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The effective elastic constants of a bimaterial composite were experimentally measured with 
the goal of validating the numerical predications of these constants made by 
homogenization theory. Secondly, solutions predicted by homogenization theory were 
compared to predictions made with more standard composite theories. Composite 
specimens consisting of t itanium and epoxy were developed to mimic a porous 
titanium/tissue interphase. Tensile and shear tests (ASTM D3983) measured the stiffness 
along the porous coating/epoxy interphase (EL), across the interphase (ET) and in shear 
(GET). NO significant differences in moduli were found between the experimental 
measurements and predictions made with homogenization theory, nor between the 
experimental measurements and Hashin-Shtrikman estimates. Homogenization theory 
predicted results usually within 20% of Hashin-Shtrikman estimates, but typically more than 
50% different from what is predicted by the rule of mixtures. However, homogenization 
theory allows calculation of anisotropic stiffness estimates and local strains, neither of which 
is possible using Hashin-Shtrikman estimates. With this experimental validation, the 
accuracy of homogenization theory for use in implant/tissue interface mechanics 
applications is confirmed. Since the composite interphase is anisotropic and more 
compliant in the transverse direction, with stiffness an order of magnitude lower across the 
interphase, local mechanics, tissue ingrowth and remodeling may be strongly directional 
dependent. 

1. Introduction 
Porous coated implants have been developed and 
clinically implemented with the hope of extending 
the service-life of total joint replacements. This is 
especially true for younger and more active patients, 
where some cemented prostheses have 10-year failure 
rates over 50% [1]. In principle, bone tissue can 
grow into and fill the surface pores, provide a 
strong implant/tissue interfacial bond through mech- 
anical interlock and improve long-term clinical 
results. 

The implant/tissue interphase, defined here as the 
composite consisting of the outermost surface of the 
implant substrate, coating and ingrown tissues, ex- 
hibits a unique response to load application. This 
unique response mechanically distinguishes the inter- 
phase from the individual constituents, establishes 
a specific mechanical environment within the inter- 
phase, and may determine the success of the implanta- 
tion. However, the micromechanical behaviour of the 
interphase region is not well understood. 

For  porous metal coated implants, the interphase 
consists of two major components: the metal coatings 
and the ingrown tissues both bony and fibrous 
tissue. An appropriate diameter and pore size of coat- 
ing particles, ranging from 50 to 500 ~m, can allow 
bone to grow into the pores between the particles [2]. 
The sintering process consolidating powder particles 
onto the substrate, however, creates notch-like discon- 
tinuities on the metal surface, weakening the metal. 
These notches may serve as loci of stress concentra- 
tion and initiate crack propagation [3-6]. 

Ingrown or osseointegrated tissues usually protrude 
from the surrounding bulk bone and interlock with 
the coating particles. The loads acting on the im- 
plant are expected to be transferred through these 
bone "spicules". Theoretically, the stress or strain 
state in these "spicules" may determine whether the 
mineralized bone is maintained or resorbed after 
mechanical usage. The remodelling behaviour of the 
osseointegrated tissues is hypothesized to follow the 
same principle as bulk bone remodelling - bone mass 
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can be maintained if the bone is subjected to certain 
mechanical strain ranges [7-9]. Therefore, quantification 
of localized stresses and strains in the osseointegrated 
tissue/implant interphase can provide a basis for un- 
derstanding mechanically mediated bone adaptation 
and also for improving the design of coated implants. 

However, both the complex geometry of the coat- 
ings and the small scale of ingrown tissues relative to 
the entire prosthetic system inhibits micromechanical 
analysis of the interphase for a whole prosthesis. 
Finite element analysis (FEA) requires that the ele- 
ment size be smaller than the regions of interest. In the 
case of a porous coated implant, the local regions of 
interest are the coating microspheres and bone 
"spicules" which are on a scale of micrometres. There- 
fore, FEA of whole implants, on a scale of centimetres, 
with detailed interphase analysis, on a scale of mi- 
crometres is beyond current computational capability. 

In general, composite theories are developed to 
describe macroscopic mechanics by accounting for 
the effect of constituent materials. Many composite 
theories have been used to estimate the macroscopic 
material properties of heterogeneous bimaterial inter- 
phases and to provide bounds for the estimated inter- 
phase properties of structural materials 1-10-13]. The 
macroscopic elastic constants are then used to con- 
struct a constitutive law for the interphase in an FEA 
from which the global or average interfacial mechan- 
ical fields can be obtained. 

