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PROJECTIVE CONNECTIONS IN CR GEOMETRY 

Dan Burns Jr. - Steven Shnider 

Holomorphic invariants of an analytic real hyper- 
surface in cn+l can be computed by several methods, 
coefficients of the Moser normal form [4], pseudo-con- 
formal curvature and its covariant derivatives [4], and 
projective curvature and its covariant derivatives [3]. 
The relation between these constructions is given in 
terms of reduction of the complex projective structure 
to a real form and exponentiation of complex vector- 
fields to give complex coordinate systems and correspon- 
ding Moser normal forms. Although the results hold for 
hypersurfaces with non-degenerate Levi-form~explicit 
formulas will be given only for the positive definite ~ase. 

Introduction 

Let M be a real hypersurface in ~n+l with non- 

degenerate Levi form. Chern [4] and Tanaka [9] have 

shown how to associate to M a principal bundle YM 

with Cartan connection such that a local diffeomorphism 

f:M § M' is the boundary value of a holomorphic mappin[ 

if and only if f lifts to a connection preserving map 

YM § YM'" The bundle YM is called the pseudoconformal 

or CR structure bundle. For a real analytic hypersurface 

(see remark at the end of the paper concerning C ~ 

hypotheses) Chern [3] has also associated another struc- 

ture bundle, with Cartan connection the Drojective 
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2 BURNS - SHNIDER 

structure bundle ~. Let HzM be the maximal complex 

subspace of the real tangent space T M c T ~n+l and 
Z Z 

let HM = UzeMHz M. Each HzM determines a point in the 

complex projective space ~(TzCn+l) , which is naturally 

identified with F(r n+l) = P . In this way we consider 
n 

M as a submanifold of C n+l x ~n and R M is a princi- 

pal bundle over a neighborhood of M in cn+l x ~n" As 

in the case of YM a local real-analytic diffeomorphism 

f:M § M' is the restriction of a holomorphic mapping if 

and only if it lifts to a connection preserving mapping 

~ § RM,. The construction of ~i uses the complexi- 

fication of M and it is reasonable to expect that 

is the complexification of YM" We will show that this 

is indeed true and one can use R M to define holomor- 

phic coordinate systems in a neighborhood of any point 

of M, in which coordinates the defining function of M 

reduces to a normal form differing only slightly from 

Moser's normal form [4]. One can readily adjust the 

normalization of the Cartan connection so that the asso- 

ciated normal form is exactly Moser's. This new proof 

of Moser's theorem establishes the exact relation of the 

curvature functions on YM to the coordinates of the 

normal form. This may be used in studying the relation 

of the linear representation of H, the structure group 

of YM' on the curvature functions and the complicated 

nonlinear representation of H on the coefficients of 

the normal form. The result also completes the set of 

relations between biholomorphic invariants of real hyper- 

surfaces computed from different constructions-pseudo- 
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conformal, projective, K~hler (using Monge-Amp~re), 

Lorentz, and normal forms. See [2], [6], [i0]. Using 

other methods from the theory of projective connections, 

Faran [5] has established the same result on normal 

forms, as well as several other results on the existence 

of projectively equivalent but pseudoconformally inequi- 

valent hypersurfaces. 

i. 

We will quickly review the construction of the bundles 

R M and YM' for details see [3] [4]. Let T*~ n+l be 
Z 

the real linear functionals on T cn+l. The complex 
z 

vector space of complex valued functionals linear over 
* n+l_ 

the real field can be identified with Tzr ~ r 

which decomposes as a direct sum of T~l,0jr~ and T (0'I), 

the complex linear and conjugate linear functionals 

respectively. Assume M is defined by 

r(z,z) = 0, z e cn+l 

then decomposing dr by type, on T M 
Z 

(i) dr = ~r + ~r = O, 

thus the complex linear functional Dr 

nary on T M. The null space of ~r, 
Z 

a complex subspace  o f  r e a l  c o d i m e n s i o n  one of  TzM , 

where the complex structure arises from the natural 

identification T Cn+l = cn+l. The annihilator of 
Z 

in T M is a real line generated by the form i~r 
Z 

is purely imagi- 

denoted HzM , is 

HM 
g 
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which is real valued on T M. The set of all these 
z 

