The Breeding Biology of two Sympatric Species of Tropical Intertidal Hermit Crabs, *Clibanarius chapini* and *C. senegalensis*

C. Ameyaw-Akumfi

Department of Zoology, University of Cape Coast; Cape Coast, Ghana

Abstract

A one-year study of breeding in the two intertidal hermit crabs Clibanarius chapini Schmitt and C. senegalensis Chevreux and Bouvier showed that both species maintain a high reproductive activity throughout the year. Brief low reproductive activities, found in both species, occurred in different months: C. chapini in November, C. senegalensis in May. While these drops cannot be attributed to any recognisable environmental factor, it is suggested that such pattern may result from competition between the two species. Sex-ratio studies indicated slightly more females than males in both species. The maximal size attained by males of both species is considerably greater than that of the females; in C. senegalensis this is very marked. It is suggested that it may be selectively advantageous for a female to attain a smaller maximal size since her brood must also be accomodated within the shell. As expected for continuously breeding species, recruitment of young into the population is also continuous.

Introduction

There has been considerable interest in the reproductive cycles of tropical marine invertebrates with regard to some environmental factors. Thorson (1946, 1950), Gunter (1957), Moore (1958) and Giese (1959) emphasize temperature as an important controlling factor. Sandoz and Rogers (1944), Knight (1967), and Buchanan and Milleman (1969) consider the effects of salinity, while Knowlton (1965) shows the importance of food. However, complete studies of breeding cycles of marine invertebrates have been fragmentary (Goodbody, 1965).

Among crustaceans, continuous breeding cycles have been reported in *Puggetia producta* (Boolootian et al., 1959), *Mysidium columbiae* and *Emerita portoricensis* (Goodbody, 1965), *Petrolisthes elongatus* (Greenwood, 1965), *Calcinus laevimanus* and *C. latens* (Reese, 1968) — both with brief quiescent periods, and *Clibanarius zebra* (Reese, 1968). As will be brought up later, all these species show breeding peaks and it is questionable as to the relevant trigger or triggers from the environment which might be involved. Among the non-continuous breeders, Boolootian et al. (1959) provide data on Pachygrapsus crassipes and Emerita analoga from the Californian coast. Palaemonetes pugio is a summer breeder (Little, 1968), so is Palaemon macrodactylus (Little, 1969). Uca pugilator breeds actively between May and October (Herrnkind, 1968). Carcinus tibicens and Clibanarius tricolor from Barbados, West Indies, are both seasonal breeders (Lewis, 1960). In this work, the breeding biology of two species of Clibanarius, C. chapini and C. senegalen-

cies of *Clibanarius*, *C. chapini* and *C. senegalen-sis*, has been investigated to add to our knowledge in this area of crustacean biology.

Material and Methods

Hermit crabs were obtained at Tengpobo, a fishing village near Prampram (ca. 6°N), about 60 km to the east of Accra, Ghana. Two-meter quadrat samples were collected from late September, 1969 to June, 1970. Thereafter, non-quantitative observations were made up to September, 1970 so as to complete a whole year of observations. The collected crabs were taken to the Department of Zoology, University of Ghana, Legon. Various methods employed are described under each subtopic.

Observations

Breeding Period

Throughout the sampling period, ovigerous females of both species were present in all samples. During the first 6 weeks, sampling was done weekly; thereafter, samples were taken once a fortnight or once a month.

Tables 1 and 2 show the numbers of female crabs in berry in each sample; places and dates of sampling are also given.

Fig. 1 illustrates the percentages of females in berry in monthly samples. In both species there was a consistently high percentage of females in berry throughout the period of sampling, except for a sharp drop in the case of *Clibanarius chapini* in November, 1969 and in *C. senegalensis* in May, 1970.

Date	Distance from MLT mark; seaward (m) ^a	No. of females collect- ed	No. with eggs	% total with eggs	No. in berry	% total in ber- ry	% total with ovarian eggs only
1969	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						
24 Sept.	10	16	16	100.0	14	87.5	12.5
4 Oct.	10	14	12	85.7	11	78.5	7.2
24 Oct.	10	63	58	92.0	47	75.0	17.0
	100	137	109	79.5	82	60.0	19.5
31 Oct.	50 beyond 100	2 60	2 58	100.0 96.0	2 57	95.0	1.0
12 Nov.	10	71	69	97.2	29	41.0	56.2
	50	36	28	77.8	20	55.8	22.0
	100	18	10	55.6	4	22.3	33.3
28 Nov.	10	21	12	57.1	5	24.0	33.1
	50	16	14	87.5	7	43.8	43.7
12 Dec.	10	234	212	90.0	152	65.0	25.0
	50	64	41	64.0	29	45.4	18.6
1970							
23 Jan.	10	78	63	81.0	61	78.2	2.8
	50	315	275	87.3	252	80.0	7.3
	100	106	86	81.0	79	75.0	6.0
ll Feb.	10	113	108	95.6	49	43.5	52.1
	50	40	34	85.0	29	72.5	12.5
	100	54	53	98.0	53	98.0	98.0
27 Feb.	10	76	50	65.8	47	62.0	3.8
	50	72	67	93.1	63	87.5	5.6
	100	54	54	100.0	48	88.9	11.1
20 Marcl	n 10	121	117	96.7	109	90.1	6.6
	50	74	70	94.6	66	89.2	5.4
	100	42	42	100.0	42	100.0	0.0
20 Apri	1 10	136	131	96.3	124	91.2	5.1
	50	70	67	95.7	66	94.3	1.4
23 May	10	29	26	89.5	23	79.5	10.0
	50	1 32	125	94.5	121	91.5	3.0
20 June	10	152	139	91.4	130	85.5	5.9

