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Characterization of Families of Rank 3 Permutation Groups 
by the Subdegrees II 1) 

By 

D.G. Hm~A~ 

1. Introduction. This paper is a continuation of an investigation of the extent  to 
which the known families of rank 3 permutat ion groups are determined by their 
subdogrees, two families having been considered from this point of view in [4]. The 

�9 main result to be proved here is the following theorem, in which. 

Q~ -= QN(q) = q~-i § qN-2 §  § 1. 

Theorem III. Let G be a ranl~ 3 group o/permutations o/degree 
QN QN-1 

n ~ Q2 

with subdegrees lc = qQ2 QN-2 and 
4 QN-~ Qlv-~ 

l =  q -~ , 

where q >= 2 and N are integers. Then/or all even values o / N  ~ 6 and all odd values 
o / N  >= 19, G is isomorphic with a subgroup H o/ PI'LN(q) regarded as a group o/ 
permutations o/the set o/lines o/ (N--1)-dimensional projective space PN-1 (q) over 
Fq, such that H is transitive on the set o] 4-simplices in P~v-1 (q). 

The conditions on N can be replaced by the assumption tha t  N is at  least 6 and 
the intersection number/~ has the value ( q §  1) 2. The cases N----4 and 5 are unsettled 
even under the assumption tha t /~  has this value. 

We number  the main theorems of this sequences of papers consecutively, The- 
orems I and I I  having appeared in [4]. Theorem I I I  can be regarded as a linear 
analogue of Theorem I I ,  which in turn corresponds to the case q---- 1 of Theorem I I I .  
The subgroups of P F L N  (q) transitive on the set of 4-simpliees in PN-1 (q) can be 
regarded as linear analogues of 4-fold transitive permutat ion groups of degTee N. 
I t  does not appear to be known whether PSLN (q) is always the minimal such group. 

Since this paper was submitted, D. PE~R~  has proved tha t  a subgroup of 
PTLN (q), q �9 2, which is transitive on the set of k-dimensional linear subvarieties of 
PN-I(q) for some/c, 2 ~ / c  _< [2//2] - -  1, contains PSLN(q). This implies in particu- 
lar tha t  a subgroup of PI'LN(q), N _~ 6, q :~ 2, which has rank 3 on the set of lines 

1) Research supported in part by the National Science Foundation. 
Archiv der Mathematik XXI 23 



354 D.G. HIGMAN ARCH. MATH. 

contains PSLIv (q). The s ta tement  of Theorem IV can be ammended accordingly and 
the last par t  of the conclusion of Theorem I I I  can be improved to read tha t  H con- 
tains PSLiv (q) provided tha t  q =~ 2. 

I t  will be convenient to refer to section 2 of [4] for the basic facts needed con- 
cerning strongly regular graphs and rank 3 groups. 

2. The ~ a p h s  ~f~ (q). Let  V be a vector space of dimension iV ~ 2 over the field 
Fq of q elements and let ~ = 5f~(V) be the set of all k-dimensional subspaces 
of V. We denote by  P = P (V) the lattice of all subspaces of V regarded as an (iV --  1)- 
dimensional projective space over Fq, so that  ~ is the set of (k--1)-dimensional 
linear subspaces of P, ~ t ,  ~2 ,  ~<P3 and 5P4 being respectively the sets of points, 
lines, planes and 3-spaces. I f  we put  Q~ --  Q~(q) - -  q ~ - i  q_ qiV-2 q_ ... _~ q q_ 1 
and 

@N QN-I "'" @N-~+I 
QN,~---- Q~Q~-I--'Q1 ' 

then ] 5~kl = Qiv,k- We can include the case q = 1 by  letting V be a set of iV el- 
ements and 5~  the set of all k-element subsets of V in this case. For q ~ 2 and iV ~ 3 
the automorphism group of P is the group PIlL (V) induced by the group /~L (V) 
of all nonsingular semilinear transformations of V, while for q : 1 it  is the group 
induced by the symmetric group on V. 

For iV ~ 4, P/~L (V) acts faithfully as a rank 3 group of permutations of the set 
~2  of lines, with degree and subdegrees 

(1) n=QN, 2, k=qQ2QN-~ and l=q4QN-2,2 

and intersection numbers 

(2) A = QN-1 + q2 _ 2 and # ----- (q -~ 1) 2. 

