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Abstract. We show that the problem of finding a perfect matching satisfying a single equality constraint with a
0-1 coefficients in an x nincomplete bipartite graph, polynomially reduces to a special case of the same peoblem
called the partitioned case. Finding a solution matching for the partitioned case in the incomlpete bipartite graph,
is equivalent to minimizing a partial sum of the variables o@gf &, = the convex hull of incidence vectors of
solution matchings for the partitioned case in the complete bipartite graph. An important strategy to solve this
minimization problem is to develop a polyhedral characterizatio@®fh,. Towards this effort, we present two

large classes of valid inequalities f@ﬂ’lr}u, which are proved to be facet inducing using a facet lifting scheme.
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1. Introduction

The well-known assignment problem of ordedeals with minimizing a linear objective
function involvingn? variablesx = (xij :i, j =1, ..., n), usually written in the form of a
square matrix of ordar, subject to constraints (1)—(4). Associating the variaglevith the
edge(i, j) in the complete bipartite grapgh, n, G = (1, J, | x J), wherel = {1,...,n},
J ={1,...,n}, each assignmeit = (X;;), i.e., feasible solution of (1)—(4), is associated
with the perfect matching(i, j) : X; = 1} in G. We will also find it convenient to associate
the variable;; and edgei, j) in G, with the(i, j)th cellin the two dimensional arréyx J.
With the values of the variables entered in their associated cells in the array, each assignment
becomes a permutation matrix.

However, in many applications, we need to find an assignment which has a specified
value for a given objective function, rather than an assignment that minimizes it; i.e., we
need to find a solutiom = (x;j) to the following system

n
D xj=1 foralli=1....n (1)
j=1
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n
Y xj=1 forallj=1,....n-1 2)
i—1
Xij >0 foralli,j=1,...,n 3)
xij € {0,1} foralli,j=1,...,n 4
n n
CijXj =T. (5)
i=1j=1

An example of such an application arises in the core management of pressurized water
nuclear reactors (Brans et al., 1973; Gupta and Sharma, 1981).

Solving (1)—(5) is NP-complete whes) ; are general integers (Chandrasekaran et al.,
1982). The problem of solving (1)—(5) when ail; are 0-1 has been described in
Papadimitriou (1984) as a mysterious problem. In this special case necessary and suf-
ficient conditions for the existence of a feasible solution to (1)-(5) have been derived
in Karzanov (1987) and Murty et al. (1993), and @n?°) algorithm for either finding
a feasible solution to (1)—(5) or concluding that it is infeasible is also given in Murty
etal. (1993).

In the sequel we assume that@jlare O or 1, and & r < n, r integer. In this paper we
investigate some polyhedral aspects of this special case.

System (1)—(5) is defined on the complete bipartite gi@phe., all then? variablesx;;
are allowed to assume values O or 1. This feature is used crucially in the algorithm discussed
in Murty et al. (1993) for solving (1)—(5). However, in applications, the problem is usually
defined on an incomplete bipartite graph; i.e., we are given a subset of Edgdled the
subset oforbidden edgesor missing edgesf G and all the variables;; for (i, j) € F are
deleted from system (1)—(5) and we need to solve the remaining system. This is equivalent
to imposing a new constraint

xj =0 forall(,j)eF. (6)

Whether an efficient algorithm exists for the problem in an incomplete graph, i.e., for
solving (1)—(6) remains an open question.

Whether it is on the complete graph (this correspondb te@) or incomplete graph,
our problem belongs to a special case calledghsitioned casef there exist partitions
| =11Uly, J = J1U J such that

L 1 forall (i, j) e (l1 x ) U x I)\F
Gi = {o forall (i, j) € (11 x Jp) U (I x I\F.

In this partitioned case, the cells in the two dimensional array] are partitioned into 4
blocks: Bi=11x J;,Bo=11 x Jp, Bg: I x Jo, andB4= I, x Jg. Let||1| =N, |J1| =Ny.
The following facts have been proved in Murty et al. (1993) and Yi (1994) for this partitioned
case, in the complete graph.

(i) Inthiscase, forany=1to4,|B; N {(p, q) : Xpqg = 1}| isthe same, say, for all solutions
X = (Xpq) Of (1) to (5), and if such a solution exists, then= (—n+r +n;+ny)/2,
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ro=M-=r+4+n;—ny)/2,r3=MN-+r —ny—ny)/2,ry=(N—r — Ny +ny)/2 since
r2=n1—r1,r4=n2—rl,andr3=n—rl—rz—r4.

