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Laminar Natural Convection Over a Slender Vertical 
Frustum of a Cone 
T.Y.  Na and J . P .  Chiou,  Michigan  U . S . A .  

Abstract. The problem of laminar, natural convection flow over a slender frustum of a cone is treated in this 
paper. The governing differential equations are solved by a combination of quasi-linearization and finite-dif- 
ference methods. Numerical solutions are obtained for Pr = 0.7 and for a range of values of the transverse 
curvature parameter. It is shown that the effect of transverse curvature is of great significance in such flows. 

Laminare natiirliehe Konvektion an einem diinnen, senkrechten Kegelstumpf 

Zusammenfassung. In diesem Bericht ist das Problem der laminaren natiirlichen Konvektionsstr6mung an ei- 
nero diinnen Kegelstumpf behandelt. Die maggebliche Differentialgleichung ist durch eine Verbindung yon 
Quasilinearisation und Differenzenverfahren gel6st. Eine numerische L6sung flir Pr = 0.7 wird fiir verschie- 
dene Werte eines Kriimmungsparamelers angegeben. Es ist gezeigt, dal~ in solchen Str6mungen dieser Kriim- 
mungsparameter eine grol~e Bedeutung besitzt. 
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dependent variable, defined in Eq. (7) 
dependent variable, defined in Eq. (7) 
gravitational acceleration 

heat transfer coefficient, or R-grid 
heat conductivity, or g-grid 
characteristic length 
Nusselt number 
Prandtl number 
radial distance from the axis of the cone 
transverse curvature effect ratio, defined 
in Eq. (23) 
Reynold number 
temperature 

u,v 

x,y 

velocity components in the x- and y-direc- 
tions, respectively 
rectangular coordinates 

Greek letters 

e 

O! 

dimensionless temperature, definedin Eq. (4) 
bulk modulus 
cone angle 
dynamic viscosity 
stream function 
independent variable, defined in (7) 
transverse curvature parameter 

1 Introduction 

The problem of laminar natural convection flow over 

a vertical cone has been treated in the literature by 

many authors since 1953. Merk and Prins [I] found 

the similarity solution for the case of an isothermal 

cone. This case was extended by Hering and Grosh 

[2] to the case of non-isothermal cones where the 

wall temperature varies as x n. Similarity solutions 

were obtained for a family of values of n's. Further 

analyses of this problem for low Prandtl numbers 

were made by Hering [3 ] and Sparrow and Guinle 

[4] and, for large Prandtl numbers, by Roy [5]. In 

all these works, however, the flows considered are 

similar and, as such, the governing differential equ- 

ations can be reduced to ordinary differential equa- 

tions. Another limitation is that the cone angles un- 

der consideration are large so that the transverse 

curvature effects are negligible. 

In this paper, we will consider the natural con- 

vection over a slender frustum of a cone (Fig. I). 

This analysis differs from previous works on this 

subject in three aspects. First, the flow is non-sim- 

ilar. Second, the transverse curvature effect has to 

be included since now the boundary layer thickness 

is of the same order-of-mangitude of the radius of 

the cone [6, 7]. Third, a frustum of a cone (Fig. l), 

instead of a full cone, is considered. However, as 

x 0 approaches to zero, the flow will approach to the 

natural convection flow over a full cone. 
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F i g .  1.  C o o r d i n a t e  s y s t e m  

The governing differential equations are first line- 

arized by the quasilinearization method. The result- 

ing equations are then solved by a finite-difference 

method outlined in detail in reference 8. 

2 A n a l y s i s  

The  g o v e r n i n g  d i f f e r e n t i a l  e q u a t i o n s  f o r  t h e  s o l u t i o n  

of  n a t u r a l  c o n v e c t i o n  f low p a s t  a s l e n d e r  v e r t i c a l  

f r u s t u m  of  a c o n e  w i t h  c o n s t a n t  wa l l  t e m p e r a t u r e  

( F i g .  1) c a n  b e  w r i t t e n  in  t e r m s  of  d i m e n s i o n l e s s  

q u a n t i t i e s  a s  : 

~(~___i) + b(~) : o (~) 
b~ bf 

u ~ + ~ - ~ -- + e ( 2 )  

b~ ~9 ~ 59 ~9 

bx 5Y P r  r by 

The boundary conditions a r e :  

9 = 0 :  u = 0 ;  ~ = 0 ;  e = l  

9==: u=0; O = O .  