The same is true of the subgroup PSL(V) induced by  the special linear group SL (V). 
This means tha t  the graph having as vertex set the set ~2 of lines, with two being 
adjacent if and only if they intersect, is a strongly regular graph with parameters  
n, k, l, ~,/~ (in the notation of [4]) given by (1) and (2), admitting PFL(V) and its 
subgroup PSL(V) as rank 3 groups of automorphisms. 

When we have fixed an iV-dimensional vector space V over Fq, we often write 
P~-I (q), Pl"Ltv (q) and Lflv (q) for P (V), PI 'L (V) and ~ (V) respectively. 

3. Rank 3 graphs and the 4-vertex condition. A strongly regular graph admitt ing a 
rank 3 group of automorphisms will be called a rank 3 graph; the graphs Lflv (q), 
iV ~ 4, q ~ 1 are rank 3 graphs. 

The problem of determining the rank 3 permutat ion groups of even order with 
specified degree n and subdegrees k and I breaks down into the following two problems: 

1. Determination of the rank 3 graphs with the specified n, k and l as parameters  
(in the notation of [4]), and 

2. Determination of the rank 3 subgroups of the automorphism groups of these 
graphs. 

Concerning 1. we remark tha t  the problem of determining the strongly regular 
graphs with given parameters n, k and l is in general very much more difficult than 
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that  of determining the rank 3 graphs. For example, the line graph (in the ter- 
minology of Sims [11], cf. section 4 of the present paper) of a Steiner triple system 
with Q~r vertices, N ~ 4, is a strongly regular graph satisfying (1) and (2). The 
graphs ~q~lv(2) are included, but  there are many others (el. [10]). 

I t  is natural to introduce classes of graphs between strongly'regular graphs and 
rank 3 graphs. By a (t-vertex) subgraph of a graph ~ we mean a subset S of the 
vertex set of ~ (with IS[ ~ t) together with all edges in fg joining vertices in S. 
I f  X is a set of vertices in ~ and fgl and f~2 are subgraphs of ~, we say that  f~1 
and f~2 are of the same type with respect to X if  X is contained in the vertex set of 
~1 and of ~2, and there is an isomorphism of ~1 onto f~2 fixing X pointwise. A 
strongly regular graph will be said to satisfy the t-vertex condition if, for each two- 
element subset X of its vertex set, the number of t-vertex subgraphs of each type 
with respect to X depends only on whether X is an edge or not. A strongly regular 
graph satisfies the t-vertex condition for t ~ 3 but need not satisfy the 4-vertex 
condition. A rank 3 graph satisfies the t-vertex condition for all t. 

I f  G is a strongly regular graph satisfying the 4-vertex condition, then the para- 
meters ~ and fl introduced by SrMs [11] for rank 3 graphs, namely 

cz -~ the number o/4-cliques containing a given edge, 

and 
fl ---- the number o/subgraphs o / t y p e  x ~ ] ~ y with respect to a given pair 

x, y o/nonadjacent  vertices 

are defined independently of the given edge and nonadjacent pair of vertices respec- 
tively. The relation 

given by SIMs [11, Lemma 2.4] holds. The classification result for graphs given in 
this paper (Lemma 5) is for strongly regular graphs satisfying (1) and the 4-vertex 
condition. 

4. The intersection numbers. Throughout this section we let @ be a strongly r%o~lar 
graph with parameters n, k and l given by (1) for some integers q ~ 2 and N ~ 4 
(the case q---- 1 having already been considered in [4]). Concerning the possible 
values for the intersection number /z  we prove first tha t  

Lemma 1. (i) I [  N is even, then i~ : -  (q ~ 1) 2. 
Q (ii) I[  iV is odd, then # = (q + 1) 2 + (q + 1) a where a -~ (q + 1, Q(~_3)/2(q2)) 

and ~ is an integer such that - - a ( q  + 1) < ~ < q + 1 a. 
q 

P r o o f .  I f  # = 0 ,  then /r l t n  by [4, (8)]. But 

k + 1 = q ( q +  1)Qlv_2 + 1 = Q~ + Q ~ _ ~ -  ( q +  1) = 
= Q~-I ~- q2 Q~-2 = Q~ + q2 QN-3. 