lines defines a line bundle E, which is subbundle of 

T M. The restriction of the canonical one form on T M 
z 

to E will be denoted by m and for p �9 E with 

~(p) = z �9 M, ~ is the projection ~:E § M, 

(2) m = t~ (i~r) 
P P 

for some real number 

real coframes on E 

the equation 

t. To define YM consider the 

{m,Re m ~, Im m~,~} which satisfy 

=i s m Am +~Am (3) dm ~i...n 

and such that 

S mS ~ (4) m = Re + i Im m = ~ (8 ~) 
p p p z 

for some complex one form 8 s e T M | r which is com- 
E z 

plex linear on H M. This defines Y as a reduction of 
z 

the frame bundle of E. 

Next we d e f i n e  R N. Let  P(TzCn+l) be the  complex 

projective space of complex hyperplanes in T cn+l, or 
z 

d u a l l y  the  complex p r o j e c t i v e  space  of  complex l i n e s  i n  

the  complex dua l  space  T (1 '0 )  The h y p e r p l a n e  tt M 
z 

determines a unique point T(z) e P(TzCn+I). In the 

dual  c o n s t r u c t i o n  t h i s  p o i n t  i s  r e p r e s e n t e d  by the  

complexification of the fiber of E over z, which 

fiber is a real line in T ~I'0)''. Let U be a neighbor- 
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Dr n+l 
hood of z~ u s M where ~zn+ I # 0 and set w = z 

Further restrict U so that on U the equations 

(5) r(z,a) = 0 

rz~(Z,a) + p r w(z,a) = 0 

define a = (a j) j = l,...,n+l, 

of (z~,w,p~) near (Zo,Wo,P~o) 

= l,...,n , 

uniquely as functions 

whe re 

P~O: -rzC~ (Zo' ~00)/, __ 

/ rw(Zo,Z O) 

a j (z0,p~ 0) = zg 

The existence of U and of functions a j is guaranteed 

by the implicit function theorem and the non-degeneracy 

of the Levi-form of M at Z 0. If the p are inter- 

preted as affine fiber coordinates in ~(T~r n+l) the 
z 

equations a j = constant define a foliation of an open 

neighborhood of T(UnM) in ~(TCn+I). The bundle R M 

is a reduction of the coframe bundle of T (l'0) which 

is compatible with this foliation. 

The foliation is also defined by the differential 

system 

(6) dw - p dz ~ = 0 (summation convention) 

dp~ - r ~dz B = 0 



6 

where 

BURNS - SHNIDER 

1 (r 2 
ra~ = 3 z~z~rw - r ar S + rwz~rza) + rwwr ~rzB) 

r WE z z 
w 

as a function of (za,w,pa) , near T(UnM). 

Define 

(7) 8 = u(dw-padza) 

8 ~ = u~dz ~ + ua(dw-pBdz8 ) 

e = v~(dp8-rB dzY ) + va(dw-pBdz8 ) 

The distribution {0,e~} defines the foliation given by 

(6), the distribution {~,0 a} defines the foliation by 

fibers of ~(TCn+I). We will use ~ for the projection 

T (I'0) + P(TC n+l) unless the context requires a distin~-- 

tion from ~:E ~ M. Then ~*e is a multiple of the 

canonical complex linear one form ~ on T (I'0) We 

consider coframes of the form {m, a ,~} where 

a ~,Sa = , m = ~'9 and 

(8) dm = la~l,...n a 

What are the structure groups of Y § E and 

R § T(I'O)? Consider ~SI(n+2,C) acting on ~n+l" Let 

L be the Isotropy group of the point with homogeneous 
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coordinates [0,0,...,i]. Let K be the intersection 

of L with the subgroup preserving the hyperplane at 
i 

infinity, z = O. Let H be the intersection of L 

with the subgroup preserving the real quadric 

(zlzn+2 _ i n+2) = 
i/2 z z + j~=2,..n+l Izj 12 0 

The bundle R has structure group K as a principal 

T(I,O) bundle over and Y has structure group H as 

a principal bundle over E. There are exact sequences 

of groups 

(9) e § N § K -> GI(n,C) + e 

e + N § H + U(n) + e 

where N is the complex Heisenberg group of complex 

dimension 2n+l and N is the real Heisenberg group of 

real dimension 2n+l, thus we can write K and H as 

semi-direct products 

(i0) K m GI(n,r 

H --- U(n).N . 

