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The effect of radiation on transient natural convection 
past a doubly infinite plate 

I. Pop, Cluj and T. Y. Na, Michigan 

Abstract. The present research note is concerned with the tran- 
sient (short time) simultaneous free convection and radiation 
analysis of a viscous fluid along a doubly infinite vertical 
isothermal flat plate. To simplify a very complicated problem, an 
incompressible flow field is used in the analysis. 

Generally, the exact numerical solution of this problem is 
quite lengthy. However, by considering an optically thick radiat- 
ing gas, expressed by the Rosseland diffusion approximation, the 
solution is much simpler. Moreover, this case leads to a complete 
similarity transformation of the governing partial differential 
equations into a set of ordinary differential equations. An exact 
numerical solution is obtained of the resulting ordinary differ- 
ential equations for a Prandtl number equal to 0.733 and for a 
wide range of involved parameters. 

Der Einflufi der Strahlung auf transiente freie Konvektion 
iiings einer unendlichen Platte 

Zusammenfassung. Der vorliegende Bericht befal3t sich mit der 
Untersuchung der transienten Vorg~inge bei gleichzeitiger freier 
Konvektion und Strahlung an einem z~hen Fluid entlang einer 
unendlichen isothermen ebenen Platte. Um das komplizierte 
Problem zu vereinfachen, wird eine inkompressible Str6mung 
angenommen. 

Normalerweise ist die exakte numerische L6sung dieses 
Problems sehr langwierig. Beriicksichtigt man jedoch ein optisch 
dichtes, strahlendes Gas wie es durch die Rosselandsche Diffu- 
sionsn~iherung ausgedriickt wird, ist die LSsung wesentlich ein- 
facher. Zudem fiihrt dieser Fall zu einer kompletten )khnlich- 
keitstransformation der beschreibenden partiel!en Differential- 
gleichungen in einen Satz von gew6hnlichen Differentialgleichun- 
gen. Eine exakte numerische L6sung wird erzielt ftir eine Prandtl- 
Zahl yon 0.733 und einem groBen Bereich der beteiligten Para- 
meter. 

1 Introduction 

There is a considerable amount  of  work in the literature 
on the combined conduction and radiation heat transfer in 
a semi-infinite med ium with variable thermophysical  and 
radiative properties. In particular, the unsteady laminar  
boundary layer flow past an infinite flat plate and near a 
three-dimensional stagnation point with radiat ive heat  
transfer have been considered in [1, 2]. But, there appears  
to be no analysis of  radiative heat transfer effects on 
unsteady free convection flow past vertical or horizontal 
flat plates. The present research note is therefore con- 

cerned with the transient (short t ime) simultaneous free 
convection and radiation analysis of  a viscous fluid along 
a doubly infinite vertical isothermal flat plate. To 
simplify, otherwise, a very complicated problem,  an in- 
compressible flow field is used in the analysis. 

Generally, the exact numerical  solution of  this p rob lem 
is quite lengthy. However,  by considering an optically 
thick radiating gas, expressed by Rosseland diffusion 
approximation [3], the solution is much simpler. More- 
over, this case leads to a complete similarity t ransforma- 
tion of the governing partial differential equations into a 
set of  ordinary differential equations. An exact numerical  
solution is obtained of the resulting ordinary differential 
equations for a Prandtl number  equal to 0.733 and for a 
wide range of involved parameters.  

2 Basic equations 

Let be a vertical, doubly infinite fiat plate immersed  in an 
absorbing and emitting gas subject to the following 
assumptions: (i) the flow is laminar  and in unsteady state, 
(ii) the properties of  the gas are constant; this also implies 
the gas is gray, (iii) the gas is in local the rmodynamic  
equilibrium; it is not scattering, a diffuse absorber  and 
emitter with an index of  refraction of  unity, and (iv) the 
gas is an optically thick gas so that the Rosseland approx-  
imation may be used for the radiative heat transfer term. 

