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Laminar Natural Convection Over a Slender Vertical
Frustrum of a Cone with Constant Wall Heat Flux

T. Y. Na, Dearborn and J. P. Chiou, Detroit

Abstract. The problem of laminar natural convection flow over a slender frustrum of a cone with constant wall
heat flux is treated in this paper. The governing differential equations are solved by a combination of quasilin-
earization and finite-difference methods. Numerical solutions are obtained for Prandtl numbers from 0.1 to
100 for a range of values of transverse curvature parameter. It is found that the effect of transverse curvature

is of great significance in such flows.

Laminare natiirliche Konvektion iiber einem dilinnen, senkrechten Kegelstumpf mit konstantem Wandwirmestrom

Zusammenfassung. In dieser Arbeit wird das Problem der laminaren, natiirlichen Konvektionsstrémung iiber ei-
nem diinnen Kegelstumpf mit konstantem Wandwirmestrom behandelt. Die maBgeblichen Differentialgleichungen
werden mit Hilfe einer Kombination von Quasilinearisierung und Differenzenverfahren geldst. Numerische Lo-
sungen werden fiir die Prandtl'schen Zahlen zwischen 0.1 und 100 innerhalb eines Bereiches von Querkriim -
mungswerten erhalten. Es wird gezeigt, daB der Einfluf der Querkriimmung in solchen Stromungen von grofier

Bedeutung ist.

Nomenclature

A,B,C constants in the transformation, defined in
Eq.(14)

f dependent variable, defined in Eq.(7)

g dependent variable, defined in Eq.(7)

€ gravitational acceleration

k heat conductivity

kn gE-grid

L characteristic length

Nu Nusselt number

Pr Prandtl number

d wall heat flux

T radial distance from the axis of the cone

RTVC transverse curvature ratio, defined in
Eq.(28)

Introduction

The problem of laminar natural convection flow over
a vertical cone has been treated in the literature by
many authors since 1953. Merk and Prins [1] found
the similarity solution for the case of an isothermal
cone. The case was extended by Hering and Grosh [2]
to the case of non-isothermal cones where the wall
temperature varies as x". Similarity solutions were
obtained for a family of values of the n's. Further
analyses of this problem for low Prandtl numbers
were made by Hering [3] and Sparrow and Guinle [4]
and, for large Prandtl numbers, by Roy [5]. Other

Re Reynolds number.

T temperature

u,v velocity components in the x~ and y-direc-
tions, respectively

X,y rectangular coordinates

Greek Letters

8 dimensionless temperature, defined in
Eq.(4)
bulk modulus
cone angle
dynamic viscosity
stream function N

s transformed independent variables, defined
inEq.(7)

¥y transverse curvature parameter

e < Q W

analyses include the solutions for cones with a cons-
tant-wall-heat flux boundary condition [6], for slender
cones with power-law wall temperature [7] and for
a slender frustrum of a cone with constant wall tem-
perature [8]. In all these works with the exception
of references [7] and [8], the cone angles under
consideration were large so that the effect of trans-
verse curvature was negligible. From the mathema-
tical point of view, such flows were similar and, as
such, the governing differential equations can be re~
duced to ordinary differential equations.

When the cone angle is small, the boundary layer
thickness is of the same order-of-magnitude of the
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Fig.1. The coordinate system

cone [7-10] so that the transverse curvature terms
have to be retained in the governing differential equa-
tions. The result is that the differential equations are
non-similar, which means the differential equations
are no longer reducible to ordinary differential equa-
tions.

In this paper, the problem of natural convection
flow over a frustrum of a cone will betreated for the
case of specified wall heat flux. Similar to reference
[8], the governing differential equations are first
linearized by the quasilinearization method. The re-

sulting equations are then solved by a finite-difference

method outlined in detail in reference 11. Referring

to Figure 1, the flow over a frustrum of a cone will

approach to the flow over a full cone as X4 approaches

to zero. It should be pointed out that the differential
equations in this analysis will be reduced to the sim-

ilarity equations of Lin [6] if the iransverse curvature

terms are omitted.

Analysis

The governing differential equations for the solution
of natural convection flow past a slender vertical
frustrum of a cone with constant wall heat fluxes
(Fig.1) can be written in terms of dimensionless

quantities as:

b(ru) . b(r_v) -0 (1)
oxX oy

-du - du 0 |- oau
u-g-l-‘_l-+vg_—f-=%—-_-_-{r9:}+6 (2)
ox dy T dy oy )
a9%+;£9__=_1_§%[;£?-}. (3)
dx dy Pr r dy dy :
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The boundary conditions are:

y=0:10=0; v=0; -ﬁ=_1
oy
y==:u=0; 6=0.