On Y there is a Cartan connection my with values in 

su(n+l,l) satisfying 
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* ~y (h -1)~Y, = Ad heH. 
h 

On R there is a Cartan connection m R with values in 

s~(n+2,r satisfying 

* Ad(k-l)mR ~m R = ks 

These connections are uniquely determined if their curva- 

tures are required to satisfy certain trace conditions, 

see [3], [4]. We note here that R is a holomorphic 

principal bundle and that ~R is a holomorphic Cartan 

connection. 

Theorem I. Let j be the imbedding of E into T (I'0) , 

then there is an imbedding j:Y § R as a totally real 

submanifold such that 

j m R = my 

where 

and 

~R and my are the respective Cartan connections 

Y J >R 

commutes. 

E J .... , T (I'0) 

* R 
n 

denotes right translation along the fiber 
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Proof. We will show that Y is a reduction of the 

structure group of j R, the pull-back of R over E. 

A direct calculation shows that for any coframe 

{~,m~,m ,~} in R 

* * B * (i0) j to = E a j m mod j m 
~B 

for some hermitian matrix (a ). 

frames for which 

Considering those 

(ii) j m = j m mod j m 

that is 

(12) a = 8 

reduces that Gl(n,r c K to U(n). That is the set of 

frames satisfying (ii) is a principal bundle with struc- 

ture group U(n)-N. For such frames we have 

(13) j mB = j*m~ + aBj 

where (a~) is a cn-valued function whose restriction 

to the fiber has complex rank n Set. 

(14) a B = 0. 
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Then from the structure equation (8) we conclude 

(15) j ~ = j ~ + sj m 

where s is a complex function whose restriction to the 

fiber has ds # 0. 

(16) Set s = 0. 

The three equations (12), (14), and (16) define a sub- 

manifold Y of j R which is a principal H bundle, 

consisting of {~,~(%,~ ,~} such that the 2n+2-tuple 
~ (% *(%(% * 

{j ~, Re j ~ , Im j m , j 9} is a real coframe for 

T(E), and 

N 

(17) dj* * (% * (% * * = i 7 j m ^j m + j ~^j m. (% 

Represent the inclusion of Y in R by 3, and where 

no confusion will result, identify Y with its image 7Y. 

Since E c T (I'0) is totally real of maximal dimension, 

y c R is totally real of maximal dimension. 

We want to show that the projective connection ~R' 

a Cartan connection of type (~,~), restricts to the 

pseudo conformal connection my, a Cartan connection of 

type ~,~)~ where ~ = ss and ~= (su(n+l,l). 

Represent ~ as a real direct sum ~ =~ i~ and for a 

real linear form m to a complex linear form on 

TpY + J(TpY) = TpR by the rule 

10 
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] (E+Jn)  = re(E) + ira(n) 

11 

Applying the standard complexification procedure for 

extending real analytic functions defined on a maximal 

totally real submanifold to the coefficients of my we 

can extend my to a connected neighborhood U of Y 

in R. Let m R be the connection on U defined this 

way. We claim m R = m R . This follows from i) the 

uniqueness of the normalized connection on R; 2) the 

fact that the complexification of the curvature of my 

is the curvature of the complexification; and 3) the 

traces of the curvature functions which vanish identi- 

cally on Y must complexify to holomorphic functions 

vanishing identically on U. The details can be checked 

using these observations and comparing the normalization 

formulas in [3], [4], concluding the proof of the 

theorem. 