Table 1. Clibanarius chapini. Percentage females in berry and those with and without ovarian eggs collected at Tengpobo, Ghana

alo, 50 and 100m are distances from MLT (mean low tide) mark, seaward, to points of collection. All collections were made at low tide, and the areas were covered by no more than 25 cm water.

Distance % total Date No. of No. % total No. % total from MLT females with with in in berwith mark; collecteggs eggs berry ry ovarian seaward eđ eggs (m)^a only 1969 29 Sept. 10 158 137 86.7 111 69.8 16.9 4 Oct. 10 54 47 87.0 30 55.8 31.2 50 32 27 84.5 22 69.0 15.5 15 Oct. 75 10 66 88.0 46 61.3 26.7 24 Oct. 10 320 280 88.5 78.0 250 10.5 50 26 19 73.0 61.6 11.4 16 100 9 8 89.0 44.5 44.5 4 31 Oct. 56.0 10 61 53 87.0 34 31.0 50 67 60 90.0 45 67.3 22.7 100 48 54 89.0 41 76.0 13.0 beyond 100 19 15 79.0 15 79.0 0.0 7 12 Nov. 10 6 85.8 5 71.5 14.3 50 34 31 91.2 25 73.5 17.7 100 2 2 100.0 28 Nov. 10 53 37 69.7 47.3 25 22.4 50 301 281 93.3 208 69.0 24.3 12 Dec. 10 125 92 73.8 72 57.8 16.0 1970 23 Jan. 10 96 81 84.3 77 80.0 4.3 50 200 86.5 173 81.0 162 5.5 100 21 8 38.2 5 23.8 14.4 11 Feb. 10 44 39 88.6 32 73.0 15.6 50 39 35 90.0 29 74.5 25.5 100 84 82 98.0 82 98.0 0.0 27 Feb. 10 104 80 76.9 68 86.4 11.5 50 22 21 95.5 18 81.8 13.7 100 64 62 96.9 58 90.6 6.3 20 March 10 50 46 92.0 45 90.1 1.9 50 28 24 85.7 23 82.1 2.6 100 87 84 96.6 77 88.5 8.1 20 April 10 70 58 82.9 55 78.6 4.3 50 73 68 93.2 63 86.3 6.9 23 May 10 161 111 69.0 39.0 63 30.0 50 168 162 96.5 82 48.8 47.7 20 June 10 95 89 93.7 64 67.4 26.3

Table 2. Clibanarius senegalensis. Percentage females in berry and those with and without ovarian eggs collected at Tengpobo, Ghana

^a10, 50 and 100m are distances from MLT mark, seaward, to points of collection. All collections were made at low tide, and the areas were covered by no more than 25 cm water.

Date		Distance	C. chapini					C. senegalensis				
		mark; seaward	No. with	No. 1 ba	with tch	No. 2 ba	with tches	No. with	No. 1 ba	with tch	No. 2 ba	with tches
		(m)	eggs	No. % total		No. % total		eggs	No.	% total	No.	% total
1969)											
29	Sept.	10	16	2	12.5	14	87.5	137	26	18.0	111	82.0
4	Oct.	10 50	12	1	8.3	10	91.7	47 27	23 6	49.0 22.3	24 21	51.0 77.7
24	Oct,	10 50 100	58 9 109	11 4 27	19.0 44.5 24.8	47 5 82	81.0 55.5 75.2	280 19 9	30 5 4	10.8 26.4 44.5	250 14 5	89.2 73.6 55.5
31	Oct.	10 50 100 beyond 100	58	57	98.5	1	1.5	53 60 48 15	20 27 9 3	37.8 45.0 18.8 20.0	33 33 39 12	62.2 55.0 81.2 80.0
12	Nov.	10 50 100	69 28 10	42 8 6	61.0 28.5 60.0	27 20 4	39.0 71.5 40.0	6 31	2 9	33.3 29.0	4 22	66.7 71.0
28	Nov.	10 50	12 14	11 7	92.0 50.0	1 7	8.0 50.0	37 281	25 90	67.5 32.0	12 191	32.5 68.0
12	Dec.	10 50	212 41	78 18	36.7 44.0	134 23	63.3 56.0	92	27	29.4	65	70.6
1970	D											
23	Jan.	10 50 100	63 275 84	8 25 9	12.7 9.1 10.5	55 250 75	87.3 90.9 89.5	81 173 8	4 11 3	5.0 6.4 37.5	77 164 5	95.0 93.6 62.5
11	Feb.	10 50 100	108 34 53	78 5 15	72.2 14.7 28.3	30 29 38	27.8 85.3 71.7	39 35 82	17 18 28	43.6 51.4 34.1	22 17 54	56.4 48.6 65.9
27	Feb.	10 50 100	50 67 54	11 15 7	22.0 22.4 13.0	39 52 47	78.0 77.6 87.0	80 21 62	14 4 7	17.5 19.0 11.3	66 17 55	82.5 81.0 88.7
20	March	10 50 100	117 70 42	10 4 0	8.5 5.7 0.0	107 66 42	91.5 94.7 100.0	46 24 84	2 1 9	4.3 4.2 10.7	44 23 75	95.7 95.8 89.3
20	April	10 50	131 67	21 3	16.0 4.5	110 64	84.0 95.5	58 68	4 7	6.9 10.3	54 61	93.1 89.7
23	May	10 50	26 125	3 6	11.5 4.8	23 119	88.5 95.2	111 162	50 90	43.5 55.5	61 72	56.5 44.5
20	June	10	1 39	14	10.1	125	89.9	89	28	31.5	61	68.5