Composite analyses have also been used to simplify 
the study of bone-implant interphase mechanics [14, 
15]. Moyle et  al. 1-14] evaluated the upper and lower 
bounds on the elastic constants of biomaterial inter- 
faces for different synthetic materials, using both 
Hill-Paul and Hashin-Shtrikman theories. Their re- 
suits showed that the Hashin-Shtrikman law pre- 
dicted narrower bounds than the Hill-Paul method, 
as is expected. However, no information was pre- 
sented on the closeness of the bounds to the actual 
situation. Ducheyne et  al. 1,15], assuming an isotropic 
interfacial zone, used FEA to investigate the mechan- 
ical behaviour of porous-coated implants, in which the 
elastic modulus of the porous coating was estimated 
using the Hill-Paul method. These studies provided 
stress patterns in the prosthesis and surrounding 
bone away from the interfacial zone. However, only glo- 
bally isotropic material behaviour was considered. More 
advanced FEA have evaluated effects of friction and 
non-linearity at the bone/implant interface [16-18], 
but a specific implant/tissue interphase was not 
modelled and local stresses around individual micro- 
spheres and adjacent tissue were not determined. 

Local single- or multiple-microsphere models have 
shown that stresses around microspheres are non-uni- 
form and largely dependent upon coating architecture 
[6, 19, 20]. Additionally, we have demonstrated that 
an isotropic implant/tissue interphase, derived from 
the Hill-Paul method, tends to underpredict stresses 
in metal and overpredict stresses in osseointegrated 
bone [21]. 

By applying another composite theory, homogeniz- 
ation theory, we have also showed that the implant- 
tissue interphase composite is macroscopically 
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orthotropic and interphase strains might dictate local 
failure patterns [22, 23]. However, to date these results 
have not been experimentally validated. The purpose of 
this study was to develop a method of quantifying inter- 
phase elasticity accounting for interfacial micro-con- 
stituents. Once interphase elasticity is characterized, 
an appropriate constitutive law may be employed to 
quantify the interfacial stresses. This study experi- 
mentally measured the effective elastic constants (C~j) 
of an interphase composite with the goal of validating 
the numerical predications of these constants. Specifi- 
cally, the following questions were addressed: 

(1) Can homogenization theory predict effective 
elastic constants of an interphase composite 
correctly? 

(2) Does changing composite constituents affect the 
resultant effective elastic constants of the inter- 
phase? 

(3) Is homogenization theory as accurate as other, 
more standard, composite theories? 

2. Experimental design and methods 
2.1. Materials, specimen design and 

preparation 
Bimaterial composite specimens consisting of tita- 
nium and epoxy resins were developed to mimic 
a composite porous titanium/tissue interphase (Fig. 1). 
The metal/resin composites included bulk Ti-6A1-4V, 
commercially pure titanium (c.p. Ti) microspheres and 
epoxy. The interphase architecture of the composite 
was the same as that on the surface of porous coated 
implants. The titanium powder particles were spheri- 
cal with a diameter of 1000 ~tm. Two isotropic resins 
were used: epoxy I: E = 0.2 GPa, v = 0.42; and epoxy 
II: E = 3 GPa, v = 0.36 (Table I). 

Ti-6A1-4V plates 1 mm thick were machined into 
dumb-bell specimens or tensile-lap specimens, which 
were then split through the 1 mm thickness along 
either a vertical or horizontal axis of symmetry. The 
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Figure 1 Schematic of composites: (a) Ti-6AI~4V substrate and 
commercially pure titanium coating; (b) Ti~A1-4V substrate, com- 
mercially pure titanium coating and infiltrated resin. 



TABLE I Elastic constants of constituent materials 

Material Volume E v G K 
fraction (GPa) {GPa) (GPa) 

Titanium 0.57 110 0.30 42.3 91.7 
Epoxy I 0.43 0.2 0.42 0.07 0.42 
Epoxy 1I 0.43 3.0 0.36 1.10 3.57 

composite was 1 mm thick to meet the criteria for the 
plane stress analytical model. Commercially pure tita- 
nium powder particles were sintered onto the 1 m m  
thick cross-section of the bulk Ti 6A1-4V alloy sub- 
strates under high temperatures ( ~ 1100 °C). The sin- 
tering treatment for bonding the microspheres and 
substrate produced an (:¢ + 13) lamellar microstructure 
and was the same procedure used for coating com- 
mercial implants. One layer of coating particles was 
sintered through the thickness and two layers were 
sintered across the anterphase (Fig. 1). Each micro- 
sphere in the first layer across the interphase was sin- 
tered to the substrate. Each microsphere in the second 
layer contacted two microspheres from the first layer. 