Represent the Cartan connection m R in matrix form 

= - z ~  B ~o 8 2ira B 

~/4 9-- n+l 
2 mn+l / 

6 s~(n+2,C) 

Then the condition that m R restricted to Y takes 

values in su(n+l,l) implies that on Y: 

II 
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= 60 

(2o) 

E 

tO ---- 60 

B 60~ ---- --60C~ 

0 n+l 
600 = -60n+i 

m 

~ = 

Let 

= ~ �9 

(21) {Xn+ I, X , X ~, X 0, AB,a B a, B~, C} 

60~ dual basis to {60,60~,60 ,m~, ~,~a,~,~}. 

be the 

Y is an integral manifold of the not everywhere 

integrable system (I0), or equivalently the distribution 

(22) {Xn+l,X + X e, J(X - X e), X 0, 

A B~ - A B~, J(A~ + A~), B~ + B ~, 

J(B - Ba), C} . 

In the next section we will use this relation between 

the fundamental vectorfields on R given by (21) and 

the vectorfields given by (22), which are tangent to Y, 

to describe the reduction of the defining function of M 

to normal form in certain distinguished coordinate systems. 

12 
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2. In this section we will show that using the expo- 

nentials of certain fundamental vectorfields one can 
~n+l 

define a holomorphic coordinate system on in 

which the defining function of M reduces to a normal 

form equivalent to Moser's. 

Before defining the coordinates and computing the 

associated defining function we give some definitions. 

Although R is a complex manifold, the tangent space 

TR is taken in the sense of a real manifold. Let X 

be a real vectorfield on R and let ~(X,t) be the 

flow of X at time t; assuming this is defined for 

time i, let ~(X,I) = ~(X). Let J be the almost 

complex structure tensor. If 

vectorfield, that is ~ J = 0, 
x 

13 

X is a (real) holomorphic 

then 

s+it ~-+ ~(sX+tJX)p 

defines a holomorphic curve through p. If XI,...,X n 

are (real) holomorphic vectorfields which are linearly 

independent near p then 

(23) (z I N) ,...z § ~(xlxI+yljxI +...+ xN~+yNj~)p 

defines a holomorphic imbedding of a neighborhood of O 

in ~N into R. Since TR consists of tangent vectors 

with real coefficients, use the following convention, 

for z = x + iy and X e TR, let zX = (x+iy)X = xX+yJ~ 

and write (23) as 

13 
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(24) (zl,...z N) § ~(zlx I +...+zN~)p . 

Let ~i be the projection of R on ~(T (I'0) 

the projection of ~(T (I'0)) on gn+l and 

For X , Xn+ I defined at the end of i. 

~: (z~,w) + ~(zeX )~(WXn+l)p 

and 72 

~3 = ~2~ 

defines an imbedding of an open set U in C n+l into 

R and ~3o~ defines a local parametrization of Cn+l 

near ~3(p). Note that each submanifold 

(w = constant) is a leaf of the foliation used to define 

R. The coordinates (z~,w) are called projective 

Fermi coordinates. 

We will compute the defining function of M in pro- 

jective Fermi coordinates and show where it differs 

from Moser normal form. 

Theorem 2. The projective Fermi coordinates relative 

to R bases at p ~ Y provide holomorphic coordinates 

on an open set U c C n+l containing ~3(p) s M with 

respect to which the defining function of M in U is 

in a modified normal form differing from Moser normal 

form only in that 

tr3F3 ~ _- _ (2n+l)n [IF2~[12. 

Remark. The notation Fk~ , etc. is the same as in [4] 

and is recalled below equations (38) and (39), as is the 

definition of the trace operator. 