Hence, on the one hand, (/c ~- 1, QN-1) = 1, so that /c  -~ 1 ]Qlv, while on the other, 
/c ~- 1 > Qlv, a contradiction. Hence/~ > 0. 

23* 
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B y  [4, (3)], 
Q~(qQ2QN-2 - (Z + 1)) (4) q3QN_al~ = 2 

giving 

QN-4 -- y t (5) /~ = Q~ {1 + Q~-3 

where y is an  integer such t h a t  2 = y q3 + 2q2 + q _ 1. Since 2 ~ 0, ? < 0 im- 
plies t h a t  ? = - - 1  and q = 2, so t h a t  

22r 
/z-~ 9{1 + 2~-z~-- 1 } 

and  hence iV ~ 5. I f  N -~ 4, then  # ----- k = 18, which is impossible b y  [4, (8)] since 
l + 1 = 1 7  does not  divide n = 3 5 .  I f  N-- - -5 ,  then  / , ~ 1 5 ,  2 = 1  and k = 4 2 ,  
giving d : 30i ,  which is impossible b y  [4, (6)]�9 Hence y >= 0. 

I f  N is even, (Q2, QN-s) = 1 so t h a t  y = QN-4 - -  ~ Qlv-a wi th  ~ an integer  ~ 0. 
Since # > 0, ~ ~= 0 implies y < 0, a contradict ion.  This proves  (i). 

Assume now t h a t  iV is odd, so t h a t  Q~c-a = (q + 1) Q(~c_3)12(q2). Then  b y  (5), 

/z = (q + 1) 2 -~ (q + 1) ~ and  a y  = aQlv-4 - QQ(~_a)]e(q 2) 

with a ---- (q + 1, Q(_v-.~)12 (i/a)) and  p an  integer.  Since /z > 0 and  y >= 0 we mus t  

have  - - a ( q + l ) < ~ < - - -  q + l  �9 - a .  
- -  q 

The nex t  l emma implies the existence of a bound on the  values of  iV for which 
# =~ (q + 1)~ is possible. 

L e m m a  2. P u t  A = (q + 1) 3 - -  q #  and 

B = (q + 1)2(q 2 + 2 q - -  1) + ( q 2 _  q _  1 ) # .  

Then  
A B - -  2(q--  1) (q + 1) 5 4- w (6) q ~ - i  = a~ 

and 

(7) w 2 - -  A 2 y  2 ---- 4(q - -  1)2(q + 1)4q/~ (/~ - -  (q + 1) 2) (q/~ - -  (q + 1)(q2 + q + 1)) 

for integers w and y (where d = (q - -  1)2(q + 1)4y 2 in  the notation of [4, (6)]). 

P r o o f .  B y  (4), 
+ 1 )  a qN-i _ q qN-1 _ q2 

(q + l)2 )" ---- (q q - - 1  - - ( q + l ) 2 - - q  q _ ~ , u .  

Pu t t ing  z = q ~ - i  we get  

1 { A ~ - -  B }  (q + 1)2 (Z - ~ )  - q _ 1 

and 
1 k - ~ -  q_~ { ( q + l ) z - c }  

where C = q(q + 1 ) +  (q - -  1)#.  B y  [4, (6)] there is an  integer y > 0 such t h a t  

y2 = ( q _  1)2(q + 1)4{(~ _ ~)2 + 4 ( k  - ~ ) }  = 

= A 2 z  2 -  2 ( A B - -  2 ( q - -  1)(q + 1)5)z + B 2 - -  4 ( q - -  1)(q + 1)4C. 
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Letting 2w be the discriminant of this equation regarded as a quadratic in z, so that  
w is an integer, we have equation (6) and 

w 2 -- A 2 y  2 = A 2B  2 -  4 (q - -  1)(q + 1)SAB + 4 (q - -  1) 2(q + 1) l o -  

--  A2(B  2 -  4 (q - -  1 ) ( q +  1)4C) = 

= 4 ( q - -  1 ) ( q +  1)4A{AC - ( q +  1)B} + 4 ( q - -  1)2(q + 1) 10 = 

= 4(q -- 1) 2 (q + 1)4A~ - q/,2 + q2(q + 1)/, --  (q + 1) 3) + 

+ 4 ( q - -  1)2(q + 1) 10 
which reduces to (7). 