(i) Inthis case, system (1) to (5) has a solutiomifi-r + n; + n, is an even number, and
all therq, rp, r3, rq given in (i) are> 0. Hence all the for which system (1) to (5) has
a solution in this case have the same odd-even parity, and the set of atl fraiman
arithmetic progression in which consecutive elements differ by 2.

Furthermore, in this partitioned case, the following 6 constrair@d,j)EBt Xij =Tt,
t=1104.3 i)emuss Xi =T 2 j)emup, Xij = N —r; are all equivalent to each other in
the sense that any one of them can replace (5) in system (1) to (5), leading to an equivalent
system. In particular, consider

Z Xij =TI1. (7)

(i,))eBy

In this case, system (1) to (5); or the equivalent system (1) to (4) and (7), has a solution
iff r1 is a nonnegative integer and m@xn; + n, — n} < r; < min{ng, ny}.

Color the edgdi, j) in G (and the celli, j) in the arrayl x J) red if ¢; =1, blue if
¢i; =0. Then any solution to (1)—(5) is the incidence vector of a perfect matchi@gith
exactlyr red edges. Such a perfect matching will be callesglation matching

We will assume that there is at least edge of each color, as otherwise the problem of
finding a solution matching becomes the standard one of finding a perfect matching in a
bipartite graph which is efficiently solvable.

With this coloring, the complete grapB, or the incomplete grapkl = (I, J, E =
(I x J)\ F) belongs to the partitioned case if there exists partitioasl; Ul,, J = J1U J,
such that

edge(, j)isrediff (i, j) € (I1 x J) U (I x I)\F ®)
edge(, j)isblueiff (i, j) € (11 x J) U (Io x J)\F.
Consider the incomplete graph case as defined earlier. The following lemma gives the
necessary and sufficient conditions for the incomplete gkdpd belong to the partitioned
case.

Lemmal. Considertheincomplete colored bipartite graphH1, J, E) where E= (I x
J)\F. H belongs to the partitioned case iff there exists no cycle in H containing an odd
number of red edges.

Proof: SinceH is bipartite, if a cycle inH contains an odd number of red edges, it must
also contain an odd number of blue edges and vice versa. If partitions exist as defined
earlier, clearly there can be no cycle containing an odd number of red edgles in

Suppose there exist no cycle containing an odd number of red edgd<sg Eetl, J, Er),
Hg = (I, J, Eg) denote the subgraphs bff induced by the red and blue edges respectively
buteach ofthem containing all the nodes. Under these assumptigremnot be a connected
graph, for suppose it is connected. Take any blue €dgé. SinceHg is connected, there
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exists a red simple patR say inHg fromi to j. ThenP U {(i, j)} is a simple cycle
containing an odd number, 1, of blue edges, contradicting our assumptiohlg Saust
consist of two or more connected components, and no blue edge connects two nodes in the
same component.

Construct an auxiliary grapK = (V, A) by the following rules:

1. Each node inV represents a connected componeritiin

2. Nodesp andq in \V are joined by an edg@, q) € A iff there is at least one blue edge
in H connecting one of the nodes in connected compoperftHg and another node
from connected componeqtof Hg.

By the hypothesis, the grapk contains no odd cycles. Heneeis bipartite. Suppose a
bipartition for X is V1, A>. Now place nodé < | in I if the component oHg containing
nodei is in NV, or in I, if that component is ith. Similarly place nodg € J in J; if the
component ofHr containing nodg is in A, or in J, if that component is inV,. Then
the edges irH in blocksl; x J; andl, x J, can not be blue, since the two nodes on any
edge from these blocks come from the same connected componeiat @n the other
hand, the edges iH in blocksl; x J, andl, x J; can not be red, since the two nodes on
any edge from these blocks come from different componentssinTherefore, partitions

I =1, Ul J =3 U J, satisfy the conditions given in (8). O

We will show now that the problem of solving (1)—(5) on the incomplete bipartite graph
H can be solved in polynomial time iff there exists a polynomial time algorithm for the
same type of problem belonging to the partitioned case.

Theorem 1. The problem of solvingl)—(5) on the incomplete bipartite graph H poly-
nomially reduces to a problem of the same type belonging to the partitioned case.

Proof: We consider two cases:

Case 1 Suppose thatl has no cycles containing an odd humber of red edges. In this case
by Lemma 1, our problem itself belongs to the partitioned case.