14 
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Proof. Since M = ~Y and the vectorfields X + X ~, 

J ( X - X ~ ) ,  and Xn+ 1 a re  t angen t  to  Y and t r a n s v e r s e  

to the fiber, we have 

~3~(aa(X+Xe)+baJ(X-X~))~(CXn+l)p 

covers an open set MnV in M for (a~,b~,c) in some 

open neighborhood of O in R 2n+l. The problem is to 

solve 

m 

(25) ~3@(f~X+f~X~)~(hXn+l)p = ~3~(z~,u+iF) 

for real analytic functions f~ h, F of (z~,z u) 

all vanishing at O. There is no problem of existence 

or analyticity, which follow from the inverse function 

theorem, what is being determined is the precise 

expression. The defining equation of M will be 

(26) v = F(z~,z~,u) 

First look at the corresponding equation on R. For 

some vectorfield P tangent to the fibers of 
0 ~ 

~3:R § cn+l, p = pa X +PoX +pBA + p B +p B +pC, 

(27) ~(P)~(f~X= + f~X~)~(hXn+l)p = 

~(z~Xe)~((u+iF)Xn+l)P 

15 
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Letting Z = z~X , W = iFXn+l, X = faX + f~X ~ 

H = (h-U)Xn+ I = gXn+ I and q = ~(UXn+l)p, (27) becomes: 

(28) ~(P)~(X)~(H)q = ~(Z)~(W)q. 

The point q is on the integral curve y of Xn+ I 

through p; this curve projects onto a chain in M[4]o 

Recall that for a real analytic function f, a real 

analytic vectorfield X and t sufficiently small 

f(~(X,t)p) = (etXf)p . 

From this fact we conclude that to satisfy equation (27) 

for all u sufficiently small, or equivalently (28) for 

all q near p on y, we must solve the identity 

WZ HXP 
(29) e e = e e e 

where each side may be written as a single exponential, 

using the Baker-Campbell-Hausdorff (BCH) formula and 

computing commutators at q. the BCH formula as given 

in [8] says that there is an identity in the free assoc- 

iative algebra generated by two elements, a,b - 

(30) eae b =eC 

where C is given by a formula involving only commut- 

ators of arbitrary order in a,b. 

16 
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�89 1 1 
(31)  c = a + b  + [ a , b ]  + - ~ - [ a , [ a , b ] ]  + - ~ [ b , [ b , a ] ] + . . .  

To apply this formula to (29) with vectorfields W and 

Z or H,X and P, we compute the successive brackets 

at the point q using the structure equation (8) and 

the invariant equation for the deRham differential 

2 d % ( E , n )  = ~ X ( n )  - n % ( ~ )  - k ( [ ~ , n ] ) ,  

~ith ~ a one-form and ~ and 4 vectorfields. The 

dependence on q is equivalent to dependance on u. 

Then equating the two exponents determines F,g,f~,p~, 

...p as power series in z ,z with coefficients 

analytic functions of u. 

More explicitly rewrite (29) as 

GZ XP 
(32) e e = e e 

where G = -H + W = (-g+iF)Xn+ I = FXn+I, then determine 

the formulas for coefficients in the power series expan- 

sion of F. The curvature ~R of the Cartan connection 

~R describes the difference between brackets of vector- 

fields computed on R and the brackets of the corres- 

ponding left invariant vectorfields on Si(n+2,r where 

the correspondence is given by the Cartan connection on 

R. The only brackets which differ from those computed 

on the group are the following 

R E Ay i y + P B Y + H C 
[X~'Xn+l] = ~Y 6 - 2 Q By ~Y 

19 
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i 
(34) [X ,Xn+l ] = T~ YA S - ~ QSB Y + L~YBy + K~C 

= " ~ T~YBy + Q~C (35) [X~,X 8] 168Xn+ 1 + S~~ p~p ~ + R~yB Y + . 

These are derived from the formulas for projective cur- 

vature in [3]. 
G Z U X P V 

If we write e e = e and e e = e then equating 

terms in U, V. 

i =e y~B i Y i fc~ c~+. 
(36) fe + 7 x pBoy + 7 fYp - 4- P0 = z .. 

f~ 1 e y6B i y y 1 
P + - 2 f P8 y - 7 f P~ - 7 fePo = 0+... 

i 
= 7 f ep0~ + ' ' "  

i ~ + i ~8~e 1 ~ p ~ 1 zl~R~ +... 
PB +2 f~P8 7 ~ p - ~ f P]J~X~B = 2 T 

i cC ~ 8 i .~8~ = 0+. 
PO -2 f Pf~e +2 z p ~ "" 

i f~ i Y 8 i zy~Fp +... 
P~ - 4 - 7 f pBR~Y = ~ ~Y 

P -4 7 = -~z .. 