The coordinate system is fixed at the plate so that  y = 0 
is at the surface of  the plate. The plate is initially 
maintained at a constant temperature  Too and at t ime t = 0 
the surface temperature is suddenly increased or decreased 
to some constant value Tw where the subscripts oo and w 
refer to the values in the ambient  fluid and on the surface 
of  the plate. Under  the above assumptions the governing 
equations for unsteady free convection flow past a vertical 
fiat plate including the effect of  radiative heat  transfer are 
as follows 
au a2u 

= v + g f l ( T -  Too), at (1) 
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aT a2T aq ~ 
Q C p ~ - = k  (2) ~y2 ay 

since we consider a doubly-infinite surface and hence all 
physical variables are functions of t and y only. Here u, T, 
v, 0, cp, fl and k are the velocity along the plate, the 
temperature, the kinematic viscosity, the density, the 
specific heat, the coefficient of thermal expansion and the 
thermal conductivity of the fluid respectively, and 9 is the 
acceleration of gravity. 

For a sudden change in surface temperature the initial 
and boundary conditions pertinent to the problem under 
consideration are 

t-<0: u = 0 ,  T =  To~ everywhere 

t > 0 :  u = 0 ,  T = T w  a t y = 0  

u ~ O ,  T ~ T o ~  as y--* oo. 

(3) 

One sees that the energy Eq. (2) includes the derivation 
of the radiative heat flux, q~. Hence an additional re la t ion 
is needed to evaluate q~. In order to obtain the essential 
features of the effect of radiative heat transfer, we 
consider the simple case of an optically thick medium 
only. For this medium the Rosseland [3] approximation is 
employed and the radiative heat flux term is given by 

16 a T  3 aT 
q" (4) 

3 K, ay 

where a is the Stefan-Boltzmann constant for radiative 
flux and Kt the Rosseland mean absorption coefficient. 
Thus, Eq. (2) may be written as 

0 cp at ay 3 K~ + k . (5) 

We now introduce the dimensionless variables 

i = t  y u T Tw 
to ~ = - ~ ,  ~ t = - -  0 =  Ow= (6) 

u0 T~ Too 

where L is a characteristic length of the plate, to and u0 
are the time and velocity characteristics which may be 
conveniently defined as t0= Lz/v and Uo = 9 fll Tw- T~ I L2/v. 
Then, Eqs. (1) and (5) become 

a ~  a2H O -- 1 
+ - -  (7) 

at- a) ~2 O w - 1 ' 

90 1 ~ / [ 4  O 3 _ b 1 / ~ O  [ 
ez Pr ay/ TT,, ! ay/ (s) 

in which Pr is the Prandtl number and Nr = k K,/4 o T~ is 
the conduction-to-radiation parameter (radiative flux 
number). Also the initial and boundary conditions now 
read 

F -<0: ~ =0 ,  O = 1  everywhere 

t > 0 :  ~=0 ,  0 = 0 w  at p = 0  (9) 
0--*0, 6)--.1 as 35~oo. 

Since we consider only the case where the similar 
solutions of Eqs. (7) and (8) exist, it is convenient to 
introduce the following similarity variables 

y 
= Tf(r/), O = 0 (0  ). (10) 

~/= 2 ] g '  

In terms of new variables (10), Eqs. (7) and (8) may be 
readily transformed into a set of coupled, second-order 
ordinary differential equations 

O - 1  
f "  + 2 ? ] f ' - 4 f  = - 4  Ow------(' (11) 

( ) 4 4 03 0 " +  02(O ' )2+2Prr lO '=O (12) 1+5- N--7 Nr 

with the boundary conditions 

?]=0: f(0) =0,  0(0) =Ow, 
(13) 

?] = oe: f(oo) = 0, O (Go) = 1 

and the primes denote derivation with respect to t/. 