Case 2 H has atleastone cycle containing an odd number of red edgeBlgl=et(l, J, ER),
Hg = (I, J, Eg) denote the subgraphs bf induced by the red and blue edges respec-
tively. We will now enlargeH into a new bipartite graphl * by adding 2Er| new nodes
and 2ERg| new edges by the following rule:

Replace each edg@, j) € Er by a pathi, (i, uij), ui; ,(Uij, vij), vij, (vij, |), |, (see
figure 1), wheray;j, vi; are two new nodes corresponding to the original red €dge

in H. On this path color the new edgésui;) and(vij, j) red; and color the new edge
(uij, vij) blue. Clearly the new grapH * hasn* = 2n+ 2| Egr| nodes andlEg |+ 3|Egr| =

|E| + 2|ERr| edges. Also notice that any cycle #* that contains a new node of the
typeu;j say, must also include the nodes, i, j. Also each cycle in the original graph
H that contains red edges ant blue edges becomes a cycle containiag@d edges
anda + b blue edges. Hence all cycles lih* have an even number of red edges so by
Lemma 1 the colored graph* belongs to the partitioned case.
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@ Red@ @ Red Blue Red@

Edge in original Path with new nodes u;;, v;; replacing the red
graph H. edge (i, 7).

Figure 1 An edge, and the path that replaces it.

By replacing each red edgg j) in a perfect matching with red edges irH by the pair

of edges(i, ujj), (vij, j), it becomes a perfect matching with Bed edges in the new
graphH*. Also every perfect matching iRl * that contains the red eddg u;j) must
also contain the red edgs;;, j), as otherwise the nodg will remain unmatched. Thus
red edges in each perfect matchingHri occur in pairs, each pair belonging to a path
of the form in figure 1. Thus by replacing each pair of red edges in a path of the form in
figure 1 by the edge on the left of figure 1 in the original gr&plevery perfect matching
with 2r red edges becomes a perfect matchingdinvith r red edges. Thus finding a
perfect matching irH containingr red edges is equivalent to finding a perfect matching
in the new graptH* containing 2 red edges, and this is a problem of the same type as
the original problem, but belonging to the partitioned case.

Because of Theorem 1, algorithmic studies of the problem of solving (1)—(6) can be
restricted to the partitioned case without any loss of generality. So in the sequel we focus
our attention on the partitioned case. Also, solving (1)—(6) is equivalent to the optimization
problem

min > %

(.))eF 9
subjectto  (1)-(5)

(9) is a 0—1 integer program defined on the complete g@&plihich we assume belongs to

the partitioned case. An important strategy for solving a 0—1 integer program is to develop a
polyhedral characterization of the convex hull of its set of feasible solutions, i.e., obtain alin-
ear inequality representation for it. In this paper, we focus on a polyhedral characterization
for (1)—(5) in the partitioned case. We present two large classes of facet-inducing inequal-
ities (each containing an exponential number of inequalities) for this problem (Alfakih,
1996). However, these classes do not completely characterize the convex hull of the set of
feasible solutions of (1)—(5).

2. The results

We consider the system (1) to (5) defined on the complete géapélonging to the parti-
tioned case with partitiond, = 1, U 15, 3 = J; U Jp, blocksBy, By, Bs, B4, andng, na, 1y
tor, as defined earlier.
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Figure 2 The double lines indicate the row and column partitions, and the four bBgkB;, Bz, andB, are
shown. The 8 basic cells corresponding to basic vectgrare marked withd) or (x).

When one of the sets among, I, is @, and one of the sets amordg, J, is ¥, all the
edges inG have only one color, and all extreme points of the set of feasible solutions
of (1), (2), (3), (5) satisfy (4) automatically. The same property holds when exactly one
of the 4 sets amonty, |,, Ji, J is @, and the other three are nonempty. So, we assume
0 < n; < n,0 < ny < n, and without loss of generality, we assume that the rows and
columns of the array are rearranged sothat {1,2,...,ny}, lo={n1+1,...,n}, J1 =
{1,2,...,n}, b={na+1,...,n} (See figure 2). Define

Pafa = Set of feasible solutions of (1), (2), (3), (7) [or equivalently (1), (2),
(3). B)]

n.n, = Integer hullof P72 defined as cony{x : x € Pt andx integet)

= convex hull of set of feasible solutions of (1), (2), (4),.(7)

It can be shown tha?,?lfgz # @ iff max{0, ny + n, — n} < ry < min{ny, Ny}, which we
assume.
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The polytope defined by (1), (2), and (3) is the well-kn@agsignmenbr Birkoff polytope
Ka with integral extreme points. However, with the side constraint Rf)};, may have
fractional extreme points. For example, whee-4,n; =ny; =2,r; =1,

1 .
X11 = X14 = X22 = X23 = X32 = X34 = X41 = X43 = > xi; = 0 otherwise

is a fractional extreme point 0?2421 Hence, Q.. may not be equal t&""2 .

In the sequel, an assignment= (x;;) of ordern is represented as a permutation, o>,

., Os,...,0n) suchthaixs,, =1fors=1,2,...,n, x; =0 otherwise. For example, the
diagonal assignment is represented by the permutétidh . . ., n).