Table 3. *Clibanarius chapini* and *C. senegalensis.* Total numbers of females with single and double batches of embryonic stages

A single female may have two batches of embryonic stages at the same time, one batch developing oocytes in the ovary, and the second embryos (dividing eggs or larvae) on the 3 abdominal appendages. Table 3 shows the percentages of females with one batch and those with two batches of embryonic stages. In Fig. 2 the percentages of females with two batches of embryonic stages in monthly samples are illustrated. Most females had two batches of embryonic stages. Batch ratio reflects the drops in percentage females in berry recorded in November, 1969 and in May, 1970 for *Clibanarius chapini* and *C. senegalensis*, respectively. Both species breed throughout the year.

Fecundity

As indicated previously, a single female may possess two batches of embryonic stages, one in the ovary and the other on the pleopods. In egg counts, the two batches were considered separately. Crabs in berry were carefully removed from their shells after being narcotized to prevent loss of eggs or larvae from their appendages; 5-15 crabs of each species were used from each sample. The ovaries were dissected out, and the eggs separated and counted in small quantities (\approx 100), using a dissecting microscope. The appendages to which the eggs and larvae were attached were cut off, and the eggs or larvae separated.

In Table 4, the numbers of eggs in the ovary and on the abdominal appendages of individual females are shown. From this table, the following conclusions can be drawn: (1) Within the same size group there is considerable variation in the total number of eggs produced; (2) for each individual, the number of eggs in the ovary may differ markedly from the number on the abdominal appendages; (3) fecundity is consistently high throughout the year.

- C. chapini

Fig. 2. *Clibanarius* spp. Total numbers of females with two batches of embryonic stages in monthly samples, 1969 and 1970

Egg Size

Measurements were made of the diameter of ovarian and pleopodal eggs. Three females of each species were used and 200 eggs were considered from each area. Fig. 3 shows typical histogram plots. A population of eggs from each area had about the same size, indicating that eggs from each location are most probably of the same age.

Mating Behaviour and Mode of Fertilization

Mating behaviour was observed twice in Clibanarius chapini and once in C. senegalensis. I could see no obvious differences between the two species. The following series of events were observed: Through some unknown mechanism, the male recognises the female (Hazlett, 1970, 1972, in a more detailed treatment of this topic, discusses the visual, chemical and behavioural orientational components involved.) The male faced the female and gripped the aperture of the female's shell with his ambulatory legs. He then pushed his chelipeds into the shell of the female, touching her legs in so doing. Then, at regular intervals, the male made pecking movements at the legs of the female with his chelipeds. He did not however grasp the female's legs. The pecking movement was periodically interrupted by a "shell-rocking" pattern. The male withdrew his chelipeds to grasp the edge of the female's shell. He then flexed and extended his chelipeds symmetrically so as to move the female's shell backwards and forwards. During this process a nubile female suddenly emerges from her shell as also does the male, and the two make ventral contacts for a few seconds. This is the copulatory act and, at the end of it, spermatophores are left at the genital openings of the female. The times recorded for this act for the three observations was between 4 and 7 sec. The basic pat-

1128

None

6.6 442 466 240 1128 Old eggs

Table 4. Clibonarius chapini and C. senegalensis. Numbers of eggs or larvae on abdominal appendages and numbers of eggs in ovaries from individuals of various size groups