To make the complete composite specimens, nega- 
tive moulds were fabricated using silicone rubber 
impression materials used for denture impressions. 
By pouring the epoxy resin into the mould, the metal 
pores were filled with resin. The final titanium/resin 
composites had a volume fraction of 57% titanium/ 
43% resin. Finally, the specimens were polished to 600 
grit to reduce any surface defects_ 

2.2. Testing methods 
The composite interphase was assumed to be ortho- 
tropic and have four independent elastic constants for 
two-dimensional stress strain relations: the elastic 
moduli in the longitudinal and transverse directions 
(EL, ET), shear modulus (6:LT) and major Poisson's 
ratio. In this notation, EL is the stiffness along the 
interphase in the direction of loading, ET is the stiff- 
ness across the interphase perpendicular to the load 
and GLT is the shear stiffness. 

Dog-bone tensile specimens, with the interphase 
either parallel or perpendicular to the direction of 
loading, were designed to measure EL, and ET, respec- 
tively. To measure GLT, a specimen with rectangular 
shape was designed to mimic a thick-adhered tensile- 
lap specimen [-24]_ The thick-adhered tensile-lap test 
was used to measure shear strength and shear 
modulus of the interphase under a tensile load applied 
along the interface. Fig_ 2 illustrates the geometries of 
the three specimen types (denoted types I, II  and III) 
used for measuring EL, ET and GLT, respectively. For 
each resin and each of the three specimen designs, 
seven specimens were tested_ 

All three types of specimens were tested under 
quasi-static uniaxial tension. A uniaxial load was ap- 
plied directly to the type I and II specimens through 
the ends via serrated-jaw-type end connections. A 
fixture was designed to hold the type I I I  specimens 
such that shear stresses were created on the composite 
by applying a uniaxial tensile load (Fig. 3). The 

Figure2 Geometries of specimens used to measure anisotropic 
elastic constants of bimaterial interphase composites: type I - used 
to measure longitudinal modulus (EL); type II used to measure 
transverse modulus (Er) and type III used to measure shear 
modulus (GLT), 

Figure 3 Fixture used to hold shear specimens such that shear 
stresses were introduced into composite interphase by applying 
a uniaxial tensile load. 

method for measuring the shear modulus was adapted 
from the ASTM D3983-81 [24]. 

All specimens were loaded on an Instron 1122 
machine at a rate of 0.05 mm min -  1 until failure. Dur- 
ing the tensile tests, the applied load was measured by 
means of the Instron load cell and the strains parallel 
to the load were measured by means of an exten- 
someter. Stress-strain curves were plotted and the 
required material properties were determined. When 
the applied load was in the longitudinal direction, the 
initial slope of the stress-strain curve gave the longitu- 
dinal modulus (EL). Similarly, the transverse (ET) and 
shear moduli (GET) were determined by applying the 
load in transverse and shear directions, respectively. 
The mean value of the experimentally measured elas- 
tic constant for each type of specimen was compared, 
using a student's t-test, to the value predicted from 
various composite theories. In other words, the statist- 
lcal measures tested how close the population means 
of the measured values were to the predicted values, 
which were taken as standard or constant values. 
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2.3. Composite theories and analytical 
methods 

2.3. 1. Summary of homogenization theory 
Homogenization theory is a mathematical tool de- 
veloped to analyse the mechanics of microstructured 
and composite materials [25, 26]. In this theory, two 
key assumptions are made. First, the total strain is 
assumed to be the sum of an apparent strain plus 
a fluctuating strain: 

~ j  = ;:~j + ~* (1) 

In this notation, ~q is the total microstructural strain, 
~ij is the macroscopic or apparent strain, which varies 
only on a macroscopic level and e* is the fluctuating 
strain, which varies on both the macroscopic and 
microscopic levels. The second assumption is that the 
microstructure displaces periodically and the basic 
texture can be represented by a unit cell (UC), which is 
small in comparison to the entire (global) structure. 
When the global body is loaded, the resulting stresses 
and strains vary rapidly from point to point because of 
the small scale of the microstructure relative to the 
whole structure. In other words, e* is periodic on 
a microstructural scale. 