From Lemma 2 we see that  

Lemma 3. # = (q + 1) 2/or  all (odd) values o / N  >= 19. 

P r o o f .  By Lemma 1, 1 =< tt ---< (q + 1) (q + 2), so 

q + l < A < ( q + l )  s, B < 2 ( q + l )  4 
and, by (7), 

w 2 - A 2 y  2 = d K ,  ]K I < (q--  1 )2(q+ 1) 12 . 

Assume i t .  (q + 1) 2, then K *  0 so that  ]w I < 2 ( q -  1)2(q + 1) 12. Now (6) gives 
�89 q2V-1 < (q + 1)5 + ( q _  1)2 (q + 1)10, which is violated whenever q => 2 and N >= 19. 

5. Characterization of the graphs. In characterizing our graphs we follow the method 
of SIMS [11], making use of a result of Bose [3]. For this we define a configuration 
to be a set S of points and a set OW of nonempty subsets of S, called lines, such that  
there is a t  most one line containing any two distinct points. The line graph of such 
a configuration (S, s has for its vertices the lines, two being adjacent ff and only 
ff they intersect. Thus oWN (q) is the line graph of the configalration of points and 
lines of Ply-1 (q). We state the result of Bose [3 ; Th. 9.3], dualized as indicated by 
SIMS [11; Lemma 2.6], as 

Lemma 4. Let ~ be a strongly regular graph with parameters n, lc, l, ~, # and minimum 
eigenvalue s ----- --  m. Assume that t = t t / m  is an integer, and that 

1) t<=m,  t < = , ~ - - ( m - - 1 ) ( t - - 1 ) + 2  

and 
2) ~ - - ( m - - 1 ) ( t - - 1 ) + 2 > ~ - [ m ( m - - 1 ) + t ( m + l ) ( m 2 - - 2 m + 2 ) ] .  

Then ~ is isomorphic with the line graph o / a  con/iguration such that 

each line carries exactly m points, each point lies on exactly ~ -  ( m -  1 ) ( t -  1 ) +  2 
(8) lines, and through each point P there pass exactly t lines meeting any given line 

not through P 2). 

We use Lemma 4 and SIMS' method [11] to prove 

Lemma 5. Let ~ be a strongly regular graph satis/ying (1) /or  some integers q >= 2 
and N ~ 6. Assume that tt = (q + 1) 2 and that ~ satis/ies the 4-vertex condition. 
Then q is a prime power and ~ ~ oW:v (q). 

2) A configuration satisfying (8) is a partial geometry in the terminology of [3]. 
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P r o o f .  By  L e m m a  4, ~ is the line graph  of a configuration (S, ,s such t h a t  

(9) IS I = Qlv, each line carries q + 1 points, each point lies on Q~-I lines, and two 
distinct points lie on exactly one line. 

For,  since # = (q + 1) ~, m ---- t = q + 1 and 2~ ----- Qtv-1 + q2 _ 2. Condition 1) of  
L e m m a  2 is satisfied and condition 2) becomes 

QN-1 > �89 + 1)q + (q + 1)(q + 2)((q + 1)2 - -  2(q + 1) + 2}] 

which reduces to 2q zr > q(q4 _]_ q2 _ 2). This inequal i ty  is satisfied for q ~ 2 

and  N -->__ 6. 
To complete  the  proof  of  L e m m a  5 we mus t  show t h a t  (S, ~qo) is isomorphic  with 

the  configuration of points  and  lines of  a project ive space over  Fq. Fo r  this it  suf- 
fices (cf. [1]) to show tha t  any  two t ransversals  of  a given pair  of  intersect ing lines 
intersect .  

The  number  of  t ransversals  of  two intersect ing lines 1 and  m is q~. The p a r a m e t e r  ~, 
whose value is the number  of  4-cliques in ~ containing l and  m, has the  fo rm 

~ =  2 + /  

q2 ( q - 1 ) <=I<=q~(q -1 ) - i - ( q2 ) ,  the upper  bound being a t ta ined  precisely where 
when any  two transversals  intersect.  