Species (IIII) (IIII)	No. on a pend	of eg Ibdomi lages ^a	gs/la nal a	rvae p-	Embryonic No. of Total stage ovar- ian eggsb		bec: (mm)	No. on a pend	of e abdom lages	ggs/la inal a a	irvae p-	Embryonic stage	No. of ovar- ian	Total	
	1	2	3	Total		eggsb			1	2	3	Total		eggsb	
3 Oct.	1969							28 Nov.	1969						
4.0	ne	ne	ne	449	01d eggs	None	449	5.0	273	278	138	689	01d eggs	nc	689+
5.0	ns	ns	ns	403	Old eggs	None	403		176	187	103	466	Hatched	nc	466+
5.0	301	311	269	881	Young	None	881	ini			.05	100	larvae		100
510	50.	5	200		larvae			day:	166	178	91	435	01d eggs	nc	435+
2 5.0	138	122	94	354	Eggs about	None	354	<u></u> , 5.5	ns	ns	ns	627	01d eggs	nc	627+
iapi			~		to hatch	212		5.5	202	241	139	582	01d eggs	nc	582+
ی 5.0 ن	99	170	84	353	Eggs about to hatch	313	666	5.5	ns	ns	ns	299	Hatched larvae	319	618
5.0	128	210	99	437	01d eggs	140	577								
5.0	163	277	224	664	Old eggs	nc	664+								
6.0	ns	ns	ns	495	Larvae, just hatabod	889	1384	3.0	ns	ns	ns	166	Hatched larvae	135	301
					natcheu			4.5	195	271	182	648	01d eggs	nc	648+
								4.5	192	240	132	564	Old eggs	nc	564+
4 5	20	ng	20	624	Old ages	712	1336		271	334	228	833	Old eggs	nc	833+
4.5	115	115		624	Larma a	910	13/0	ua 5.0	153	149	48	350	Old eggs	274	624
5.0	115	118	115	439	just hatched	910	1349	legan	127	154	60	341	About to hatch	682	1023
5.0	178	287	90	555	Eggs about to hatch	1004	1559	^జ 5.5 ు	ns	ns	ns	654	Hatched larvae	497	1148
ფ. 5 . 0	137	287	224	648	Eggs about	580	1228	5.5	454	596	434	1484	Old eggs	nc	1484+
nsu:					to hatch			5.5	468	631	339	1438	Old eggs	nc	1438+
1g 5.0	224	352	146	722	Old eggs	nc	722	6.5	ns	ns	ns	910	Hatched	564	1474
a 5.5	237	280	181	698	01d eggs	604	1302						Larvae		
సి5.5 స	ns	ns	ns	479	Larvae, just hatched	549	1028								
6.0	ne	ne	ne	1182	01d eggs	712	1894	12 Dec.	1969)					
6.0	85	269	148	502	Eges shout	ne	502+	4.5	186	249	222	657	01d eggs	None	657
0.0	05	209	140	502	to hatch		502	5.0	329	373	158	860	Old eggs	None	860
6.0	ns	ns	ns	614	Larvae, just	305	919	., 5.0	ns	ns	ns	472	Hatched larvae	None	472
					hatched			day 5.5	347	508	392	1247	Old eggs	nc	1247+
								<u></u> .5.5	357	471	263	1091	Old eggs	nc	1091+
								5.5	2 8 0	313	183	776	01d eggs	None	776

becies	CL (mm)	No. on a pend	of e abdom lages	ggs/la inal a a	arvae ap-	Embryonic stage	No. of ovar- ian	Total	s CL (mm)	No. on pen	of e abdom ndages	ggs/l inal a	arvae ap-	Embryonic stage	No. of ovar- ian	Total
-		1	2	3	Total	<u> </u>	eggsu			1	2	3	Total		eggsb	
	5.0	107	100	10/	500	01.1		500	00 M	1 10	20					
	5.0	196	188	124	508	Old eggs	nc	508+	20 Marc	en 19	170					
	5.0	250	195	109	554	Old eggs	nc	554+	5.0	ns	ns	ns	730	Old eggs	748	1478
ť0	5.0	153	195	135	483	Uld eggs	nc	483+	5.0	ns	ns	ns	636	Old eggs	209	845
ensie	5.0	ns	ns	ns	223	Young larvae	nc	223+	5.0 5.5	ns ns	ns ns	ns ns	950 674	Old eggs Young	738 790	1688 1464
gal	5.5	25 3	244	44	541	Old eggs	nc	541+	•••				0,1	larvae		
sene	5.5	n s	ns	ns	747	Hatched larvae	nc	747+	·ido15.5	ns	ns	ns	952 760	Old eggs	1210	2162
ਂ	5.5	24 9	268	150	667	01d eggs	None	667	13.5	ns	ns	ns	769	old eggs	1101	1870
	5.5	ns	ns	ns	537	Young 1arvae	nc	537+	ی 5.5 5.5	ns ns	ns ns	ns ns	696 935	Old eggs Old eggs	449 221	1145 1156
	6.0	214	265	102	581	01d eggs	nc	581+	6.0	ns	ns	ns	1282	01d eggs	None	1282
	6.0	ns	ns	ns	724	01d eggs	nc	724+	6.0	ns	ns	ns	1063	Hatched larvae	987	2050
27	/ Feb.	1970	I						5 0				202	014	276	750
	3.0	ns	ns	ns	321	01d eggs	247	568	5.0	115	ns	ns	211	old eggs	370	758
	5.0	ns	ns	ns	676	Old eggs	nc	676+	5.0	115	115	ns	/ 27	Vit eggs	490	716
	5.0	ns	ns	ns	914	Young larvae	579	1493	5.0		115		427	larvae	209	1075
	5.5	ns	ns	ns	931	01d eggs	222	1153		115	115	115	4/4	hatch	601	1075
ini	5.5	ns	ns	ns	875	01d eggs	957	1832	84 5.5	ns	ns	ns	457	Hatched	742	1199
hap	5.5	ns	ns	ns	99 7	01d eggs	820	1817	iga1					larvae		
0	5.5	ns	ns	ns	665	01d eggs	349	1004	2,5.5	ns	ns	ns	689	Young	606	1295
0	5.5	ns	ns	ns	1054	Young larvae	764	1818	ुं 5.5	ns	ns	ns	553	About to	332	885
	6.0	ns	ns	ns	1000	Young larvae	457	1457	5.5	ns	ns	ns	366	About to	716	1082
	6.0	ns	ns	ns	1353	Young larvae	862	2215	5.5	ns	ns	ns	674	About to	490	1164
									6.5	ns	ns	ns	350	Hatched	671	1021
	5.0	ns	ns	ns	655	01d eggs	277	932								
	5.0	ns	ns	ns	623	01d eggs	406	1029								
:02	5.0	ns	ns	ns	483	Old eggs	631	1114								
ens	5.0	ns	ns	ns	674	01d eggs	723	1397								
gal	5.0	ns	ns	ns	543	01d eggs	565	1108								
ene	5.5	ns	ns	ns	770	Old eggs	468	1238								
ა	5.5	ns	ns	ns	647	Old eggs	636	1283								
Q	6.0	ns	ns	ns	933	Old eggs	931	1864								
	6.0	ns	ns	ns	868	01d eggs	622	1490								
	6.0	ns	ns	ns	963	Old eggs	526	1489								

