid. It was
Simchony who first applied SM to solve Poisson equa-
tions on 2D rectangles for computer vision problems
[30]. Although similar methods for solving PDE’s over
the unit sphere have been used in numerical weather
prediction and the study of ocean dynamics [9, 38], to
the best of our knowledge, we are the first to propose
applying them to 3D computer vision problems.

When the PDE (21) is expressed in spherical co-
ordinates, the use of basis functions, such as spheri-
cal harmonics (SH), double Fourier series (DFS) and
Chebyshev polynomials, has attractive features. An in-
structive comparison of these functions is given by
Boyd in [4]. Due to the spherical geometry, conditions
must be imposed on the basis functions to ensure that
the approximated radial function f and its correspond-
ing derivatives are continuous at the poles. For more
discussions of the pole problem, readers are refered
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to [5]. The SH basis can easily handle this pole prob-
lem because of properties of the associated Legendre
functions. However the Legendre functions also make
the computation of SH representations the most com-
putationally intensive among the three aforementioned
basis sets. On the other hand, the DFS can give com-
parable accuracy and are more easily computed. Fur-
thermore, use of the fast fourier transform (FFT) can
accelerate the computation of DFS.

As far as we know Yee [38] was the first to ap-
ply truncated double Fourier series to solve Poisson-
type equations on a sphere. However, Yee’s algorithm
had the deficiency of not properly enforcing conti-
nuity at the spherical poles. Recently, Cheong pro-
posed a new method which is similar to Yee’s method,
but directly enforces continuity at the poles and leads
to increased accuracy and stability for time-stepping
PDE solution procedures [9]. In the following sec-
tions, we discuss our application of Cheong’s spec-
tral method for solving the Helmholtz equations asso-
ciated with computing active surfaces. Notice that µ

in Eq. (4) ∇2 f − µ( f − g) = 0 and α in Eq. (21)
α∇2 f − ( f − g f )(1 − ∂g f

∂ f ) = 0 can be unified by
identifying α = 1/µ.

3.1. The Spectral Method

Here we briefly describe the spectral method proposed
by Cheong. The elliptic equation ∇2 f −µ( f − g) = 0
is a Helmholtz equation. The Laplacian operator ∇2 on
the unit sphere has the form:

∇2 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂2φ
. (23)

We assume the value of function f and g are given on
the grid (θ j , φk), θ j = π ( j +0.5)/J and φk = 2πk/K ,
where J and K are the number of data points along
the latitude and longitude angles. We can expand the
function g, and similarly for f , in a truncated Fourier
series in longitude with truncation index M , e.g.,

g(θ, φ) =
M∑

m=−M

gm(θ )eimφk (24)

where gm(θ ) is the complex Fourier coefficient given
by gm(θ ) = 1

K

∑K−1
k=0 g(θ, φk)e−imφk , φk = 2πk/K

and K = 2M . Equation (4) can then be written as an

ordinary differential equation:

1

sin θ

d

dθ

(
sin θ

d

dθ
fm(θ )

)
− m2

sin2 θ
fm(θ )

= µ[ fm(θ ) − gm(θ )] (25)

The latitude function fm(θ ) and gm(θ ) can be further
approximated by the truncated sine or cosine functions,

gm(θ j ) =
J−1∑
n=0

gn,0 cos nθ j , m = 0

gm(θ j ) =
J∑

n=1

gn,m sin nθ j , odd m (26)

gm(θ j ) =
J∑

n=1

gn,m sin θ j sin nθ j , even m 	= 0.

Equations (24)–(26) constitute Cheong’s method and
an efficient procedure for calculating the spectral coef-
ficients gn,m can be found in [9]. After substitution of
(26) into (25), we obtain an algebraic system of equa-
tions in Fourier space:

(n − 1)(n − 2) + µ

4
fn−2,m − n2 + 2m2 + µ

2
fn,m

+ (n + 1)(n + 2) + µ

4
fn+2,m

= µ

[
1

4
gn−2,m − 1

2
gn,m + 1

4
gn+2,m

]
, m = 0, or odd

(27)

and

n(n − 1) + µ

4
fn−2,m − n2 + 2m2 + µ

2
fn,m

+ n(n + 1) + µ

4
fn+2,m

= µ

[
1

4
gn−2,m − 1

2
gn,m + 1

4
gn+2,m

]
, m even 	= 0

(28)

where n = 1, 3, . . . , J − 1 for odd n, n = 2, 4, . . . , J
for even n if m 	= 0 and n = 0, 2, . . . , J − 2 for even
n, n = 1, 3, . . . , J − 1 for odd n if m = 0. Equations
(27) and (28) imply that the components of even and
odd n are uncoupled for any given m. These equations
can be rewritten in matrix format,

B f = Ag (29)



80 Li and Hero

where B and A are matrices of size J/2 × J/2 with
tridiagonal components only, f and g are column vec-
tors whose components are the expansion coefficients
of fm(θ ) and gm(θ ). For example, the system (29) for
odd n looks like the following:




b1,m c1

a3 b3,m c3

. . .
. . .