We  have 

- -  ~ - -  2 ( q -  1/{2qa~-~ + (q3 _ q2 _ 5q + 3)} - - / ,  

and  b y  (3), 
qZC-s _ 1 

Hence  q2[2 ], 2 /=q2]o ,  2 ( q - -  1) g / 0  g ( q - -  1 ) ( q +  3), and  

(q + 1)2(2qzr + (qa _ q2 _ 5q + 3) - -  (q - -  1)/0} ---- 2q(q zc-s -- 1)/3 

i.e., 
(q + 1)2(2 q~(q ~ ' -a  - -  1) + (q - -  1)2(q + a) - -  (q - 1)/0} = 2q(q ~ - s  - 1)/3. 

Hence  2 q ( q ~ v - S _ l ) l ( q + l ) 2 ( q - - 1 ) [ ( q - 1 ) ( q + 3 ) - / o ] ,  and so, if  / 0 <  
( q -  1)(q + 3), we have  

2q(q z r  1) --<__ (q + 1)2(q- -  1 ) [ (q - -  1)(q + a) - 2 ( q -  1)] ~ (q + 1 ) 3 ( q -  1)~. 

This implies t h a t  N ~ 6. Since (q8 _ 1, q + 1)] 2, we have  for N = 6 t h a t  

2q(q 3 - 1 )  _-<4(q-1)2(q + l ) ,  i.e., q(q~-{-.q + l)=< 2(q 2 - 1 ) ,  

which is impossible.  
L e m m a  4 cannot  be applied in the  cases N ---- 4 and  5, and we don ' t  know ff in 

these cases (r as in L e m m a  5 is the line graph  of a configuration satisfying (9). I f  we 
assume tha t  ~ is the line graph  of a configuration satisfying (9) for some q ~ 2 
and  N ~ 4, then  (Y is s t rongly regular  and  satisfies (1). I f  ff satisfies the  4-ver tex  
condition, then  for N ~ 4 or 5, our conditions o n / o  reduce to 

2 q [ (q - - 1 )  (q + 3) - -  /0 and  2 (q - - 1 )  ~ /o ~ (q - - 1 )  (q + 3) - 
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At this point we do not know whether any of the exceptional values are realized by 
actual configurations or not. Conceivably some of the Steiner triple systems might 
~ve  graphs satisfying the 4-vertex condition with exceptional values of ~. 

6. The rank 3 groups. We now examine the rank 3 automorphism ~oToups of the 
line graph of the configuration of points and lines of a finite projective space. We 
begin with two simple lemmas relating the automorphism groups of configurations 
and their line graphs. 

Let (S, ~ )  be a configuration, in the sense of section 5, satisfying (8), and let 
be its line graph. There is an injection of the automorphism group H of (S, ~ )  into 
the automorphism group G of ~ corresponding to the faithful action of H on the 
set of lines of (S, ~q~); we regard H as a subgroup of G. 

Lemma 6. I /  (S, ~q~) is a con/iguration satis/ying (8), and i/ 

,~ > 2 ( m - -  1) ( t - -  1) -~ t - -  2, 
then H ~ G. 

P r o o f .  In ~ there are just two types of maximal cliques, namely 

(I) those consisting of all lines through a given point, 
and 

(II) those containing triangle of (S, .~o). 

The number of vertices in a clique of type (I) is 2 = (m --  1)(t --  1) -~- 2, while the 
number in a clique of type (II) is at most the number of transversals of a given 
pair l, m of intersecting lines, plus the number of lines through 1 n m meeting a given 
transversal, i.e., (m --  1) (t--  1) -~ t. Hence ff the given inequality holds, then each 
element of G induces a permutation of the points of (S, ~ )  and so belongs to H. 

Lemma 7. Let (S, .~q~) be a con/iguration satis/ying (9) with q ~ 2 and N ~ 4, and 
assume that the line graph ~ eatis]ies the 4-vertex condition. Then either (a) the auto- 
morphism group o] (S, ~ )  coincides with that o] ~, or (b) ~V = 4, (S, ~ )  is the con- 
/iguration o] points and lines o/ a trrojective 3-space over Fq, and the automorphism 
group o/ (S, ~ )  has index 2 in that o] ~. 