Fig. 3. Clibanarius spp. Histograms of egg sizes; A_1 and A_2 : ovarian eggs; B_1 and B_2 : pleopodal eggs

Table	5.	Clibanarius	chapini	and C .	senegalensis
		Larval relea	ise		

Species	Date (May, 1970)	Time (hrs)	No. of larvae released		
C. chapini	21	21.30	160		
	22	No release	-		
	23	13.00	22		
	24	22.30	178		
	25	11.00	16		
C. senegal- ensis					
1.	21	21.00	86		
	22	11.00	14		
	23	22.00	172		
2.	21	20,00	90		
	22	13.00	25		
	24	23.00	243		

terns observed are thus similar to those described for other diogenids (Hazlett, 1966, 1972).

Although the mode of fertilization is not clearly understood, presumably, as in other spermatophore-carrying decapods, fertilization is internal (see Ryan, 1967), the sperm moving along the female's oviduct and fertilizing the eggs before oviposition.

Larval Release

Some observations were made in the laboratory on larval release. Zoea larvae were released in batches of 10 to 200. The time interval between any two successive batches can be as short as 5 min or as long as 24 h. Individuals in each batch were carried out of the female's shell in the exhalent current which passes ventral to the head, in groups of 3, 4 or 5, at intervals of only a few seconds.

Larval release in both species occurs in the night. Observations were made on two females of *Clibanarius senegalensis* and one of *C. chapini* over a number of days. The times of release of batches and the number of larvae released in each batch was noted (see Table 5).

Observations made on females releasing their larvae revealed that batches of larvae do not necessarily all come from the same pleopod. A female which has almost completed releasing her larvae may still have some larvae in scattered areas on all three abdominal appendages.

The exact stimuli which lead to the release of these batches of larvae, apart from a diurnal variation, are not known. This is a question of some interest since the population of larvae are all seemingly at the same stage of development and yet are released over a period of as long as 5 days.

Sex Ratio and Size Groups

In the course of the study, observations were made on the sex ratios in the population. The size groups within the populations were analysed to obtain some idea of population dynamics of the two species.

In Tables 6 and 7, the sex ratio is recorded for each collection from different places on different dates. Although there are some cases which show a sex ratio of 1:1, in most cases there is a statistically significant deviation from this.

Fig. 4 presents histograms of size groups, as determined by cephalothorax length, of female and male *Clibanarius chapini*. There are two general features demonstrated by these histograms. First, there is a dominant size group amongst females which is not found amongst males. Second, the maximum size of the males in the samples is only slightly greater than that of the females.

In *Clibanarius senegalensis* a dominant size group is present among the females, but again absent in the males (Fig. 5). The males of this species attain much greater maximum size than in *C*. *chapini*.

Discussion

The almost constant states of the three factors presumed to be important in breeding of tropical marine invertebrates (temperature, salinity, and food), have led to the axiom that these species breed continuously. Whether or not these factors operate exclusively or together remains a matter of controversy (see Reese, 1968). The breeding cycles of the few species investigated reveal that peaks and dips in the cycles are common (Table 8).

Both *Clibanarius chapini* and *C. senegalensis* display high reproductive activity throughout the year (lowest, 40%; highest, 90%). An interesting feature is that both species have their lowest reproductive activities at different times of the year, *C. chapini* in November and *C. senegalensis* in May. These dips cannot be attributed to changes in availability of food, nor to temperature or salinity changes. Both temperature and salinity display negligible variations on the beach throughout the year and there is an overabundance of food for the hermit crabs (Ameyaw-Akumfi, in preparation). While it can be suggested that such differential dipping in the cycles may result from competition, the factors involved are not known.