The dimensionless quantities in Egs.(1-3) are
related to their corresponding physical variables
through the following definitions:

X—XO

(4)
ro(x) ]/—— T-T. .
0T ReL;e: qOL ,r:% ReL
(kpReL>
where
L 2/5
u, = {geﬁ cosa[?%—] (Lv)l/zi
u L (5)
ReL = —S—— .

If the characteristic length, L, is chosen as the dis-
tance x, (Fig.1), then the Reynold number becomes:

g8 cos a(qoxo/k)xg 2/5
2

v

= G 2/5 (6)
I‘XO

where er is the Grashof number based on Xg*
0
Next, the following transformation will be intro-

duced:

§:;(; 1']:—1

(7)
- )
t(g,m)= + ; g(g,m) = -
4 Sro X175
where the stream function ¢ is defined by:
fa=2 and tv=-AU (8)

dy x
and, for cones,

r, = X Sing .
0 o
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Equations (1-3) then become:

r 4 v 1.
-Plf -:_[‘— g' +(R+~5-)fg —gfg
o

subject to the boundary conditions:
n=0: (g,0) = £'(g,0) = 0; g'(g,0) = - 1
n=o: £'(g,x) = 05 g(g,=) =0

where primes in Egs.(9) and (10) represent differ-
entiation with respect to n, and

£ df, *x £
R=— —2-—— = . (11)
T dx 1+x 1+¢

The ratio r/ To represents the effect of trans-
verse curvature. For flows far downstream, r is
very close to To and the effects of the transverse
curvature are negligible. Furthermore, the para-
meter R approaches to 1 when x becomes large.

Equations (9) and (10) become similar and can be

written as:
f"'+-g-ff"-%(f')2+g=o (12)
pre'+3fg -Lt'g=0 (13)

which can be reduced to the form given by Lin [6]

through the transformation:

n*=Anq, ¥=Bf, g¥=Cg (14)
and
1/5
9 4
A:—C:(E-G) ; B= At (15)

The starred quantities in Eq.(14) refer to the same
variables in Lin [6]'s work.

For cones, we have
r= I‘0 + Yy COs¢

r. = X sina .
0 sing

In terms of the similarity variables defined in

Eq.(7), the ratio f/i"o can therefore be written as:

§1/5
1+8

o"“ll-“

where the TV G (transverse curvature) parameter

¥ is defined as:

_ Coty
1= Grl/5 (17)

Tx
0

Substituting f/fo from Eq.{16) into Eqs.{9)
and (10), we get:

2

fnl__(‘[_;fn+ *2 f""(l)'x
()

(e g 3)- B o]

i 4 1 i
-z r[(red)r-gor | O
£ oy’ g
=€[U'af'u(—fz—%§] (18)

ALY

subject to the boundary conditions:

n=0:£(g,0) =£'(g,0) =0; g'(g,0) = - 1

n==:1'(g,=) = 0; gg,=) =0
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where the notation "*( )" in Egs.(18) and (19) re-
presents the two terms on the right-hand side of
Eq.(16) and
1/5
#*
v o=y .1L+§ . (20)

Numerical Solutions

To solve Eqgs.(18) and (19), they are first written as
a first-order system. The derivatives are then ap-
proximated by centered-difference gradients and aver-
ages centered at the midpoints of the net rectangles
defined by:

+
I3
ja]
!

| gO:O’ gn: “1,2,.--,N

'q0=0, n.:nj_1+hj,j=1,2,...,.]' (21)

N7 = M
as shown in Figure 2. A non-uniform grid hj defined
by

h.=Kh,

i i-1 (22)

where the ratio of adjacent intervals, K, is a con-
stant. Thedistance from the surface to the jth station
is then given by:

I
hK 1

’ﬂj'_‘ i K-1 ° (23)

j=1,2,.0.,7.

The g-direction grid kn is arbitrary. Linearization
is achieved by the method of quasilinearization and
the resulting system of algebraic equations are then
solved by an efficient block-tridiagonal factorization
technique. Details of the method of solution are iden-
tical to the one used in reference 11 and are there-
fore omitted here.