2.1. Dimension and the trivial facets oflQ,

Here, we present one condition under whigh's coincides withP1'1 . For the general
case wherQ"t £ P™1 “we establish that digQ": ) =dim(P™ n ) = n? — 2n when

n1,N2 ng,nz? N1,N2 N1,N2

n,r
nh, = 9.

Lemma 2. Let Ka be the assignment polytopiee., set of feasible solutions ¢t), (2),

(3). If one or more of {, rp, r3, rgare0, Qp'y = Pt = aface of Ka.

Proof: From Theorem 1 we know that in system (1), (2), (3), (5), the constraint (5) can
be replaced by

Z Xij = Trt. (10)
(i,))eB
foranyt = 1to 4. HenceP™': is the set of feasible solutions of (1), (2), (3), and (10). But

Ny, N2
if ry = 0, under (3), constraint (10) is equivalent to

Xj =0 foreach(, j) € B;. (11)

Hence in this casd-"t is the set of feasible solutions of (1), (2), (3), (11), which

Ny, N2
by definition is a face oKA, and hence all its extreme points are-A vectors. Hence
ny, = Phii = aface ofK 4 in this case. O
Theorem 2. Suppose thagr>1forallt =1to4, and 't #@. Then Q. ‘and R4
both have the same dimensiofi-a 2n. Alsa each non- negat|V|ty restnctlon i(B) is a

facet-inducing inequality for % .

Proof: Dim Pt = n? — 2n can be shown rather easily. Hence, ddf':, < |;12 2n.
Now assume that dir®"": < n? — 2n then there exists a hyperplahe={x e R™ : >,

ny, N2
ZJ 1 @i Xij = B} containingQp": . but notP"2 . i.e., H is not defined by a linear com-

Ny, No?

bination of the equality constraints (1), (2), and (7). We will show that no such hyperplane
H can exist thus establishing that d@}."2 = n? — 2n.
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Let Ax = b represent the system of equality constraints (1), (2), and (7). Phisma
full row rank 2n x n? matrix. Letx® be a solution matching i@ andA= (B, N) be a
partition of A into basic, nonbasic parts wi being a 2 x 2n basis forA, corresponding

to basic vectokg containing the basic variables

Xl, no+ro—1s X2, No+ro—2s + =« 5 Xn1+r4—l,l, Xn1+r4$n7 Xn1+r4+1,n—lv L] Xn.n2+r2

X1np4rzs X2np4rp—1s « + + > Xnp4rg, 1 Xngfra+1ns Xng+r442,n—15 -« + 5 Xn,np+rp+1

with the basic variables in the top row having value &#(the cells marked witlio) in
figure 2), and those in the bottom row having value XSr(the cells marked with &) in
figure 2). Letxy denote the vector of nonbasic variables. From the results in Murty et al.
(1993) we know that in the partitioned case under discussion here, the rows and columns
of the array can be rearranged so that the matched cells in any solution matching appear
along one of the diagonals like the one marked wit}s in figure 2.

Let (ag an) be the corresponding rearrangement of the row vefety. Hence

H= {X e R™ tapXp + aNXN = ,3}-

Let

~

H = {X [S an JABXB + ANXN = ,é}
where
(@, &n, B) = (ap, an, B) — AT (B, N, b)

wherea e R?" will be chosen appropriately.

By constructionH containsQp:'t . Now if we can show thatg =0,an =0, andﬁ 0,
for a proper choice of, it would follow that the equation defining, is a linear combination
of the equality constraints (1), (2), and (7), thus arriving at a contradiction.

To establish this, letT =«gB~1. Thenag = 0. Represented as a permutatior(hf2,

., n),x%is

No+ro Np+ro—1 np+ro—2...,nn—1..., no+rp+1).
ThenxN =0. SlnceQ”lfl2 liesin H, it follows thatosz0 +aNxN = ﬂ Sinceag = 0 and
xﬁ, =0 it follows thatﬂ 0. Thus it remains to show that; = 0. Towards this effort, let?
be the assignment
X'=(Mp+r—1 M+ Np+1—2..., Lnn—1..., np+r+1)
whose representation as a permutation is obtained by interchanging the first two elements

in the permutation corresponding x8 (when represented as permutation matricéds
obtained by interchanging rows 1 and 2xf). By the hypothesis in the theorem =
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ri +r, > 2, and hence the interchange does not alter the number of allocations within each
of the four blocks, i.ex" is also a solution matching, &t € QR . S0y~ >, &ijxt
= B =0, clearly this implies that the componentn, ., in & is zero.