Giese (1959) points out that an extended breeding season may indicate that "the individuals of a species are producing several successive broods during the year or that they are breeding asynchronously i.e. some are in earlier stages of maturation, some are getting ready to spawn, some are spawning and still others are already spent." Fig. 2, which illustrates the occurrence of two batches of embryonic stages, one in the ovary and one on the abdominal appendages, follows the same pattern as the plot illustrating only females in berry (Fig. 1). This suggests that there may be a production of several successive broods during a year. No studies were made on how many broods are produced by an individual female.

For a continuous breeder, one might predict continuous recruitment. Such is the case for both species in the present study. The marked differ-

Table	6.	Clibanarius	chapini.	Sex	ratio	in	individual	samples
-------	----	-------------	----------	-----	-------	----	------------	---------

Date		Distance from MLT mark; seaward (m)	No. of males	No. of females	Total	% males	% fe- males	Sex ratio (male: female)	Ρ
1969)								
29	Sept.	10	14	16	30	46.7	53.3	1:1.0	
4	Oct.	10	22	14	36	61.0	39.0	1:0.7	<0.95>0.05
24	Oct.	10 100	45 48	63 137	108 185	41.7 26.0	58.3 74.0	1:1.4 1:2.8	<0.95>0.05 <0.001
31	Oct.	beyond 100	16	60	76	21.0	79.0	1:3.7	<0.001
12	Nov.	10 50 100	31 33 20	71 36 18	102 69 38	30.5 48.0 52.8	69.5 52.0 47.2	1:2.3 1:1.1 1:0.9	<0.001 <0.95>0.05 <0.95>0.05
28	Nov.	10	33	21	54	61.1	38.9	1:0.6	<0.95>0.05
12	Dec.	10 50	100 32	234 64	334 97	30.0 34.6	70.0 65.4	1:2.4 1:2.0	<0.001 <0.001
1970	С							,	
23	Jan.	10 50 100	30 178 61	78 315 106	108 493 167	27.8 36.1 36.5	72.2 63.9 63.5	1:2.6 1:1.8 1:1.7	<0.001 <0.001 <0.005
11	Feb.	10 50 100	43 25 22	113 40 54	156 65 76	27.5 38.5 29.0	72.5 61.6 71.0	1:2.6 1:1.6 1:2.6	<0.001 <0.1 <0.001
27	Feb.	10 50 100	52 2 7 32	76 72 54	128 99 86	40.6 27.3 37.2	59.4 72.7 62.8	1:1.5 1:2.6 1:1.7	<0.05 <0.005 <0.05
20	March	10 50 100	30 46 15	121 74 42	151 120 57	19.9 32.3 26.3	80.1 61.7 73.7	1:4.0 1:1.6 1:2.5	<0.001 <0.05 <0.025
20	April	10 50	68 25	136 70	204 95	33.3 26.3	66.7 73.7	1:2.0 1:2.8	<0.005 <0.005
23	Мау	10 50	12 33	29 132	41 165	29.3 20.0	70.7 80.0	1:2.3 1:4.0	<0.005 <0.005
20	June	10	49	152	201	24.4	75.6	1:3.0	<0.005

ences in size patterns of males and females raise the question of their significance. One interpretation, that there was a highly successful "class" of females which dominate all samples seems untenable; samples had been collected at monthly intervals, and the modal size of the females remained effectively constant over a period of 9 months (Figs. 4 and 5). Although no direct information upon growth rates is available, it seems improbable that so stable a situation would have persisted for so long a period. kedly on attainment of sexual maturity. The inhibitory effect of egg-carrying on moulting in the female has been discussed by Passano (1960). It is possible that there is a direct selection for a check in growth rate independent of any nutritional drain. Unlike the males, females have to accomodate not only themselves, but also their brood within the confines of a gastropod shell and, should the female continue to grow beyond sexual maturity, she might be unable to find a suitable shell to accomodate herself and her brood. In fact, a survey of available empty shells of the species used by these crabs provided no evidence for a re-

The data are more easily interpreted as indicating that the growth rate of the female slows mar-

Table 7. Clibanarius senegalensis. Sex ratio in individual samples

Date	2	Distance from MLT mark; seaward (m)	No. of males	No. of females	Total	% males	% fe- males	Sex ratio (male: female)	Р
1969)								<u> </u>
29	Sept.	10	93	158	251	37.0	63.0	1:1.7	<0.001
4	Oct.	10 50	70 55	54 32	124 87	56.4 63.2	43.6 36.8	1:0.6 1:0.6	<0.95>0.05 <0.95>0.05
24	Oct.	10	169	320	489	44.6	55.4	1:1.9	<0.001
31	Oct.	10 50 100	34 38 29	61 44 23	95 82 52	35.8 46.5 56.0	64.2 53.5 44.0	1:1.8 1:1.2 1:0.8	<0.01>0.001 <0.95>0.05 <0.95>0.05
12	Nov.	50	37	34	71	52.1	47.9	1:0.8	<0.95>0.05
28	Nov.	10 50 100	29 44 56	53 145 156	82 189 212	35.5 23.3 26.5	64.5 76.7 73.5	1:1.8 1:3.3 1:2.8	<0.01>0.001 <0.001 <0.001
12	Dec.	10	75	125	200	37.5	62.5	1:1.7	<0.01>0.001
1970	C								
23	Jan.	10 50 100	70 87 16	96 200 21	166 287 37	42.2 30.3 43.2	57.8 69.7 56.8	1:1.4 1:2.3 1:1.3	<0.1 <0.001 <0.1
11	Feb.	10 50 100	28 26 14	44 39 84	72 65 98	39.0 40.0 14.0	61.0 60.0 86.0	1:1.5 1:1.5 1:5.7	<0.1 <0.1 <0.001
27	Feb.	10 50 100	50 10 51	104 22 64	154 32 115	32.5 31.2 44.3	67.5 68.8 55.7	1:2.1 1:2.0 1:1.3	<0.005 <0.001 <0.5
20	March	10 50 100	45 13 31	50 28 87	95 41 118	47.3 31.7 26.3	52.6 68.3 73.7	1:1.1 1:2.1 1:2.8	<0.1>0.25 <0.1>0.025
20	April	10 50	75 50	70 73	145 123	51.7 40.7	48.3 59.3	1:0.9 1:1.5	<0.100>0.25
23	May	10 50	153 54	161 168	314 222	48.7 25.3	51.3 75.7	1:1 1:3	<0.005
20	June	10	46	95	141	32.6	67.4	1:2	<0.005