1 8 ~ 1 ~ +. 
P - 7 f P Qs = " "  

where dots indicate an infinite series with monomials of 

18 
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z~,F,p~ cubic or higher order in etc., with coef- 

ficients universal polynomial expressions in S ~8 pq' Rsy' 

TB~Y' Q8'~ P~8' L aB , H~, K s and their X~, X ~, Xn+ I 

derivatives. 

Clearly one can solve these equations recursively for 

f~, ~ p~, etc., as power series in z , z with co- 

efficients given by expressions in the curvature func- 

tions and their successive X%, X %, Xn+ 1 derivatives 

(generalized covariant derivatives) computed at the 

point q = ~(UXn+l) p. 

We find 

f~ = z~+... 

PC~ 

F 

= zC~+... 

i z ~ 2+. 
I .. 

(37) Pe = 0+... 

1 %z ~ S~ +. PB - 2 z .. 

i R 8 z B zy +... pe = ~ ~y 

M 

~ i T~Bz Y z 8 +... p = 

m 

I ~ zBz e +. 
P = 2QB "" 

19 



20 BURNS - SHNIDER 

In order to solve for higher terms we use an argu- 

ment involving homogeneity. 

(i) Assign to the vectorfields Xn+l, X , etc., weights 

as follows : 

Xn+l, weight -2;  

X 0 ~ weight 0; , A~, 

C, weight +2. 

X , X ~, weight-i; 

B B c~, weight +1; 
C~ 

(ii) Assign to the curvature function weights: 

~ weight -3; S~o0 , weight-2; R~y, TBy , 

QB ~' P~B' L aB , weight-4; H a, K , weight -5 

(iii) A covariant derivative by X or X ~ lowers 

the weight by -i, a covariant derivative by 

Xn+ 1 lowers the weight by -2. 

(iv) f~ Assign to the variables z , p~, etc., weights: 

f~ z , p~, weight +i; PS' P8 weight 0; 

p , p~ weight -i; p weight -2. 

Then one sees that the equations in (36) are homogeneous. 

This is clear for the leading terms (37) and, in genera], 

it is because G,Z,X,P are of total degree 0, hence 

the same holds for U, V. Thus, when we separate 

components of the vector equation U = V, the coef- 

ficients of each vector Xn+l, X , etc., must have the 

opposite weight, e.g., the coefficient F of Xn+ I 

must have weight 2. Further there are no "stray" indices: 

2O 
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the coefficient F of Xn+ 1 is a sum of homogeneous 

polynomial terms, each one of which has all indices in 

certain possibly higher order curvature functions summed 

z 8 ' 8 with respect to z or where z is considered 

as having index lower 8, the coefficient p~ of X 
e 

is a sum of terms each of which has one free index upper 

e,a_band als~ on._bnIf a = (a l...a n ), b = (b l...b n) and 

z z = z I ...z then the coefficient of zaz b in the 
n 

power series expansion of F(z,z,u) polynomial is giver 

by a universal polynomial in tensors of weight 

2 - lal - Ibl with lower indices l,a I - times, 

2,a 2 - times,.., and upper indices l,b I - times, 

2,b 2 - times... 