The field variables are described by two material 
coordinate systems, one macroscopic and one micro- 
scopic, which are functions of x and y, respectively. 
The relationship between the two coordinate systems 
is expressed as: 

y = x/q (2) 

where q is the ratio of the dimension of one unit cell to 
that of the entire structure (i.e. size of local domain 
relative to global domain). If 11 is small, the total 
displacement, u, on an internal point of the composite 
is a function of both x and y and is expressed through 
asymptotic expansion: 

u(x,y) = Uo(X) + qul(x,y) + q2u2(x,y ) 

+ ... + rl"u,(x,y) (3) 

where Uo is the macroscopic (global) displacement and 
all other u~ are perturbations in displacements due to 
the influence of the microstructure. 

The expression for u can be incorporated into the 
weak form of the equilibrium equation: 

f~ C,jk~j(V)~k~(U)df2n = frt~VidF (4) 

where ~n represents the total domain (macroscopic 
and microscopic) of the composite, v is the virtual 
displacement and t~ are the global tractions. The 
strains, e are obtained by applying the small strain- 
displacement relationship: 

eij(u) = 1/2(ui,j + uj, i) (5) 

The microscopic and macroscopic equilibrium equa- 
tions therefore become: 

fuCijklElj(v)(~,kl q- e*)dQ q = (6a) 0 
q 
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where: ~o represents the virtual strains at the macro- 
scopic level and e 1 represents the virtual strains at the 
microscopic level. 

From these relations, two important tensors are 
determined: (1) the effective elastic constants of the 
composite, Cijk~, and (2) the local structure tensor, 
Muu. The effective elastic constants of the interphase 
account for material inhomogeneity and local ge- 
ometry. The local structure tensor is a fourth rank 
tensor which maps global strains into local strains and 
represents the influence of global strains on the local 
strain in the media. It can be shown [27] that the local 
structure tensor is determined through the relation- 
ship: 

E i j =  Mukl ~kl (7a) 

M i j k  l = 1 /2(~ ik~j i  ~_ 6il6jk ) __ ~*kl ~i; (7b) 

where 6ij is the Kronecker delta a n d  8i*j kl is the total 
microstructural strain for the kith traction. It can also 
be shown [27] that the apparent stress is the average 
of the microstress over the unit cell volume and the 
apparent stiffness, Cqkt, (apparent stress scaled by 
apparent strain) is: 

I/V¢¢,, ~ C~jpmMp,.k, dV~¢. (8) C,jkl 
Jc ell 

Equation 6a is solved using a finite element method 
modified to impose periodic boundary displacements 
[27]. Equation 6b is solved using standard continuum 
finite element approaches_ The resultant global 
(macroscopic) strains can be converted into local 
(microscopic) strains through Equation 7. A flow chart 
(Fig. 4) shows the finite element modelling regime 
employed. The local or unit cell model represents the 
finite element implementation of the microscopic equi- 
librium Equation 6a and the global model represents 
implementation of the macroscopic Equation 6b. 
Analysis of the local model under characteristic unit 
normal and shear volume strains gives the effective 
interface elastic constants and local structure tensor. 

mater,al 
Local 
structure 
matrix (M) 

c°nstants ( C ~  ~ G|o~I: i I 

strain ( o, g) 
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Figure 4 Flowchart outlining homogenization finite element tech- 
nique. 



The global model is solved by inputting the apparent 
stiffness of the composite C'ijkz, derived from the local 
model, into the corresponding composite regions of 
the global model_ The resultant global strains are 
mapped into the local model and local strains are 
calculated by assembling the local structure tensor. 
Local stress is determined by relating local strain to 
material constants at points of interest. 

2.3.2. Homogenization analysis of 
titanium/resin composite 

A unit cell representative of a repeating microstruc- 
ture within the interphase of the global composite 
model was used to calculate the effective elastic 

(phase), where X is either E, G, v or K; Vi indicates the 
material volume fraction of the ith phase; and the 
subscripts 1 and 2 represent titanium and resin, 
respectively. 

The linear rule of mixtures used to calculate mater- 
ial moduli is: 

Upper bound: E L = E1V1 + EzV2 (10a) 

Lower bound: Ev = E1E2/(EIV2 + EzV1) (]0b) 

Upper bound: GLV = G1V1 + G2V2 (10c) 

Lower bound: GLT = G1G2/(GIV2 + G2V1)(IOd) 

The Hashin Shtrikman upper bound is used as the 
longitudinal modulus of the composite: 

EL 
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constants of the titanium/resin interphase. The 
(900 x 450 gm) unit cell contained 550 quadrilateral 
(Q4) elements and included part of the Ti-6A1-4V 
substrate, two c.p. titanium microspheres and resin 
(Fig. 5). The volume fractions of titanium micro- 
spheres and resin were the same as in the experimental 
samples. Each of the materials was assumed to be 
homogeneous, isotropic and rigidly bonded_ The 
moduli of the individual constituents used in the 
homogenization analysis were 110 GPa  for titanium, 
0.2 GPa  for epoxy I, and 3 GPa  for epoxy II (Table I). 
The diameter of each microsphere was 1000 gm. 
Microspheres contacted one another at two points 
(nodes). Analysis of the local model yielded the effec- 
tive interphase elastic constants which were then com- 
pared to the experimental data. 