Fig. 4. *Clibanarius chapini*. Histograms of size groups of males (a) and females (b) from monthly samples, and combined males and females (c) for whole 9-month study

Oct. 1969

Fig. 5. *Clibanarius senegalensis*. Histograms of size groups of males (a) and females (b) from monthly samples, and combined males and females (c) for whole 9-month study

serve of large, unused shells. In other words, the adults attain as great an adult size as can be tolerated in the snail shells which they occupy (Markham, 1968) and, in these circumstances, we might indeed expect females to be smaller than males. This, however, does not explain why both male and female *Clibanarius chapini* grow to almost the same size.

Finally, a word about the time of larval release. This occurred in the night in both species in the laboratory, and most probably also occurs in nature. Fabre Domergue and Bietrix (1903) described hatching in the lobster *Homarus gammarus* (L.) (= *H. vulgaris* Milne Edwards), stating that it occurred during the early hours of the night. Fullarton (1896), in the same species, described the total time required for hatching of a brood to vary from 3 to 5 weeks or even longer. Recently, Ennis (1973) described such nocturnal larval release in *H. gammarus* lasting 2 to 6 weeks. In the sand lobster *Scyllarus americanus*, Robertson (1968) also reported nocturnal larval release. Locomotor activity studies on both *Clibanarius* species revealed that both *C. chapini* and *C. senegalensis* are nocturnal, although the former also showed considerable activity in the day time (Ameyaw-Akumfi, unpublished data). Since larvae are released in the expiratory current, it is reasonable to assume that the larval releasing mechanism might be contingent to the general activity of the adult female.

Acknowledgements. This study forms part of work performed for the M.Sc. degree at the University of Ghana, Legon, Ghana. My sincere thanks to the University for its support and to members of my research committee, Dr. D.W. Ewer, Dr. M. Edmunds and Mr. W. Popple, all formerly of the University of Ghana. I also thank Dr. B.A. Hazlett of the University of Michigan, Ann Arbor, Michigan, USA, for his criticism of the manuscript.

Table 8. Recorded breeding activities of some tropical invertebrates

Species	Reproduc- tive pat- tern	Reproduc- tive peak	Lowest re- productive activity level	Locality	Source
Pugettia producta	Continuous	Fairly cons throughout	tant level year	Central Cali- fornian coast (36°30'N)	Boolootian et al. (1959)
Petrolisthes cinctipes	Continuous	JanMarch	OctNov.	Central Cali- fornian coast (36°30'N)	Boolootian <i>et al</i> . (1959)
Hemigrapsus nudu s	Continuous	NovJan.	March- Sept.	Central Cali- fornian coast (36°30'N)	Boolootian <i>et al</i> . (1959)
Pachygrapsus crassipes	Seasonal (March- Aug.)	June-July	March, April and August	Central Cali- fornian coast (36°30'N)	Boolootian <i>et al</i> . (1959)
Emerita analoga	Seasonal (April- Oct.)	June-July	April-May, SeptOct.	Central Cali- fornian coast (36°30'N)	Boolootian <i>et al</i> . (1959)
Mysidium columbiae	Continuous	Nov.(1960), Aug.(1961)	Jan.(1960), Oct.(1961)	Jamaica (18ºN)	Goodbody (1965)
Emerita por- toricensis	Continuous	Feb., May- Sept.	April, OctDec.	Jamaica (18 ⁰ N)	Goodbody (1965)
Petrolisthes elongatus	Continuous	Winter and early spring	Fall and summer	Hauraki Gulf, New Zealand (35°S)	Greenwood (1965)
Calcinus laevimanus	Continuous	May-Aug.	NovDec.	Kaneoho, Oahu Bay, Hawaii (21°30'N)	Reese (1968)
Calcinus latens	Continuous	Feb March, Aug.	OctDec.	Kaneoho, Oahu Bay, Hawaii (21°30'N)	Reese (1968)
Clibanarius zebra	Continuous	Feb April, Aug.	May-July, SeptNov.	Kaneoho, Oahu Bay, Hawaii (21°30'N)	Reese (1968)