In the same way we can generate a sequence of solution matefings ..., x¥, ...
X2 e QN1 written as permutation matrices, whedds derived from some' € {x°, x*,
..., x¥1} py interchanging either two rows (both withia or both within I,) or two
columns (both withinJ; or both within J,), and for eactk = 2 to n? — 2n, using the
equationy ", er‘:l aij xi'j = 0 we are able to establish that one more componedfa$
zero. In the end we haviay = 0. This establishes that di@})';, = n? — 2n.

Now select any variablg,,. From the above procedure it is clear that the dimension of
the set of all solution matchings in each of whicly = 0 has dimension? —2n — 1. This

implies that the fac& = {x € Q% : Xpq =0} is a facet ofQ(": . O

s

2.2. Some non trivial facets of
We assume that all af;, ry, r3, andry > 1. This automatically impliea > 4.
Proposition 1. Letx;=(xj:i € I, j € J), wherel, J are arbitrary nonempty subsets

of l, J~ respectivelybe the incidence rpatrix ofa matchingﬁrx J. LetKg, Kc be subsets
of I, J respectively such thatCr| < |J\Kc| and|K¢c| < [I\KRg|. Then

Z Xij + Z Xij + Z Xij < |Krl + [Kcl.

ieKr jekc ieKr jed\Kc ieN\Kr jeKc
Equality holds for the matching; = (X :i € I, j € J) where

1 foreachie Kg, for some je J\Kc

Xj =11 foreach je Kc, forsomeie I'\Kr
0 otherwise.
Proof: This follows directly from the definition of a matching. O

2.2.1. The first class of facets.Facet-inducing inequalities fady": of the first class are
characterized by a celb, g) € | x J called theprimary defining celbr just thedefining
cell, and a nonempty set of row indic&%, and a nonempty set of column indid€s.

Look at the four blocks in our partition (figure 2). BlocBg, B, lie in the same rows of
the array, so we say that each of them isrth& adjacent bloclof the other. Similarly, in
blocksBs, By, each is row adjacent block to the other. In the same way in the [i&ir8(),
(B, Bs), each is theeolumn adjacent blockf the other. We say that two given blocks are
adjacentf they are either row adjacent or column adjacent.

The defining cell p, q) for the first class of facets can be any cell in the array. Suppose
it is contained in blockB;. Let I;, J denote the set of row and column indices Bf
respectively. LeB, be the row adjacent block d;, andB, the column adjacent block of
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B;. Let B, be the remaining block which is not adjacenBo Let I denote the set of row
indices ofB,, andJ denote the set of column indicesBf. (i.e.,| = I\l andJ = J\ %)
Then thedefining subset of row indicéég must be a nonempty proper subset pand the
defining subset of column indicks must be a nonempty proper subsetipaind together
they have to satisfyCr| + [Kc| =1+ r1,.

Lemma 3. Let(p, q) be the defining cell an&’r, K¢ be the defining sets of row and
column indices selected as discussed above. Then

Xpq + Z Xpj + Z Xig — Z Xij <1 (12)

ieke iekr iel\Kg, jed\Kc

is a valid inequality for Q"

1,N2°
Proof: First we observe that in any assignment (x;j :i € I, j € J)

Xpg + Z Xpj + Z Xiq (13)

jeke iekr

isequalto 0, 1, or 2. This is easy to see since each of these terms is either 0 or 1 and since
all of them can not be 1 at the same time.

For an assignmente Q" , if the expression in (13) is equal to either 0 or 1, our lemma
holds trivially. Therefore, assume that the expression in (13) is equal to 2 for an assignment
x € Qn'+,. This holds only whexpq = 0, and) ;... Xpj = X e, Xig = 1. Suppose
thatXpj, = Xioq = 1 wherejo € K¢ andig € Kr. Thus

Z Xigj = Z Xijo = 0. (14)
jed iel

Sincex € Qp't, we have ; ., Xij = v, €.,

e

Z Xij + Z Xij + Z Xij + Z Xij = Ty.

ieKr, jekc ieKr, jed\Kc ieM\Kgr, jekc iel\Kgr, jed\Kc

Using Proposition 1 and (14) it follows that

Yooxi+ Y. Xi+ Y. X = IKe\fio}l + IKc\{jo} =1, — 1

ieKr,jekc iekr,jed\Kc iel\Kr,jeKe
hence}_i ik, . jedvce Xi = 1and hence (12) holds forand the lemma follows. O
As an example consider the case where 5,n; = 2,n, = 3 andr; = 1. Hencer; =
rs = 1 andry, = 2. Let the defining cell be (1, 1), and the defining setde= {3},
Kc = {4}. The valid inequality (12) corresponding to these choices is

X114+ X144+ X31 — Xa5 — X55 < 1



FACETS OF AN ASSIGNMENT PROBLEM 375

q Ke
B; B,
P + FH o+t
+
Kr :
+
B, B,

Figure 3  Pictorial representation of signs of nonzero coefficients in (12). The double lines indicate the row and
column partitions.

which is a valid inequality foiQ33. Note that all the nonzero coefficients in (12) aré
or—1.