The  d i m e n s i o n l e s s  q u a n t i t i e s  in  E q s .  ( 1 ) ,  ( 2 )  a n d  

(3)  a r e  r e l a t e d  to  t h e i r  c o r r e s p o n d i n g  p h y s i c a l  v a r i -  

a b l e s  t h r o u g h  t h e  f o l l o w i n g  d e f i n i t i o n s :  

X- Xo u v 

r O 

T - To= r 
rO(x)  RV-R-~L; 0 = T -T-------~ ; r= ~ RV'R-~ 

r--o =--T- w 

where 

u c = [geBCOS~(T  w -  T )L]  1 / 2  

uL 
C 

R e  L = 

If the characteristic length, L, is chosen as the dis- 

tance x 0 (Fig. I), then the Reynolds number be- 

c o m e s :  

i/2 
UcX 0 { ge8 cos ~ T~) x3 = Gr I/2 

ReL = ~ = 7 x0 

where Grxo is the Grashof number based on X 0 - 

Next, the following transformation will be intro- 

duced: 

f ( ~ , ~ ) = ~ ;  g(~,~):e 

w h e r e  t h e  s t r e a m  f u n c t i o n  ~ i s  defined by :  

~ = br a n d  ~ = _ b._~* 
b9 b~ 

and, for c o n e s ,  

r 0 = x sin ~. 

Equations (I), (2) and (3) then become: 
(3) 

- ( t , I  - 

- 2 bf '  ~0 ~0 ' bf 

i 

P r  g '  + - - -  T f g ' =  g 

subject to the boundary condi t ions:  

( 4 )  ~ =0: f ( ~ , O )  = f ' ( ~ , 0 )  = 0 ~  g ( ~ , O )  = l 

-q = r f'(~, ~) = 0 ;  g(~, r162 = 0 

(5) 

(6) 

(7) 

( 8 )  

( 9 )  

(1o) 

(ii) 
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where primes in Eqs. (I0) and (11) represent differ- 

entiation with respect to ~, and S = ~/(I + ~). 

The ratio r/r 0 represents the effect of transverse 

curvature. For cones with large cone angle, r is 

very close to r 0 and the transverse curvature ef- 

fects are negligible. For such flows, the ratio r/r 0 

is taken to be I. Equations (I0) and (II) are similar 

and b e c o m e  : 

7 ff,, 1 ) 2 f"' + -~ - ~ ( f '  +g=0 

1 g,, 7 
P'-T + -4 fg' = 0 

(12) 

(13) 

which are the Equations givenby Hering and Grosh [2]. 

For cones, we have 

r = r 0 + y cos 

r 0 = x sina . 

In terms of the similarity variables defined in Eq. 

(7), the ratio r/r 0 can therefore be written as: 

-- ~ ( 1 4 )  = 1 +  7 l + ~ ' q  
~o 

where the TVC (transverse curvature) parameter ? 

is defined as: 

Cot~ (15) 
? = G r  i - - - r " i - ' /T  . 

x 0 

Substituting r/r0 from Eq. (14) into Eqs. (I0)and 

(II), we get: 

3+4S ~ 1 
7 ~ f , l . . - T - i _ ~ . . q f ' }  + ( ) g  ( ) 2  

bf'  ( ) f " - ? ~ ' f '  bf / (16) 
] 

g + ----~- b g - g  

subject to the boundary conditions: 

(17) 

.q=o:  f ( ~ , o ) = f ' ( L o ) : o ;  g ( ~ , o ) = i  

.q : =: f ' ( g ,  =) = o;  g (g ,  =) = o 

where the notation "( )" in Eqs. (16) and (17) repre-  

sents the two terms on the right-hand side of Eq. (14), 

and 

3 Numerical Solutions 

To solve Eqs. (16) and (17), they are first written as 

a first-order system. The derivatives are then ap- 

proximated by centered-difference gradients and 

averages centered at the midpoints of the net rect- 

angles defined by: 

~0=0, ~n = ~n_1 +kn, n= 1,2,...,N 

~0 = 0, ~j : ~j-1 + hi, j = 1 , 2 , . . . , J  (18) 

~j = ~ 

as shown in Fig. 2. A non-uniform grid h. defined by 
] 

hj = Khj_ I (19) 

where the ratio of adjacent intervals, K, is a cons- 

tant. The distance from the surface to the jth station 

is then given by: 

K j - 1 
~j = hj K - I ' J = 1,2,...,J . (20) 

nj 

n)_v2 . . . .  

nj_l 

n-1 

- kn ~I 

I 
I 

1 
1 I 
I 

~n-l/2 ~n 

Fig. 2. A typical grid point 
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The ~-direction grid k is arbitrary. The lineariza- 
n 

tion is achieved by the method of quasilinearization 

and the resulting system of algebraic equations are 

then solved by an efficient block-tridiagonal factori- 

zation technique. Details of the method of solution are 

identical to the one used in reference 8 and are there- 

fore omitted here. 