Literature Cited

- Boolootian, R.A., A.C. Giese, A. Farmanfarmian and J. Tucker: Reproductive cycles of five west coast crabs. Physiol. Zoöl. 32, 213-220 (1959)
- Buchanan, D.V. and R.E. Millemann: The prezoeal stage of the Dungeness crab, *Cancer magister* Dana. Biol. Bull. mar. biol. Lab., Woods Hole 137, 250-255 (1969)
- Ennis, G.P.: Endogenous rhythmicity associated with larval hatching in the lobster *Homarus* gammarus. J. mar. biol. Ass. U.K. 53, 531-538 (1973)
- Fabre-Domergue et E. Bietrix: Le mecanisme de l'emission des larves chez la femelle du homrad européen. C. r. hebd. Séanc. Acad. Sci., Paris 136, 1408-1409 (1903)
- Fullarton, J.H.: The European lobster: breeding and development. Rep. Fishery Bd Scotl. 14, 186-222 (1896)
- Giese, A.C.: Comparative physiology: annual reproductive cycles of marine invertebrates. A. Rev. Physiol. 21, 547-576 (1959)
- Goodbody, I.: Continuous breeding in populations of two tropical crustaceans Mysidium columbiae (Zimmer) and Emerita portoricensis Schmitt. Ecology 46, 195-197 (1965)
- Greenwood, J.G.: The larval development of *Petrol-isthes elongatus* (H. Milne-Edwards) and *Petrol-isthes novaezelandiae* Filhol (Anomura, Porcellanidae) with notes on breeding. Crustaceana 8, 285-307 (1965)
- Gunter, G.: Temperature. In: Treatise on marine ecology and paleoecology. Vol. 1. Ecology, pp 159-184. Ed. by J.W. Hedgpeth. New York: Geological Society of America 1957
- Hazlett, B.A.: Social behaviour of the Paguridae and Diogenidae of Curaçao. Stud. Fauna Curaçao 23, 1-143 (1966)
- Tactile stimuli in the social behaviour of *Pa*gurus bernhardus (Decapoda, Paguridae). Behaviour 36, 20-48 (1970)
- Shell fighting and social behaviour in the hermit crab genera *Paguristes* and *Calcinus* with comments on *Pagurus*. Bull. mar. Sci. 22, 806-823 (1972)
- Herrnkind, W.: The breeding of *Uca pugilator* (Bosc) and the mass rearing of the larvae with comments on the behaviour of the larval and early crab stages (Brachyura, Ocypodidae). Crustaceana (Suppl.) 2, 214-224 (1968)
- Knight, M.D.: The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacif. Sci. 27, 58-76 (1967)

- Knowlton, R.E.: Effects of some environmental factors on the larval development of *Palaemonetes* vulgaris (Say). J. Elisha Mitchell scient. Soc. 81, p. 87 (1965)
- Little, G.: Induced winter breeding and larval development in the shrimp *Palaemonetes pugio* Holthuis (Caridae, Palaemonidae). Crustaceana (Suppl.) 2, 19-26 (1968)
- The larval development of the shrimp Palaemon macrodactylus Rathbun, reared in the laboratory, and the effect of eyestalk extirpation on development. Crustaceana 17, 69-87 (1969)
- Lewis, J.B.: The fauna of the rocky shores of Barbados, West Indies. Can. J. Zool. 38, 391-435 (1960)
- Markham, J.C.: Notes on growth patterns and shell utilization of the hermit crab Pagurus bernhardus (L.) Ophelia 5, 189-205 (1968)
- Moore, H.B.: Marine ecology, 493 pp. New York: John Wiley & Sons 1958
- Passano, L.M.: Molting and its control. In: The physiology of Crustacea, Vol. 1. pp 473-536. Ed. by T.H. Waterman. New York: Academic Press 1960
- Reese, E.: Annual breeding seasons of three sympatric species of tropical intertidal hermit crabs, with a discussion of factors controlling breeding. J. exp. mar. Biol. Ecol. 2, 308-318 (1968)
- Robertson, P.B.: The complete larval development of the sand lobster *Scyllarus americanus* (Smith) (Decapoda, Scyllaridae) in the laboratory, with notes on larvae from the plankton. Bull. mar. Sci. 18, 294-342 (1968)
- Ryan, E.P.: Structure and function of the reproductive system in the crab *Portunus sanguinolentus*. Proc. Symp. Crustacea (Mar. biol. Ass., India) 2, 506-521 (1967)
- Sandoz, M. and R. Rogers: The effect of environmental factors on hatching, moulting and survival of zoea larvae of the blue crab, *Callinectes* sapidus Rathbun. Ecology 25, 216-228 (1944)
- Thorson, G.: Reproduction and the larval development of Danish marine bottom invertebrates. Meddr Kommn Danm. Fisk.-og Havunders. (Ser. Plankton) 4, 1-523 (1946)
- Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1-45 (1950)

Mr. C. Ameyaw-Akumfi Department of Zoology University of Michigan Ann Arbor, Michigan 48104 USA

Date of final manuscript acceptance: November 4, 1974. Communicated by O. Kinne, Hamburg