3 Results and discussions 

Let us first mention that Eq. (12) is a nonlinear ordinary 
differential equation and is not amenable to a closed form 
nor simple solution as in the case of non-radiative 
(Nr ~ oo) free convection flow problem. This equation was 
derived by Heinisch and Viskanta [4] under a different 
context. These authors have solved Eq. (12) numerically 
and presented the results graphically for Ow = 1 only. We 
will, however, solve here this equation for the entire range 
of interest of the parameters Ow and Nr, and give the 
results in the form of tables and graphs too. Before 
proceeding with numerical solutions of Eqs. (11) and (12) 
subject to the boundary conditions (13), we seek a 
perturbation solution of Eq. (12) for large values of N~ 
(=> 1). 

By expanding O (~/) in a perturbation series 

0(/7)  --  0 0 ( 0 )  + 8 O1(/'/) -~- e2 02(?]) _}_ . . .  (14) 

where e = 1/N~, Eq. (12) along with the boundary condi- 
tions (13) can be separated as 

80: 

El: 

82: 

06' + 2 Pr ?] 06 = 0 
(15) 

O0(0) = Ow, Oo(oO) = 1; 

O'l' + 2Pr rl O~ = - 4 {02 0'o 2 + i 3 Oo O'o'} 
(16) 

O1(0 ) = 0, 0 1 ( 0 0  ) = 0;  

01' + 2Pr r I 01 (17) 

1 3 O~' O'o 2 = - - 4 { O 2 0 1 0 ' o ' + g O o  + 2 0 0 0 1  +20'oO102} 

0 2 ( 0 )  = 0, 0 2 ( 0 0  ) = O. 
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The solution to the zeroth-order Eqs. (15) is 

O0(r/) = O~+ (1 - Ow) e r f ( ] / ~  1/) (18) 

where erf x is an error function. 
Equations (16) and (17) can be written in the general 

form 

0'; + 2 Pr r l 0'~ = rn (rl) 

On(0)=0, On(oo)=0,  n = l ,  2 

and have the solution expressed as follows 

On 01) = ~ exp ( -  Pr r72) ~ exp (Pr 42) rn (~') d~ d6 
0 0 

(19) 

(20) 

- exp ( -  Pr rl 2) ~ exp (Pr 02) r, (0) dO drl err (V Pr t/) 
0 

where the rn's are the right hand sides of (16) and (17). 
On te other hand, the linear ordinary differential 

equations (15) to (17) were integrated numerically for 
some values of the temperature ratio O~ (~ TWT~o) in the 
case of a cold wall. Through the calculations the Prandtl 
number Pr is equal to 0.733. The accuracy of the pertur- 
bation problem has ben studied by comparing the results 
with those obtained by direct integration of the nonlinear 
energy Eq. (12). The results for the dimensionless temper- 
ature gradient at the wall, 0 ' (0) ,  are listed in Table 1 
which shows an excellent agreement between the per- 
turbation and exact numerical solutions. 