It is helpful to have a pictorial representation of inequality (12). In figure 3, we show
the array with the defining cellp, g) and the defining subsetsg, K¢, and the cells in the
array whose variables appear witR-a coefficient (marked by symbol), and those with
a—1 coefficient (marked by symbol) in this inequality.

Theorem 3. The validinequality12)in LemmeBis a facet-inducing inequality for (%, .

The proof of Theorem 3 is given in Section 2.3.

Inequalities (12) define the first class of facet-inducing inequalitieQfgf, . For defining
these inequalities, the defining céf, q) can be selected as any cell in the array, so there
aren? ways of choosing it. Once the defining céfi, ) is selected, the number of ways
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of selecting the defining subsetg, K¢ is

([
£ \NJ\r, +1-N

whereN = |KCg| andr,, + 1 — N = |K¢]|, this number grows exponentially with, |J|
andr,,. Hence the total number of these first class of facet-inducing inequaliti€for
grows exponentially withmg, ny, r.

2.2.2. The second class of facetdracet-inducing inequalities in this class are characterized
by two defining cells called therimary and secondary defining cellnd by two defining
subsets of row indices, and two defining subsets of column indices.

The primary defining celkp, g) say, can be any cell in the array. Suppose it is contained
in block B;. The second class of facet-inducing inequalities@r's, only exist for the
primary defining cel(p, q) € B if the numbers, r, corresponding to the row adjacent
block By, the column adjacent blocR, of By, are both> 2. If this condition is satisfied,
the secondary defining celln, ) say, can be any cell in the adjacent blod&ksor B, of
B satisfyingm # p, | #q.

Let B,, be the block not adjacent #®;. If (m,|) e By, the defining subsets of column
indiceskc, K¢, say, can be any nonempty proper subsets of the column indices of the blocks
Bu, B respectively satisfying the condition tHag K¢, q ¢ Kc; and the defining subsets
of row indices K, Kr, say, can be any nonempty mutually disjoint proper subsets of the
row indices ofB, which together satisfiiCc| + [Kr| = 141, and|Kc| + |Kr| =T,

If (m,l) € B,, the column adjacent block d&, the defining subsets of column indices,
Kc, K¢, can be any nonempty mutually disjoint proper subsets of the column indices of
By; and the defining subsets of row indicé&;, £r can be any nonempty proper subsets of
the row indices oB,, B; respectively satisfying the condition thatg Kr, p & Kr; Which
together satisfyKc| + |Kr| = 1+ ry, and|Kc| + |Kr| = 1. (see figure 4).

For this case where the secondary defining galll) € B, (see figure 4) we have the
following lemma.

Lemma 4. Let the primary defining cell bép, q) from block B, and suppose its row
column adjacent blocks BB, satisfy , > 2. Let | be the set of row indices of block, B
and J be the set of column indices of block. B.et I, J; be the sets of row and column
indices of B. Let(m,|) € B, be the secondary defining cetind let the defining subsets
of row and column indicekr, Kr, Kc, and K¢ be selected as discussed above. Let B
be the block not adjacent to; B.e., B, = [ x J). Then

Xpa+ D Xpj + D Xiq — ) Xjp= 2. m

jeke iekr ieN\(KCrUm)) jed\Kc jed\(KcUKe)
- Z Xij — Z X <1 (15)
iel\(KrU{p) jed\(KcUKc) iel\(KrUKRU{p,m})

. - . .
is a valid inequality of Q% .



FACETS OF AN ASSIGNMENT PROBLEM 377

g 1 Kc Ke
p[+ o
B; B,
Kr
m S
+
Kr||:
+
- B, ——eei = = B,

Figure 4 Pictorial representation of signs of nonzero coefficients in (15).

Proof: For any assignment € Q"2 the sum

Ny, N2
Xpq + Z Xpj + Z Xiq (16)
jE}Cc iE)CR

is equal to 0, 1, or 2. If the expression in (16) is equal to either 0 or 1 the lemma follows
trivially. Therefore, assume that the expression in (16) is equal to 2. This holds when
Xpj, = 1 for somejg € K¢ andxi,q = 1 for someig € Kr. Then by Proposition 1 we have

3 ox+ > x> %y < IKRMiol + 1KMol (A7)
iekr jekc iekr jed\Kc ieN\Kr jeke
Two cases will be considered.