Write Im F(z,z,u) = F(z,z,u) = EFk~(Z,Z,U) where 

Fk~(tz,sz,u) t k s - u). = s Fki(Z,Z, 
Let 

B I. �9 .BZ e I ze<zBl B 2 
(38) Fk~(Z'Z'U) = e l.~..e< Fe I ...eK(u)z ...... z 

8 i 8~ 

Bl-..~ ~ 
then F is expressible as a polynomial homo- 

~l..-eK 
geneous of weight 2-k-Z in the curvature tensors, 

S R e etc., their covariant derivatives, and 88 . 
' 8y 

simple argument shows that if k ~ 1 or s ~ i, then 

Fk~ = 0 unless k = i = i, since a curvature poly- 

nomial of weight -m with 2+m indices must be either 
e 

68 or have at least 2 upper and 2 lower indices. Define 

21 
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(39) 

Z 
~2" " "e< 

82 �9 �9 .89~ 

J 
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tr Fk~ = trace Fk~ = 

Ja2.-.~K a 2 ~< ~i'''8~ 
Fj82...8~(U) Z ...z a 

By inspection of the curvature polynomials of weights 

-2, -3, -4 we conclude that 

(40) 

tr F2~ = tr2F3~ = 0 

tr3F3~ = const ]Is~O]I 2 
8~ 

= const IIF~I' 2 

That F2~ , F3~ and F3~ are not identically zero can 

be seen by computing the connection in local coordinates 

given by projective Fermi coordinates. The result is 

(see [i]) 

(41) 

where 

V a = R ~ = 12i ~a 
8Y BY - n+2 FI8 T 

a = n F~pa + e 
QB (n+l) (n+2) lpB r8 

Ta= 2n+l ii F~0oll 2 

e (n+l) (n+2) 

22 
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Therefore from (41) 

23 

(42) 

F2~ = 0 => S~o8 = 0 

F3~ = 0 =~ V e = 0 8X 

~ ~ ilFa~ll 2 F3~ = 0 = QB = TB po 

= 0 = S ~ ~ = O. 
po 

The last equation of (41) determines the constant = 
2n+l 
--, concluding the proof of the theorem. 

n 
By changing the definition of the Cartan connection 

on R (equivalently, on Y) we can get exactly the 

Moser normal form from projective Fermi coordinates. 

Define on R 

~ = ~ -  a~o 

The induced change in the dual basis is only in 

(25) Xn+ I = Xn+ I + aC. 

Since the distribution on R{Xn+I, X O, C} is integrable, 

and its integral manifolds projective to complex curves 

in cn+l which intersect M in chains, the proposed 

change will only affect the parametrization of chains 

is what yields tr3F3~ = 0, and this 
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A direct calculation shows that this change in Xn+ 1 
a 6 

alters the term F3~ by - ~ llzll . Choosing ~ proper-- 

ly it is possible to find a defining function F~ with 

tr3Fa 33 = 0, the first two trace conditions remaining 

unchanged. This has the effect of changing only the 

curvature function 

c~ ~c~ 2n+l II ~ p  II 2 ~ + 
QB to QB = n(n+l) (n+2) ~B~ ~B QB " 

Corollary. The curvature functions and their covariant 

derivatives at a point q of the pseudoconformal bundle 

determine the coefficients of the normal form at 

p = ~(q) according to universal homogeneous, polynomial 

formulas derived from the Baker-Campbell-Hausdorff 

formula. 

This corollary gives the relation between the CR 

curvature functions on Y and the coefficients of the 

normal form via the complexification procedure described 

in Theorem i. The relation between these curvature 

functions and the invariants derived from Fefferman's 

asymptotic solution to the Monge-Amp~re equation has 

been explained by Webster [i0]. 

We conclude with the remark that if M c C n+l is not 

C ~ real-analytic, but a hypersurface, then the above 

theory carries over directly in the context of formal 

power series. Thus, the bundle R will be the almost- 

analytic extension, in the sense of A. Melin and 

J. SjSstrand, of the totally-real bundle Y imbedded in 

R as in i. If all exponentials of vectorfields in 2 

24 



BURNS - SHNIDER 2 5 

are interpreted as formal power series in the approp- 

riate variables, the (non-convergent) normal-form for 

M at P is derived by universal formulas involving 

the curvature of R and its covariant derivatives, 

computed to infinite order along Y. This curvature is, 

as in i, the almost-analytic extension of the curva- 

ture of Y, so that the normal form coefficients are 

given by universal polynomial expressions in the curva- 

ture of Y and its covariant derivatives, the same 

polynomials as in the corollary above. 
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