Table 1. Comparison of O' (0) obtained by two methods 

Ow Nr Perturbation Finite-difference 

0.0 1 1.028584 1.0286 
5 0.981501 0.9815 

10 0.973966 0.9740 
15 0.971374 0.9714 
20 0.970062 0.9701 

100 0.966873 0.9669 
1000 0.966147 0.9661 

10000 0.966074 0.9661 

0.25 1 0.791478 0.7915 
5 0.741097 0.7411 

10 0.733198 0.7330 
15 0.730241 0.7302 
20 0.728834 0.7288 

100 0.725414 0.7254 
1000 0.724636 0.7246 

10000 0.724558 0.7246 

0.5 1 0.512673 0.5127 
5 0.492337 0.4923 

10 0.487896 0.4879 
15 0.486322 0.4863 
20 0.485517 0.4855 

100 0.483538 0.4835 
1000 0.483084 0.4831 

10000 0.483038 0.4830 

05 0.'5 

1 

5,10,15,20, 10,10,10 

cord watt, ,6,,.,,=0.0 

0 I i I I I 

0 2 4 6 8 ~ 10 

Fig. 1. Effect of radiation on flow temperature distribution for 
O,~ = 0.0 

1 

0.75 N r = 0.01 

\ 5,10,15,20,102,103,104 cord watt, '6".,., =0.5 
0 . 5  I I I I I 

2 4 6 B ~ lo 

Fig. 2. Effect of radiation on flow temperature distribution for 
Ow = 0.5 

A finite-difference numerical scheme (see Na [5]) has 
been used to solve Eqs. (11) and (12) subject to the 
boundary conditions (13). Here we present some typical 
results and conclusions. Figures 1 and 2 show the effects 
of the radiative parameter Nr on the function O (t/) which 
is directly related to the temperature in the radiative 
medium for Ow = 0.0 and 0.5, respectively. From Fig. 1, 
we see that for Ow = 0.0 the thermal boundary layer 
becomes thicker as the radiation parameter becomes 
smaller (i.e. radiation predominant). Contrary, for Ow = 0.5 
the effect of Nr on the temperature field is just opposite, 
Fig. 2. As Nr gets larger, the radiation component plays 
less of a role, radiation would affect the conduction of heat 
to a lesser extent. It is also important to note that there is a 
no detectable difference in the temperature profile for 
Nr = 5 and greater, hence the curve for N,.= 5 may be 
considered as characterizing the non-radiative case. But, 
as Nr decreases the temperature profile has greater 
changes in curvature, particularly near the wall. 

Figure 3 shows the effects of variable wall temperature 
Ow on the temperature profile by keeping the radiative 
flux number constant and equat to 5. The thermat 
boundary layer appears to become thicker for the hot wall 
and thinner for the cold wall as Ow increases. 

Since the effect of radiation upon the velocity field is 
small and to conserve space the results concerning velocity 
profiles are omitted in this paper. 
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or in dimensionless form 

e 

2.5 
Nur+Nuc 1 03 + - -  [ -  O'(0)] 

i I/2 2 Nr(O w 1) O w -  1 

and 

(22) 

C f _ l  
i 1/2 2 f ' ( 0 ) ,  (23) 

1.5 

0.5 

0 ~ i 
o 2 4 ~ 6 

Fig. 3. Effect of wall temperature on flow temperature dis- 
tribution for N~ = 5 

where/x is the coefficient of dynamic viscosity, Nut and 

Nuc are, respectively, the radiation and conduction 
Nusselt numbers. 

Restricting our discussion to the hot wall case, Fig. 4 
illustrates the variation of the dimensionless temperature 
gradient at the wall contributed by radiat ion for a range 
of Nr and under three different  Ow'S. Results are not 
included for large values of Ow because for small values of 
Nr, i.e. radiation dominated situation, the boundary  layer 
becomes very thick resulting in the necessity to integrate 
to excessive values of the cross-stream coordinate t/. On 

Table 2. Values of r/0 and 2p max/2 Gr ?'2 ==_ XOlo, T) 

W{o ]/[4~'(O]]Nr =oo 

1 

ew =1.02, f 

0.5 1.5 

0 i i i i 
10-2 10-1 10 o 101 10 2 10 3 10 & 

Nr 

Fig. 4. Variation of temperature gradient ratio at the wall 

f'(o)/[ f'(o)] Nr = oo 
2" 

_ _  hot watt 

I . ~ ~ ~ ~  4~w : 1.02 
1.51 1.5 

1 i i 

10-2 10-1 10 0 101 102 103 104 
Nr 

Fig. 5. Variation of velocity gradient ratio at the wall 

It is now of interest to delineate the relative con- 
tributions of radiation and natural  convection to the heat 
flux from the plate and skin friction on the plate. The 
heat flux and skin friction are written 

qw = - -T7 t- k -XT-/y=0 Zw =/x y=0 (21) 

Cold wall Hot wall 

Ow N, 0 X(%, Y) Ow Nr 0 X(ho, ~) 