In engineering applications, it is the surface tem-
perature Tw(x) that is of interest for the case in
which the wall heat flux is specified. From the de-
finitions of Eqs.(4) and (7),

[Tw(x) _Tc:]TVC =

(ggxy/%) 8/
= N V4 Leg(8.0dpyc
g8 cosa(qoxo/k)xo
2

AV

(24)
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where the subscript "TVC'" means the effect of TVC

is included. If the cone angle « is large, the effect
of TVC is negligible and Eqs-(9) and (10) become:

[Ra} 4 1 3 |2
f +(R+3~)ff’ --5—(f) +g

:g(f’%—f”%&) (25)
gt + (R+%) Prig' '%Prf'g
:gPr(f'%%-g'%E') (26)

which are also non-similar. The expression for the

wall temperature is given by:

[T(®) = T no-rve =

(27)
(qoxo/k)':i/5
i 7175 Le(8:0) dno1ve -
g.P Cosoz(qoxo/k)xo

2
v

The effect of TVC as a result of slenderness can
therefore be characterized by the following ratio:

TVC " 7 (x)-T_] " [g(2,0)] )
wX) Toednoorve  [8(8:0) o 1ve
(28)
If the TVC effect is negligible, the ratio RTVC

will be approximately 1. The ratio RTVC is greater
or smaller than 1 depending on whether the wall tem-~
perature Tw is increased or decreased, respectively,
as a result of TVC.

To calculate the ratio Ryy, Eqs.(25) and (26)
are first solved, from which we get [g(€g,0) ]NO-TVC
as a function of €. Then (18) and (19) are solved,
from which we obtain [g( E,O)JTVC as a function of .
The ratio of the two sets of solutions then give the
ratio RTVC as a function of g§. Table 1 gives the ratio

Rrve
values of TVC parameter, ¥, namely 0.25, 0.5, 0.75

as a function of £ for Pr = 1.00 and for a few

and 1.00, respectively. The following conclusions are
drawn:

1. For all the cases considered, the effect of TVC
is to decrease the wall temperature Tw(x) for a given

value of the TVC parameter y. The decrease is seen 1o
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Table 2. Rqy, for various Prandtl numbers (fory=0.75)

Roeve
g Pr-=0.1 Pr=1.0 Pr=10  Pr=100
0.00 1.0000  1.0000 1.0000  1.0000
0.25 0.8293  0.8821 0.9151  0.9447
0.75 0.6801  0.7989 0.8703  0.9180
1.75 0.7082  0.8270 0.8048  0.9343
3.75 0.7734  0.8676 0.9205  0.9513
7.75 0.8303  0.9067 0.9473  0.9684
15.75 0.8873  0.9403 0.9666  0.9804
31.75 0.9273  0.9624 0.9800  0.9884
63.75 0.9553  0.9781 0.9882  0.9931
127.75 0.9729  0.9868 0.9930  0.9961

reach 25 % for the largest value of the TVC parameter
(y = 1) presented in Table 1.

2. The ratio RTVC
a minimum at a certain location and then increases
with g. Ultimately, RTVC

large value of £ which means the solutions will ap-

first decreases with £, reaches
will approach to 1 at very

proach to the similarity solution of Eqs.(12) and (13).
This is physically reasonable since, as E increases,
the boundary layer thickness becomes small as com-
pared with the radius of the cone, ro, and as a result
the TVC effect becomes less important.

3. Larger values of the TVC parameter y cor-
responds to more profound TVC effect. From the
definition of y, alarge y means either a smaller
cone angle ¢ or a smaller Xqe In both cases, the
boundary layer thickness becomes closer to the cone
radius L and an increase in the TVC effect results.
Since an increase in the wall heat flux, 9y results

in a decrease in the value of the TVC parameter vy,

Table 1. Selected solutions of Ry for Pr = 1.00

the TVC effect is seen to be inversely proportional
to the wall heat flux (raised to the power of 1/5) .

4. The effect of TVC is different for different val-
ues of Prandtl numbers. As an illustration, the wall
temperatures are tabulated in Table 2 for one value
of the TVC parameter and for a few values of Prandtl
numbers. It is seen that the effect of TVC is more
pronounced for smaller Prandtl numbers.