Case 1 xXmj=0 for all j € Kc. Then since)_ | g, Xij =rw and sincelkgr\{io}| +
IKc\{jo}| =r, — 1itfollows that

Z Xijzl

ieM\Kr jed\Kc
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and since)_; ¢ Xmj = 0 by assumption, it follows that

Z Xij + Z Xmj =1

ieN(KrUM})) jed\Kc jed\(kcuke)

and (15) holds fox.

Case 2 X, = 1 for somej; € Kc.
Then if (17) holds as a strict inequality, and by the same argument as in case 1, we
have ;i\ icaummy jedvce Xii = 1, and (15) holds fox. Therefore, assume that (17)
holds as an equality. By Proposition 1, this corresponds to the case where for each
i € Kr\lio}, xij = 1 for somej e J\Kc; and for eachi € Kc\{jo}, xij = 1 for some
i € N\(KrU {m}). This implies that

Xi =0 foralli e CrU{m} (18)
Xij = 0. (19)
iel\{p} jekc

Now applying Proposition 1 to blocB, and using (19) we have

DToxi+ > x+ Y. X = IKel+ IKe\(ja}l. (20)

iGKR ]‘E/hé(; iefCR ]Ej\ch iEh\k:R jech

If (20) holds as a strict inequality and sind&; ;g Xij = ru and|Kr| + [Kc\{j1}| =
— 1 it follows that

Z Xmlzl

iel\(KrU{p) jed\(KcUKc)

and (15) holds fox.
Therefore assume that (20) holds as an equality. This corresponds to the case where
foreach e ICR,x., = 1forsomej € J\]CCU{]l} and for eachj € /CCU{jl} Xij =1
for somei € 1;\(Kr U {p}) which implies that; = 0 for alli € Kr U {p}. Therefore,
by (18) and the fact tha} ;.| xi = 1t follows that} i\ x.uieup.my Xi = 1 Thus,
(15) holds forx and the lemma follows. O

A similar lemma for the case where the secondary definingicell) € B, is given below.

Lemma 5. Let the primary defining cell bép, q) from block B, and suppose its row
column adjacent blocks BB, satisfy , > 2. Let I be the set of row indices of block, B
and J be the set of column indices of block. B.et I, J be the sets of row and column
indices of B. Let(m, I) € By be the secondary defining cedind let the defining subsets of
row and column indice&r, Kr, Kc, andKc be selected as discussed above. LgthB
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the block not adjacent to;Ri.e., B, = | x J). Then

Xpg + prj"‘zxiq— Z Xij — Z Xil

jeKc ieKr ieN\Kgr jed\(Kcull}) ieMN\(KrUKR)
- Z Xij — Z Xmj = 1 (21)
ieN\(KrUKR) jed\(Kc)uia)) je\(KcUKcUia.l})

is a valid inequality of Q' .
The proof of Lemma 5 is similar to that of Lemma 4.
As an example consider the case whete8 n; =4, n, =4, andr; =ro=rz=r,=2.
Then, selectingp, ) = (1, 1) € By, (M, 1) = (5,2) € By, Kr = {6}, Kc = {6, 7}, Kr =
{2}, Kc = {5} satisfying all the conditions for selection mentioned above, leads to the valid
inequality for Q%5

X11 + X16 + X17 + X1 — X32 — X38 — X42 — X48

— X5g — X72 — X75 — X78 — Xg2 — Xg5 — Xgg < 1.

In figure 4, we give a pictorial representation of inequality (15). It shows the array with the
defining cells(p, q) € B, (m,|) € B, and the defining subsetsr, Kc, Kr, Kc and the
cells in the array whose variables appear withlacoefficient (marked by symbol), and
those with a—1 coefficient (marked by- symbol) in the inequality.

Theorem 4. The valid inequalitie$l15)or (21)defined in Lemma&, 5are facet-inducing
inequalities for Q"% provided that bothy,r, > 2.

Theorem 4 will be proved in Section 2.3. Notice that in Lemma 4 we only reqyire 2
for (15) to be a valid inequality foQy."% . Correspondingly in Lemma 5 we only require
r, > 2 for (21) to be a valid mequallty fo@”lfl2 But Theorem 4 establishes that these are
facet-inducing when both,, r, > 2.

Unfortunately, these two nontrivial classes of facets do not provide a complete description
of the polytopeQp:"%, as demonstrated by the following fractional patnt= (X;;) defined
by

It can be verified that is an extreme point of the polyto and that it satisfies afirst
classfacet inducing inequalities fo@zf1 Since bothr; andrz are<2 (in fact equal to 1)

for Q2 4, we do not have a pair of nonadjacent blocks both of whesambers are-2.