. . .
aJ−3 bJ−3,m cJ−3

aJ−1 bJ−1,m







f1,m

f3,m
...

f J−3,m

fJ−1,m




=




2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2







g1,m

g3,m
...

gJ−3,m

gJ−1,m




The procedure to solve the Eq. (4) can now be made
explicit: First, we compute gn,m , the spectral compo-
nents of g(θ, φ) by double Fourier series expansion.
Then the right hand side of (29) is calculated to ob-
tain the column vector g

1
= Ag. Finally, the tridiag-

onal matrix equation B f = g
1

is solved and f (θ, φ)
is obtained by inverse transform of fn,m via formulas
(24) and (26) with gn,m and g(θ, φ) replaced by fn,m

and f (θ, φ), respectively. Notice that the Poisson equa-
tion ∇2 f = g is just a special case of the Helmholtz
equation, so that a slight modification in the above al-
gorithm will also give the solution to homogeneous
Poisson equations. Other homogeneous elliptic equa-
tions, such as biharmonic equations can also be solved
by this spectral method.

Using the spectral method described above to solve
the PDE (21) we propose the following evolution
algorithm for implementing our fast spectral method

FSM Active Surface Algorithm

1. Initialize the evolving surface with a
sphere of radius c.

2. Compute g fn (θ, φ) and update the RHS of
(21) with fn and g fn;

3. Solve the PDE α∇2 fn+1 − fn+1 = γ z( fn, I ) −
g fn for fn+1 to update the surface;

4. Compute the error, en+1 =√∑J−1
j=0

∑K−1
k=0 ( fn (θ j ,φk )− fn+1(θ j ,φk ))2

J K
5. If en+1 > threshold, go back to 2, else

end.

In the above algorithm, α and γ are chosen in ad-
vance to control the tradeoff between surface fidelity
to the edge map and surface smoothness.

3.2. Complexity and Accuracy Analysis

Consider an elliptic equation with a grid size of N × N
on unit sphere. The FDM solver requires a total of N 2

variables with matrix size N 2 × N 2. A crude Gauss
elimination method will require O(N 6) operations and
the Gauss-Siedel relaxation will require O(N 4) opera-
tions to converge. The number of operations might be
reduced to O(N 3), if the algorithms can exploit matrix
sparseness. However, using the results of [9], the com-
putational complexity of FSM is only O(N 2 log N ).
The objective in this subsection is to evaluate and com-
pare FDM, FEM and FSM PDE solvers for the one iter-
ation of the evolving surface algorithm, i.e., for solution
of the Helmholtz equation (21) on the sphere.

To compare the complexity of FSM and FEM on
the sphere, we implemented a “cubed-sphere” FEM
algorithm similar to that of Ronchi [27]. The method
is based on a decomposition of the sphere into six
identical regions, obtained by projecting the sides of
a circumscribed cube onto a spherical surface. A com-
posite mesh can then be generated for the FEM PDE
solver. In Table 1, we list the CPU times of FSM and
FEM for solving the Helmholtz equation on the sphere
∇2 f −ε f = g, where g is a random polar function and
ε = 100. In Table 2, the L2 errors of the two methods
are listed for solving the Poisson equation ∇2 f = g.
We choose g = 3 sin(2θ ) cos(φ) as the force function
so that the analytical solution f = −0.5 sin(2θ ) cos(φ)
can be used for accuracy analysis of the two meth-
ods. It can be seen that the spectral method is not
only faster than the “cubed-sphere” FEM but also more
accurate than the “cubed-sphere” FEM. These com-
parisons were implemented on a Sun-Blade 100 Unix
machine under MATLAB.

Table 1. CPU time of spectral Helmholtz solvers based
on FSM as compared to the “cubed-sphere” FEM solver.