2.3.3. Other composite approaches 
Two standard composite theories were also analysed 
for their agreement with experimental data and 
predictions from homogenization theory: the linear 
rule of mixtures [11, 28, 29] and Hashin Shtrikman 
bounds [12]. 

Each of these composite laws is based upon the 
calculation of two of the four elastic constants for 
two-dimensional isotropy: elastic modulus (E), Pots- 
son's ratio (% shear modulus (G), and bulk modulus 
(K), with the following relations holding: 

G = E/t2(1 + v)] (9a) 

K = E/t3(1 - 2v)] (9b) 

In all of the following relations, Xi is the isotropic 
elastic constant for the ith composite constituent 

Interchanging the subscripts 1 and 2 yields the 
Hashin Shtrikman lower bound, which is used as 
the transverse modulus. An upper bound on the 
Hashin Shtrikman shear modulus was calculated 
using Equation llb_ Similarly, interchanging the 
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Figure 5 (a) Schematic and (b) finite element mesh of local (unit cell) 
model, which includes edge of Ti 6Al~4V substrate, two commer- 
cially pure titanium microspheres and infiltrated resin. 
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subscripts yields a lower bound. 

V2 
GLT = G1 + (l lb) 

1 6(Kt + 2GI)V1 - - +  
G2 - G1 5GI(3K1 + 4G1) 

The lower bounds on the shear modulus were used for 
comparison with the experimental data since the shear 
specimens were loaded in the weak direction and this 
experimental condition most mimics the iso-stress case. 

3. Results 
Table II lists the measured and predicted effective 
elastic constants. The mean values of the experi- 
mentally measured longitudinal moduli were 38.0 and 
45.2 GP a  for epoxies I and II, respectively. The change 
in the longitudinal modulus due to epoxy properties 
was approximately 15%. The experimentally meas- 
ured transverse moduli were 0.8 and 13.9 GPa  and 
the shear moduli were 0.27 and 2.9 GPa  for epoxies I 
and II, respectively. It is apparent that these latter two 
effective moduli are much more sensitive to epoxy or 
"tissue" modulus. 

No significant differences (at p = 0.05) in the moduli 
were found between the experimental measurements 
and predictions based on homogenization theory, nor 
between the experimental measurements and Hash- 
in-Shtrikman law. Therefore, the null hypothesis that 
there is no significant difference in elastic constants 
between the material moduli measured experimentally 
and predicted analytically by homogenization theory 
could not be rejected_ For  both resins, EL and ET, 
measured experimentally, were significantly different 
from predictions based on the rule of mixtures 
(p < 0.01). Homogenization theory predicted similar 
results to the Hashin-Shtrikman estimates, but differ- 
ent from the rule of mixtures. In all cases, except for 
the shear modulus of the composite containing 
epoxy II, homogenization estimates were within the 
Hashin-Shtrikman limits, and can therefore be con- 
sidered reasonable and accurate. 

The other null hypothesis addressed was that there 
is no significant difference between the elastic con- 
stants of epoxy I and II specimens. Comparison of the 

measured moduli for these two groups showed that 
the differences are significant (p < 0.01), rejecting the 
null hypothesis. 

4. Discussion 
In this study, reproducible measurements of the ma- 
terial properties of a bimaterial interphase composite 
were developed. There were no statistical differences 
between experimentally measured effective elastic con- 
stants and those predicted with homogenization 
theory. The statistical measures tested how close the 
population means of the measured values were to the 
predicted values, which were taken as standard or 
constant values. The maximum error in the homo- 
genization technique, determined by comparing 
homogenization results to standard FEA results, has 
been determined to be approximately 15% [23]. The 
differences between the elastic constants measured ex- 
perimentally and those predicted by homogenization 
theory ranged between 4% and 28%. These differ- 
ences are possibly attributed to the 15 % differences in 
results between homogenization and standard FEA. 
The overall elastic constants obtained from the 
homogenization model were slightly lower than the 
experimental measurements. A possible reason for this 
trend may be that homogenization theory is based 
upon the assumption that the microstructure is peri- 
odic. In the homogenization model, resins are phys- 
ically dispersed into the porous metal_ 

The differences between the elastic constants meas- 
ured experimentally and predicted via homogeniz- 
ation theory were not statistically significant, and 
differed from metal/tissue interphase properties de- 
termined via push-out tests [30,31]. Mechanical 
analyses have also shown that push-out tests do not 
represent a state of pure interfacial shear and may 
therefore be inaccurate [32-34]. 