Similar to reference [8], we conclude the paper
by showing how the solution for the frustrum of acone
as presented above can be used approximately for a
full cone. Consider, for example, the problem of
natural convection of air at 80°F overthe frustrum of
a cone (L = 1 ft, Xy = 2 in. and « = 5°) with constant
heat flux of 1000 Btu/hr—ftz. For this case, the TVC
parameter y is found to be approximately 0.38. If
we decrease Xg from 2 in. to 0.5 in., the corres-
ponding value of y will be 1.15. For such a small
value of x, (Fig.1), the solution forthe frustrum of
a cone becomes a good approximation of the boundary
layer flow over a full cone with L = 12.5 in., es-
specially in view of the fact that the boundary layer
equations no longer apply near the tip of a full cone.
This approximation is of significance since, from the
mathematical point of view, a zero value of Xq will
give rise to a mathematical singularity in the trans-
verse curvature factor r/ r, in the differential equa-
tion, Eqs.(9) and (10). It should be noted that the
same difficulty was by-passed in a similar manner
in the analysis of the heat transfer over a slender
cone by Kuiken [7]. In his work, Kuiken used in ef-
fect the inverse of the distance measured from the

tip along the cone surface as the flow-direction co-

Ryve
£ (e(5,0) ygopve ¥ =0-25 y=0.50 y=0.75 y=1.00
0.00  1.8729 1.0000  1.0000  1.0000  1.0000
0.25 1.8282 0.9547  0.9157 0.8821  0.8467
0.75 1.7841 0.9199  0.8542 0.7989  0.7493
1.75  1.7325 0.9307 0.8743 0.8270 0.7871
3.75  1.6930 0.9494 0.9058 0.8676 0.8334
7.75  1.6649 0.9653 0.9345 0.9067 0.8817
15.75  1.6498 0.9787 0.9589  0.9403  0.9227
31.75  1.6406 0.9868 0.9743 0.9624 0.9511
63.75 1.6368 0.9925 0.9852 0.9781  0.9710
127.75  1.6339 0.9955 0.9909 0.9866 0.9823
« 1.6327 1.0000  1.0000 1.0000  1.0000
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ordinate (g). As a result, his solutions started from
the downstream side and integrated step-by-step in
the opposite direction of the flow. Therefore, the tip
of the cone in Kuiken's analysis corresponds to €
equals to infinity. Since his integration stops at a
finite value of £, the solution never reaches the tip
of the cone. By this way, singularity at the tip of the

cone was avoided.

References

1. Merk, H.J.; Prins, J.A.: Thermal Convection
in Laminar Boundary Layer. Appl. Sci. Res.
4A (1953) 11-24, 195-206

2. Hering, R.G.; Grosh, R.J.: Laminar Free Con-
vection from a Non-Isothermal Cone. Int'l J.
of Heat and Mass Transfer 5 (1962) 1059-1067

3. Hering, R.G.: Laminar Free Convection From a
Non~Isothermal Cone at Low Prandtl Numbers.
Int. J. of Heat and Mass Transfer 8 (1965)
1333-1337

4. Sparrow, E.M.; Guinle, L.D.F,: Deviation
From Classical Free Convection Boundary Layer
Theory at Low Prandtl Numbers. Int. J. of Heat
and Mass Transfer 11 (1968) 1403-1415

5. Roy, S.: Free Convection From a Vertical Cone -

at High Prandtl Numbers. J. of Heat Transfer,
Trans. ASME 96 (1974) 115-117

6. Lin, F.N.: Laminar Free Convection From a
Vertical Cone With Uniform Surface Heat Flux.
Letters in Heat and Mass Transfer 3 (1976)
49-58

Wiarme- und Stoffiilbertragung 13 (1980)

7. Kuiken, H.K.: Axisymmetric Free Convection
Boundary Layer Flow Past Slender Bodies. Int.

J. of Heat and Mass Transfer 11 (1968) 1141-1153

8. Na, T.Y.; Chiou, J.P.: Laminar Natural Con-
vection Over a Slender Vertical Frustrum of a
Cone). (to appear in Wdrme- und Stoffilbertragung
1979)

9. Cebeci, T.; Qasim, J.; Na, T.Y.: Free Con-
vective Heat Transfer From Slender Cylinders
Subject to Uniform Wall Heat Flux. Letters in
Heat and Mass Transfer 1, No. 2 (1974) 159-162

10. Cebeci, T.: Laminar Free Convection Heat Trans-
fer From the Outer Surface of a Vertical Slender
Circular Cylinder. Proc. of the 5th International
Heat Transfer Conference 3, No. NC1. 4 (1974)
15-19

11, Na, T.Y.: Numerical Solution of Natural Convec-
tion Flow Past a Non-Isothermal Vertical Flat
Plate. Appl. Sci. Res. 33 (1978) 519-543

Prof. T.Y. Na
University of Michigan-Dearborn
Dearborn, Michigan, 48128, USA

Prof. Dr. J.P. Chiou
University of Detroit
Detroit, Michigan, 48221, USA

Received March 1, 1979