Number of grid points CPU time (sec)

FSM FEM FSM FEM

16 
 16 6 
 6 
 6 2.0E-2 3.4E-1

32 
 32 6 
 13 
 13 5.0E-2 6.4E-1

64 
 64 6 
 26 
 26 1.3E-1 1.3

128 
 128 6 
 52 
 52 3.8E-1 3.6
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Table 2. L2 errors for the Poisson solvers by the spectral method
based on double Fourier series and the “cubed-sphere” FEM.

Number of grid points L2 error

FSM FEM FSM FEM

16 
 16 6 
 6 
 6 1.3E-2 4.9E-2

32 
 32 6 
 13 
 13 5.6E-11 1.8E-2

64 
 64 6 
 26 
 26 8.5E-15 9.9E-3

128 
 128 6 
 52 
 52 4.5E-15 6.4E-3

To compare FSM to FDM it suffices to inspect
Table 3, which is derived from Shen [29]. Shen per-
formed a numerical experiment which applied spectral
methods and the FDM to solve the same Helmholtz
equation on the sphere. The CPU time comparison in
Table 3 indicates that the spectral method based on
double Fourier expansion is significantly more effi-
cient when compared with the spectral method based on
spherical harmonics and the algorithm based on FDM.
The experiments done by Merill in [23] gave similar
results. Notice that Shen’s spectral methods have run-
times that are faster than those reported for our spec-
tral method. One possible and reasonable explanation
is that his methods were implemented on different plat-
forms using different implementation codes (Shen used
Fortran while we used MATLAB).

4. Applications

In this section we illustrate the FSM active surface
method for simulated and real 3D image volumes.

4.1. Surface Reconstruction

We first performed experiments to compare reconstruc-
tions of a sphere and an ellipsoid in order to illustrate
the role of the regularization parameter α = 1/µ. We
simulated the effect of isotropic segmentation noise by

Table 3. CPU time for Helmholtz solvers on the sphere. (From Shen [29]).

N = M 32 48 64 96 128 192 256

Spherical harmonics 6.2E-3 1.7E-2 3.7E-2 .12 .28 1.19 3.06

Fourier I 6.6E-3 1.4E-2 2.3E-2 5.3E-2 9.0E-2 .24 .42

Fourier II 7.1E-3 1.5E-2 2.4E-2 6.0E-2 .11 .27 .46

FISHPACK(FDM) 6.8E-3 3.1E-2 6.9E-2 .13 .27 .65 1.22
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Figure 2. Standard deviation of reconstruction error vs. regulariza-
tion parameter α = 1/µ for different shapes.
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Figure 3. Standard deviation of reconstruction error vs. regulariza-
tion parameter α = 1/µ for different segmentation noise levels.

adding circular Gaussian segmentation noise to the ra-
dial functions of the shapes. In Fig. 2, the reconstruction
error is plotted versus the value of µ for two shapes.
The horizontal line represents the standard deviation
of the segmentation noise. The figure shows that for
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the simple spherical shape, which only contains a sin-
gle SH frequency component, the value of µ should
be as small as possible in order to filter out segmenta-
tion noise, while for a shape containing higher spatial
frequencies, such as the ellipsoid, µ should be opti-
mized to control the tradeoff between denoising and
matching high spatial frequencies. Note also that as
the standard Euclidean norm of the gradient is adopted
to enforce smoothness, a spherical surface minimizes
the energy function for µ = 0. When the edge map is
derived from an ellipsoidal surface the optimum value
of µ lies between 101 and 102. If µ is too small the

Figure 4. Final reconstruction of an ellipsoid for different values of regularization parameter α = 1/µ.

evolving surface is overly attracted to the mismatched
spherical shape. On the other hand, if µ is too high, the
segmentation noise dominates the reconstruction. One
possible method for improving accuracy is to use prior
information to induce more suitable shape attractors,
e.g., implementing a weighted norm on the evolving
surface gradient.

The optimum value of µ not only changes with
different shapes, but also with different segmentation
noise levels. In our second experiment, we investigated
changes in the standard deviation of the segmentation
noise for an ellipsoidal shape. Figure 3 shows that µ
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should be smaller for low SNR segmentation data than
for high SNR segmentation data, which is as expected.
Three reconstructions of the ellipsoid are presented in
Fig. 4. As previously described, the perceived goodness
of fit of the final reconstructed surfaces is determined
by the value of µ.