The results of this study demonstrate that load 
transfer from an implant surface to the surrounding 
material is not equivalent in all directions. Load trans- 
fer is dominant in the direction parallel to the implant 
surface because the longitudinal modulus of the inter- 
phase is always greater than the transverse modulus. 
The longitudinal modulus was almost 50 times greater 

TABLE II Experimentally measured versus analytically predicted effective elastic constants 

Axial moduli 

Composite Method ET (LB) a EL (UB) b 

Shear moduli 

Grv (LB) GL (UB) 

Ti/epoxy I 

Ti/epoxy II 

Experimental 0.80 (0.11) 38.0 (2.6) 0.27 (0 08) 
Homogenization 0.83 34.0 0.29 
Rule of mixtures 0 46 62.8 0.16 24.1 
Hashin-Shtrikman 0.79 44.0 0.28 18.0 

Experimental 13.9 (3.3) 45.2 (4.1} 2.9 (1.3) - 
Homogenization 10.6 38.5 3.7 
Rule of mixtures 7.6 64.0 2.5 24.6 
Hashin Shtrikman 10.3 46.5 3.9 18.8 

Standard deviations in ( ) 
" LB = lower  bound 
b UB = upper bound 
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than transverse modulus for the titanium/epoxy 
I composite and over three times greater for the tita- 
nium/epoxy II composite. The longitudinal modulus 
is determined primarily by the titanium, which is 
much stiffer than the resins, while the transverse 
modulus is determined primarily by the softer resin. 
Both the transverse and shear moduli for the com- 
posite containing epoxy II were at least 10 times 
greater than for the composite with epoxy I. This 
result implies that the effect of the tissue properties of 
implant/tissue interphases on load transfer is mainly 
in the transverse and shear directions_ 

4.1. Assumptions and limitations of study 
Tissues grown into porous coatings are heterogeneous 
and vary in depth, distribution, and percentage 
[35]. The large number of variable parameters 
involved in an implant/tissue composite obtained 
from an in vivo study could reduce the reliability 
of mechanical testing results [-36]. Therefore, m 
this study resins, which are relatively homogeneous 
and fully penetrated into the metal pores, were used 
to eliminate the effect of tissue variability. Homogene- 
ous, isotropic bone tissue can be simulated by using 
epoxy. The Young's moduli of these resins were within 
what is considered a reasonable range of properties 
for healing bone, although it is acknowledged that 
fully osseointegrated cortical bone will have a sub- 
stantially higher modulus (e.g. 10 20 GPa)_ Another 
reason for using epoxy is that byproducts formed 
during the curing reactions can be limited. Thus, there 
was little evidence of voads and material inhomogene- 
ity which may affect experimental measures. The ex- 
perimental validation of the analytical model is en- 
hanced because an identical system of well-defined 
constituents was used for both the mechanical testing 
and the analytical model. 

The size of the titanium microspheres (1000~tm) 
was greater than that of commercial porous coating 
microspheres, which usually range from 200 to 
600 ~tm. The reason for using 1000 jam microspheres 
was to make the pore size big enough for resin infiltra- 
tion. However, the composite system used in this 
study has the same surface metal architecture as 
a commercial implant, making the results more clim- 
cally meaningful. 

Currently, only rigid and slip boundary conditions 
are easily implemented with homogenization FEA 
codes. Epoxy resins have good adhesive properties to 
a very broad range of substrates, including titanium. 
Therefore, the assumption of rigid bonding in the 
finite element model is valid. This assumption may be 
more valid for resins than for bone. 

Although the experimental measurements were per- 
formed on resin/metal composites, this information 
should also hold true for actual tissue/metal com- 
posite measurements, because the material properties 
of the resins were within the property ranges of actual 
tissue. However, modifications of the specimens will 
be required if the methods are to be employed to 
measure an actual tissue/metal interphase. In order to 
contain multiple layers of coating particles in the 

specimen cross-section, the specimens need to be 
thicker than 1 ram. 