The rate of heat transfer from the cone to the fluid 

is characterized by the local Nusselt number defined 

by: 

hx 
Nu =-- 

x k 

where h is the local heat transfer coefficient defined 

by: 

(bT) = h ( T w _ T  ) . 
-k %-~ y:O 

In terms of the similarity variables and Grx0 , we 

get : 

Nu x ~ !  = E-g' (O)]TV c (21) 

Xo /TVC 

where the subscript "TVC" means the effect of TVC 

is included. If the effect of TVC is not included in 

E q s . ( 1 0 )  and (11)  [ i . e . ,  E q s . ( 1 2 )  and (13)  a r e  

s o l v e d  i n s t e a d ] ,  a s i m i l a r  e x p r e s s i o n  can  be  w r i t t e n  

as  : 

~I : [-g'(O)]NO_TVC . (22) 
x0 /NO-TVC 

It should be noted that if the TVC effects are 

neglected, [-g' (0)] is constant for a given value of 

Pr, as is seen from Eqs. (12) and (13). On the other 

hand, [-g' (0)] is a function of x for a given Pr if 

the effect of TVC is included. For this reason, we 

consider the ratio of the two expressions in Eqs. (21) 

and (22), namely, 

[ - g '  (0)  ]TVC (23)  
R = [_g,  (0) ]NO-TVC " 

If the TVC effect is negligible, the ratio R will 

be equal to 1. The ratio R is greater or smaller 
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Table 1. R-vs-x for various ?'s (Pr = 0.7) 

R 
s 

7 = 0 . 2 5  7 = 0 . 5 0  7 = 0 . 7 5  7= 1 .00  

0 . 0 0  0 . 7 8 2 9  0 .7829  0 .7829  0 .7829  
0 . 2 5  0 .9030  0 .9785  1 .0521 1 .1240 
0 . 7 5  1 .0082  1 .1343 1 .2530  1 .3657  
1 .75  1 .0257  1 .1226 1 .2241 1 .3019 
3 . 7 5  1 .0335  1 .1098  1 .1854 1 .2514 
7 . 7 5  1 .0355  1 .0851 1 .1298  1 .1788  

15.75 1.0316 1.0624 1.0961 1.1265 
31.75 1.0300 1.0461 1.0619 1.0806 
63.75 1.0181 1.0257 1.0349 1.0439 

than 1 depending on whether the heat transfer rate 

is increased or decreased, respectively, as a result 

of TVC. 

Numerical results are obtained for the ratio R as 

a function of x for Pr = 0.7 and for a few values of 

the TVC parameter, ]{, namely, 0.25, 0.5, 0.75 and 

1.0, respectively. For Pr = 0.7, it is known that 

[ - g '  (0)  ]NO-TVC = 0 .45113  . 

So lu t i ons  of  E q s .  (16)  and (17)  t hen  g i v e  

[ - g '  (0)  ]TVC - v s  - x fo r  e a c h  v a l u e  of  the  TVC p a r -  

a m e t e r .  E q u a t i o n  (23)  can  then  be  u s e d  to c a l c u l a t e  

the  r a t i o  R a s  a func t ion  of  ~. The r e s u l t s  a r e  s u m -  

m a r i z e d  in  Tab le  1. The fo l l owing  c o n c l u s i o n s  a r e  

drawn : 

1. For all the cases considered, the effect of TVC 

is to increase the rate of heat transfer. The increase 

can be as high as 36 % for large value of the TVC par- 

ameter. 

2. The ratio R first increases with x, reaches a 

maximum at a certain location and then decreases 

with x. This is physically reasonable since, as x in- 

creases, the boundary layer thickness becomes small 

as compared with the radius of the cone, ro, and as 

a result the TVC effect becomes less important. 

3. Larger values of the TVC parameter corre- 

spond to more profound TVC effect. From the de- 

finition of 7, a large ? means either a smaller cone 

angle c~ or a smaller x 0. In both cases, the bound- 

ary layer thickness becomes closer to the cone ra~ 

dius r 0 and an increase in the TVC effect results. 

As a final remark, an example will be given to 

show how the solution for the frustum of a cone as 

presented above can be used approximately for a ful- 
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cone. Consider, for example, the problem of natural 

convection of air at 80 ~ over the frustum of a cone 

(L = 1 ft, x 0 = 2 in. and ~ = 5 ~ with surface tem- 

perature of 520 ~ For this case, the TVC parame- 

ter ? is found to be 0.34. If we decrease x 0 from 

2 in. to 0.5 in., the corresponding value of ? will 

be 0.96. For such a small value of x 0 (Fig. l), the 

solution for the frustum of a cone becomes a good 

approximation of the boundary layer flow over a full 

cone with L = 12.5 in., especially in view of the fact 

that the boundary layer equations no longer apply near 

the tip of a full cone. It should be noted, however, 

that from the mathematical point of view, x 0 cannot 

be equal to zero since a zero value of x 0 will give 

rise to a mathematical singularity in the transverse 

curvature factor r/~0 in the differential Equations, 

Eqs.(10) and (ll). 
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