4.2. 3D Parametric Active Surfaces

4.2.1. Active Surface with Region-Based Penal-
ization. The region-based penalization method de-
scribed in Section 2 was applied, in conjunction with
the FSM active surface algorithm, to a synthesized 3D
image to show the advantage of leakage prevention.
An ellipsoid is contained in a 128 × 128 × 64 image.
One side of the ellipsoid boundary has been blurred

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

Figure 5. 2D slices of a 3D edge-blurred Ellipsoid.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

Figure 6. 2D edgemaps of the blurred 3D image containing the ellipsoid in Fig. 5.

with a linear filter, a single slice of which is shown in
Fig. 5. The set of edgemaps of the blurred 3D image
is shown in Fig. 6 and were derived from the blurred
image by the Canny edge detector implemented with
the MATLAB function edge( ). Both the blurred grey-
level image and the set of extracted edgemaps were then
used to drive our penalized active surface algorithm.
Figure 7(a) shows that without region-based penalty,
severe leakage of the surface occurs in the vicinity of
the blurred boundary. Figure 7(b) illustrates the positive
effect of region-based penalization. In this experiment,
we chose α = 10−6 and γ = 5α. The penalization in
each direction is proportional to f 2.

4.2.2. Liver Shape Extraction. In this experiment,
we applied the FSM active surface algorithm (with-
out region-based penalty) to 3D human liver extraction
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(a) No Volumetric Penalization (b) With Volumetric Penalization

Figure 7. Segmentation comparison between FSM active surface algorithm with and without volumetric penalization for edge blurred image.
Only a single slice of the full 3D segmented object is shown.

from an actual thoracic X-ray CT scan. The X-ray CT
image was obtained as a stack of 2-D image slices each
of size 256 × 256. Double Fourier series were used to
expand the radial function of a 3D sphere initialized
inside the liver volume. The edge maps were again
obtained by Canny filtering. The CT slices and the cor-
responding edgemaps are shown in Fig. 8.

As in the ellipsoidal surface reconstruction experi-
ment, the center of the liver was estimated in advance.
Although it was not implemented in our experiment,
dynamic center estimation could in principle be applied
as the surface evolves. The surface was initialized as a
sphere inside the liver. The initial radius was set to half
of the distance from the origin to the edge point closest

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 8. CT slices of 3D thoracic image volume and the corresponding edge maps.

to it. A 64×64 grid was used for the 3D active surface.
At the nth iteration, the closest edge map g fn is deter-
mined from fn and g as explained in Section 2.4. The
elliptic equation was then solved to propagate the active
surface to the new position fn+1. Because the boundary
information extracted by local edge detector has been
integrated into the PDE, the average distance from the
evolving surface to its convergent limit is within one
pixel after only 5 iterations.

Figure 9 shows a slice of the final 3D surface ob-
tained with different values of α. When α = 10−3,
the surface is over regularized and overly attracted to a
spherical surface by the isotropic smoothness penalty.
When α = 10−6, the regularization effect is so weak
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Figure 9. Single slice of final surface (5 iterations) of FSM active surface algorithm implemented with different values of the regularization
parameter α = 1/µ.

Figure 10. Comparison of 3D shape extraction results. (a) Local edge detector without surface reconstruction; (b) result of FSM active surface
reconstruction algorithm after 5 iterations with regularization parameter α = 10−4.

that the final surface is virtually unregularized. Empiri-
cally, it appears that α = 10−4 yields the closest match
to the true outline of the liver. This further emphasizes
the importance of studying the effect of the regulariza-
tion parameter α on final accuracy. Finally, Fig. 10(a)
shows the under-regularized final active surface while
(b) shows the final surface with α = 10−4.

5. Conclusions

In this paper, we have discussed the formulation of
3D surface reconstruction using spectral active sur-
faces with edge penalties implemented in spherical

geometry. The spectral method uses double Fourier
series as orthogonal basis to solve a sequence of el-
liptic PDE’s over the unit sphere. Compared to the
complexity of O(N 3) for iterative time domain (FDM)
balloon methods, the complexity of O(N 2 log N ) for
spectral methods is significantly lower. Our experi-
ments demonstrated fast convergence of edge penal-
ized spectral active surfaces for simulated edge maps
and those derived from actual 3D thoracic CT scans.
We extended the 3D spectral active surface methods
to region-based penalty functions allowing the surface
to account for grey-scale variations and control leak-
age at blurred boundaries. The choice of active surface
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regularization parameters requires further study. A lim-
itation of the spectral method is that it requires a reg-
ular sampling grid and thus cannot incorporate local
mesh refinement in the region of large curvatures. An-
other limitation is the requirement of star-shaped ob-
jects. We believe that a hybrid spectral/finite-element
method that provides the advantages of each should be
explored to alleviate these difficulties.
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