4.2. Comparison to other composite 
theories 

Classical energy principles are the basic techniques 
used for determining the bounds on composite 
moduli. These principles are based upon the premise 
that the strain energy associated with the actual solu- 
tion to the field equations is bounded by the strain 
energy associated with a certain class of "trial" or 
"admissible" solutions [37]. Estimates of the bounds 
on composite moduli can be determined from uniform 
stress or strain boundary conditions or from varia- 
tional principles_ A representative volume element 
deformed by the application of prescribed surface dis- 
placements which yield a uniform strain field provides 
an upper bound on the overall stiffness tensor. Cal- 
culation of the strain energy necessary to satisfy all 
possible displacement boundary conditions shows 
that the exact solution is given by the displacement 
field which minimizes the strain energy [37]. This is 
known as the principle of minimum potential energy. 
Likewise, in the principle of minimum complementary 
energy, a representative volume element loaded by 
tractions which yield a uniform stress field gives lower 
bounds on the stiffness. 

In a two-phase system, a simplifying assumption is 
that the stresses and strains in each phase are uniform 
and the average behaviour of the composite is defined 
in terms of a representative volume element. The 
simplest cases for a two-phase composite, assumed to 
act as rigid inclusions in a rigid matrix, are when the 
second phase is umformly aligned either in parallel or 
in series with an applied uniaxial load. For the case of 
a parallel arrangement, a uniform strain is assumed in 
the individual phases, yielding an upper bound on the 
composite modulus_ In the series arrangement, an 
iso-stress state is assumed, yielding a lower bound_ 
The bounds given by the linear rule of mixtures, some- 
times referred to as a Reuss (lower bound) [-28] or 
Voigt (upper bound) [-29] model, are generally widely 
spaced and are often insufficient to model experi- 
mental data (e.g_ Table II). This implies that iso-strain 
assumptions for the constituent phases are insufficient_ 
Physically, each phase may be inhomogeneous, indi- 
vidual phase particles may not be physically distinct 
and may vary in size, shape and orientation. There- 
fore, on a microstructural level, stresses and strains 
may not be evenly distributed, and iso-stress or iso- 
strain assumptions are too simplistic. 

Improved bounds have been obtained by Hashin 
and Shtrikman, who took into account the Poisson 
contraction of the phases [,12]. The overall composite 
response, however, is still assumed to be linear elastic 
and isotropic. The closeness of the lower and upper 
bounds is related to the closeness of the constituent 
moduli [-12, 37]_ In general, when the moduli of the 
phases are close, the Hashin-Shtrikman law can pre- 
dict values within 10% of experimental data. In this 
study, in which the moduh differed by factors of 37 
and 550, the Hashin-Shtrikman law still yielded 
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results within one-third of the experimental data. For 
the composite with the more flexible epoxy, only 
EL was significantly greater than the experimental 
data. For the composite with the stiffer epoxy, it was 
the transverse and shear moduli that deviated more 
from the experimental data. Predictions based on 
homogenization theory were closer to experimental 
data for these cases (Table II). Considering the large 
differences in phase moduli, the differences between 
experiment and theory seem quite reasonable. Fur- 
thermore, even with greater differences, the Hashin- 
Shtrikman bounds are useful in testing approximation 
theories, since solutions outside of the Hashin- 
Shtrikman bounds are considered invalid. This was 
a motivation for utilizing these bounds - homogeniz- 
ation estimates were within the Hashin-Shtrikman 
bounds, further validating the technique. 

Through experiments using metal/resin composites, 
the analytical models predicting composite moduli 
were validated. Homogenization theory predicts effec- 
tive elastic properties equivalent to those predicted 
by the more established Hashin-Shtrikman law. 
Although the upper and lower bounds of the Hash- 
in-Shtrikman law correspond well to EL and ET, 
respectively, it is important to keep in mind that the 
Hashin-Shtrikman law only predicts properties ofiso- 
tropic composites. The homogenization method, how- 
ever, can predict complete anisotropic properties. This 
study assumed the constituent materials to be iso- 
tropic. For the actual case of orthotropic bone, homo- 
genization theory might be more accurate because it 
can calculate effective moduli for anisotropic constit- 
uents. Furthermore, the Hashin Shtrikman law, when 
included in a finite element code, can only predict 
global properties, it cannot estimate local interracial 
stresses, which the homogenization method can also 
predict [-8, 23, 27]. 