0.0 0.01 0.6392 0.0880 1.02 0.01 0.8835 0.1960 
0.1 0.4621 0.0639 0.1 0.6260 0.1396 
0.5 0.3864 0.0581 0.5 0.4800 0.0959 
1 0.3727 0.0572 1 0.4356 0.0815 
5 0.3595 0.0565 5 0.3777 0.0630 

10 0.3581 0.0564 10 0.3681 0.0598 
15 0.3676 0.0564 15 0.3642 0.0587 
20 0.3573 0.0564 20 0.3621 0.0581 

100 0.3568 0.0563 100 0.3576 0.0567 
1000 0.3566 0.0563 1000 0.3567 0.0563 

10000 0.3566 0.0563 10000 0.3566 0.0563 

0.25 0.01 0.6542 0.1137 1.5 0.01 1.0274 0.2169 
0.1 0.4885 0.0758 0.1 0.7385 0.1714 
0.5 0.4019 0.0621 0.5 0.5555 0.1240 
1 0.3818 0.0595 1 0.4915 0.1039 
5 0.3620 0.0570 5 0.3968 0.0715 

10 0.3591 0.0567 10 0.3779 0.0646 
15 0.3583 0.0565 15 0.3717 0.0620 
20 0.3579 0.0565 20 0.3681 0.0606 

100 0.3569 0.0563 100 0.3586 0.0572 
1000 0.3566 0.0563 1000 0.3568 0.0564 

10000 0.3566 0.0563 10000 0.3566 0.0563 

0.5 0.01 0.7034 0.1466 3 0.01 1.3009 0.2376 
0.1 0.5187 0.0944 0.1 1.0028 0.2157 
0.5 0.4212 0.0697 0.5 solution does not 

converge 
1 0.3952 0.0639 1 0.6908 0.1643 
5 0.3660 0.0580 5 0.5044 0.1129 

10 0.3608 0.0572 10 0.4472 0.0934 
15 0.3593 0.0569 15 0.4211 0.0841 
20 0.3586 0.0568 20 0.4074 0.0786 

100 0.3570 0.0564 100 0.3675 0.0617 
1000 0.3566 0.0563 1000 0.3575 0.0569 

10000 0.3566 0.0563 10000 0.3567 0.0564 
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the other hand, for N r = 0 . 5  the calculations show a 
singularity at Ow = 3. In fact, this is in accordance with the 
observation from [6] that the Rosseland approximat ion  for 
the radiative heat flux breaks down in the vicinity of  the 
plate. An inspection of the figure reveals that  the param-  
eter N,. has considerable influence on the heat flux at the 
wall, i.e. y = 0 or t = oe, steady state flow. But, since the 
larger N,. the smaller is the role radiation plays on the con- 
duction heat flux. 

Similarly, the variation of the dimensionless velocity 
gradient at the wall with N,. and three different Ow's is 
shown in Fig. 5. An opposite trend to the heat flux ratio is 
observed for the fraction of  skin friction. 

Further, the dimensionless penetration distance of  the 
fluid originally at the leading edge of a semi-infinite flat 
plate can be computed from, see for instance [7] 

"~P ~4 mf d# 
2 Gr [2 JJ(fl) ~15 

(24) 

where Gr = 9 fl I Tw-  T~I L3/v 2 is the Grashof  number.  If  
~/0 denotes the root of  the equation 

~2p = 0 (25) 

then, the dimensionless m a x i m u m  penetration distance is 
given as 

2pm~ = 2p(t/0, i). (26) 

Numerical calculation of the values of  ~/0 and 2p max was 
performed for a number  of  combinations of  Ow and Nr. 

Some of the results are given in Table 2. It is seen from 
this table that the penetration distance increases with 
the increase of  the wall temperature  Ow and decreases 
with the increase of  the radiation parameter  Nr to the 
values of  non-radiative free convection problem. 
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