P r o o f .  In this case the inequality of Lemma 6 becomes QN-1 ~ Q3 so that  Lem- 
ma 6 applies for N ~ 5. I f  N ~ 4, the argument of the proof of Lemma 6 fails 
precisely if there exists a pair l, m of intersecting lines for which every pair of trans- 
versals intersect. Since we are assuming the 4-vertex condition this means that  
every pair of intersecting fines has this property. Hence by  the axioms given for 
projective geometry in [1], (S, -~) is the configuration of points and lines of a pro- 
jective space of dimension 3 over Fq, and it is easy to see tha t  the full automorphism 
group of ~ is (P I 'L4  (q), 5) where 5 is a polarity. 

We need the following linear analogue of the result [6; Th. I] of LrvI~GSTO~ 
and WAGNER, which has been proved by McLAuo~Lr~ [8]. 

Lemma 8. I /  1 ~ k' ~ l~ ~ N/2 and G ~ P] 'LN (q), then the number o/orbits ]or 
G in ~k" is not greater than the number in 5~. 

Using this result we prove 
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Lemma 9. A subgroup G o /PI 'L iv  (q), N ~ 4, has rank 3 on the set 5f2 o/lines of 
P = P~-I (q) i /and only i /G is transitive on the set 604 o/3-spaces in P, and,/or S ~ 5f4, 
G~] S contains PSL4 (S). 

P r o o f .  We assume t h a t  G has rank 3 on 602 and prove t h a t  it has the s tated 
properties with respect to ,904, the reverse implication being immediate.  

The assumption implies at  once tha t  G is transit ive on each of  the sets 5f~, ~ 3  
and ~4 .  For  ~ ~ ~3 ,  G~ is doubly  transit ive on the set of lines of  g,  so G is doubly  
transit ive on the set 5fl. For  S e 6P4, Gsl S is transit ive on the set of  lines of  S, and 
hence by  L e m m a  8, on the set of  points of  S. 

Taking P e ~1 ,  l e ~2  and S e ~q~4 such tha t  P C l C_ S, we have the index di- 
agram 

as 

Gs, L P 

so tha t  Q3x --- Qey- Since (Q2, Q3) = 1 and x ~ Q2, it follows tha t  x = Q~ and 
y = Q3- In  particular,  Gs, z is transit ive on the points of 1. 

Now let Q be a point  . P on 1. F r o m  the index diagram 

O QN.4~Q~ 
Na, 

o,.o 

Gz, ~, P W G s ,  P, 
V 

we see tha t  u is pr ime to  q, so q lv and hence q lw. This implies t h a t  Gs, ~ is doubly 
transitive on the points of  I. 

We now have tha t  Gs is doubly  transit ive on the points of  S for S e ~9~4. Hence 
WAG~CE~'S theorem [12], ff GslS does no t  contain PSL4 (q) we must  have N = 4, 
q = 2 and Gsl S ~ A7. I n  this case there are 16 lines in S no t  meeting a given line 
l C S. Hence 16 divides the order of  GslS since Gs,~ is t ransit ive on these. Bu t  
16 !A71. 

]From Lemmas  5 and 9 we have 

Lemma 10. I f  G is a rank 3 permutation group with degree and subdegrees given by 
(1) with q ~ 2 and 21 ~ 6, and i[ # = (q + 1) 2, then the conclusion of Theorem I I I  
holds. 

Theorem I I I  as s tated in the introduct ion follows immediately from Lemmas  1, 
3 and 10. 
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The description of  the rank 3 au tomorphism groups of  ~iv  (q) can be rounded out  to  

Theorem IV. Let G be a ra~l~ 3 subgroup o/ the automorphism group o / ~ v  (q), N ~ 4, 
q ~ 2. I / N  ~ 5, then G is a subgroup o/PI~LN (q) transitive on the set o/4-simplices 
in P~r-1 (q). I f  N = 4, then G n P F L N  (q) is a subgroup o/ G of index ~ 2, containing 
PSL4(q) unless q = 2 and G n PSL4(2) ~ AT. 

P r o o f .  By  Lemmas  7 and 9 we m a y  assume tha t  N = 4 and G ~ PI~L4(q). B y  
WAo~E~'s  theorem [12] i t  suffices to prove tha t  G n PILL4 (q) is doubly  transit ive on 
the points. Bu t  this normal  subgroup of  G is transit ive on 5z2 since G is primitive 
on 5z2. Hence by  a result of  McLAVOHLn~ [8], it is doubly  transit ive on 5Pl. 
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