Other variational approaches, models based on 
composite spheres, composite sphere and cylinder 
assemblies, elliptical inclusions or laws for fibre- 
reinforced composites, yield solutions close to the 
Hashin-Shtrikman solutions, or have one bound 
that collapses into a Hashin Shtrikman bound 
[13, 37-41]_ Additionally, such approaches tend to 
become erroneous for phases with equivalent volume 
fractions or dissimilar moduli, or for porous media. 
Having developed reasonable bounds on our data 
with both the Hashin-Shtrikman and homogeniz- 
ation theories, it was not necessary to pursue alterna- 
tive composite techniques. 

4.3. Application toward physiological 
system 

With this experimental validation and an earlier 
analytical validation [42], we confirm the accuracy 
of homogenization theory for use in implant/tissue 
interface mechanics applications. Application of the 
homogenization technique [23] predicted interfacial 
elastic constants for a porous titanium/bone inter- 
phase as a function of bone stiffness (Table III). For 
a bone stiffness of 1 GPa, the effective stiffness in the 
direction of loading was 26 GPa, whereas the stiffness 
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TABLE II l  Effective 
C~j (GPa) predicted by 
properties 

bone/implant interracial elastic constants, 
homogenization theory for different bone 

C~ 1 GPa 5 GPa 10 GPa 20 GPa Orthotropic 

EL 25.70 30.10 35.30 44.90 44.70 
Ex 2.30 10.00 18.30 32.60 21.20 
GLT 0.80 3 60 6.70 12.30 9.40 
VLT 0.29 0.30 0.30 0.30 0.30 
VXL 0.03 0.10 0.16 0.22 0.25 

across the interphase and the shear stiffness were an 
order of magnitude less, only 2 GPa and 0.8 GPa, 
respectively. The composite interface is therefore more 
compliant in the transverse direction. These trends are 
similar to those predicted and experimentally 
validated with resins. When bone stiffness is increased, 
the absolute values of the effective elastic constants 
increase, but the relative values between the different 
elastic constants remain the same. Even though the 
elastic constants of the constituent materials were 
isotropic, the effective elastic constants indicate that the 
interfacial zone is orthotropic. Since the interphase is 
anisotropic, with stiffness an order of magnitude lower 
across the interphase, local mechanics, tissue ingrowth 
and remodelling may be directionally dependent. 

Porous coated implants interface with a substantial 
amount of cortical bone, which has a higher modulus 
than the epoxies used in this study. Since a linear 
theory of homogenization was used and tissue 
was assumed to be homogeneous, the trends in pre- 
dicted effective moduli will not change with increasing 
bone moduli, only the absolute values will change. 
In a study which parametrically varied bone modulus, 
the magnitude of the local stresses and strains 
varied with bone modulus, but the distribution 
remained the same [-23, 43]. Second, most composite 
theories offer better agreement with experimental data 
if differences in material moduli are minimized. Using 
moduli more representative of cortical bone would 
therefore offer better agreement between analytical 
predictions and experimental data, providing a stron- 
ger validation of homogenization theory_ 

It is well known that bone can adapt to stresses and 
strains. The degree of osseointegration into a cement- 
less implant is a possible result from such adaptation. 
Our general hypothesis is that the local material and 
tissue architecture within the interphase is the major 
factor determining the directions of load transfer, and 
therefore regulates osseointegration and adaptation. 
This study provides a first step towards quantifying 
interphase elasticity and the local mechanical environ- 
ment of the interphase. Further quantification of local 
stresses and strains in implant/tissue interphases and 
testing of our hypothesis may aid improvements in 
implant design. 

5. Conclusions 
(1) Homogenization theory predicts the same effective 

elastic constants for a bimaterial interphase com- 
posite as those measured experimentally. 



(2) Homogenization theory is as accurate as the 
Hashin-Shtrikman theory, is also valid when indi- 
vidual phases are anisotropic, and can determine 
local interphase stresses and strains. 

(3) The use of these effective elastic constants in the 
interphase of a global finite element model is there- 
fore reliable. 

(4) The computational predictions made with homo- 
genization theory also reflect the influence of each 
constituent 0n the resultant mechanical properties 
of the composite. Thus the use of homogenization 
theory to estimate local properties of an im- 
plant/tissue interphase becomes feasible even 
though the tissue is heterogeneous. 

(5) Such analyses can also be used to determine the 
effective elastic constants of fibre/matrix or partic- 
ulate composites with accuracy_ 
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