Hence the second class of inequalities of the form (15), (21) are not facet-inducing for this
problem.
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2.3. Afacet lifting procedure

Inthis section, alifting procedure for facets@f.";, is presented. Given afadetof Qp:'%
* 1, 1, 1 1, ;

we show how to liftF into a facetF* of QRFur, QRIT,, Qn ity and QR This

procedure is used to prove Theorems 3 and 4 using mathematical induction. All symbols

with a star (*) refer to assignments of orde# 1. For any matrixA, we denote it$th row

vector by A, and itsjth column vector byA ;.

Lemma 6. Let> | 12?=1aijij < &g be a non trivial facet-inducing inequality for
QM1 andlet A = @) be the(n + 1) x (n+ 1) matrix derived from A= (&) such that

Nny,N2

% A A-io
A= (A—. 0 ) @2

foranyip€ (m+1,...,n}andany j € {n+1, ..., n} satisfying @, = 0. Theny /! Z””
aj xIJ <gyisa facet inducing inequality for Ql ‘1 provided that it is a valid |nequal|ty
for it.

Proof: LetF ={xe Qr% 31 Y1 ajx; = ao} andF* = {x* € QpLn: In+11
Z'J”%a1J 5 = ao}. Then there exish® — 2n affinely independent assignments, x
X720 and for every(, j)e{1,...,n} x{1,...,n} there exists at least one

xk e (x5 x2 ..., x" 2} such thatX = 1 The last assertion follows since otherwise
if xX = 0for allxk e{xt,x3 ..., x" —2”}thenF would be contained in the intersection of
two facetal hyperplaness = 0 andZI -1 Z, _18ijXij = ag contradlctmg the assumption
thatF is a facet ofQp.": . Let{x', x'2, .. '”}C{x1 X2, ..., x" *Zn}be such thax('1 =
x'22J =...= x'n M Likewise, Iet{xl1 xlz . xh} c {x1 X2, ..., x"-2y be such
thatxl'oll =x5 == x,Jonn =1.

Letx*, fork=1,2, ..., n*-2n, be the assignments of order 1 defined ag:f, =1,
i =xf fori, j=1, 2 ,nthenx*t, x*2, ... x*~21 pelong toF* since by construc-
tlon aT1+1 n+l_O Let x”"1 x*'2 o, X¥n be the assignments of order+ 1 derived from
xi1, xi2, ... xin by SW|tch|ng C0|umI’IS]0 andn + 1 and by settlngxn+1J =1 for all
k_|1,|2,.. ,in. Thenx*1, x*¥2 . . x*n belong toF* since A, = A Likewise,
letx*j1, x*l2 . x*In pe the aSS|gnments of order- 1 derived frornxl1 xi2, .. xin by
switching rowsm andn + 1 and by setting¢’ n+1_1 forallk = ji, j2,..., jn. Then
XL x*l2 . x*In belong toF* since A, = A* Then, by COHSII’UCIIOI’X*l X*2, ...,
XHP=2n yxin gz e ks k2 x*Jn\{x*JJo} is a set of affinely mdependent as-
signments. Thus dirff* =n? — 2 = (n + DZ2-2n+1) — 1 o

Using a similar argument as in Lemma 6, it can be shown tHal'if, ZLl aijXij < ag
is a facet-inducing inequality fo@y."% then

n n+1 n+1 n

22 bixi = ZZ% LI

i=0 j= i=0 j= i=1l j=
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are facet-inducing inequalities f@ s |, Qur i+t andQp' -, respectively provided

that they are valid inequalitie®* = (bi*j ), C*=(c), andD* = (dﬁ;) are defined by

* Ako. O * 0 Ako. * A.mo A
B_<A Ajo’C_A.mo A b= 0 A,

foranykoe{l,...,n1}, any joe{n, + 1,...,n}, anymge{l,...,ny}, and anyig €
{n1+1,..., n}satisfyingay,j, = 0, ax,m, = 0, anda;;m, = O.

Proof of Theorem 3: For ease of notation, and without loss of generality assume that
thedefining cell(p, q) belongs to BlockB;. Thus,| = I, = {(ni+1,n+2,...,n}and
J=23= {no4+1,n,+2,...,n}andr, = rz. The proof is by induction on, the order
of the assignment.

Forn=4,n;=n,=2andr; = 1. Let(p,q) = (1,1) andKr = Kc = {3}. Then

X114+ X134+ Xs1 — Xaa < 1 (23)

is a facet-defining inequality oQ3; since it is a valid inequality 033 by Lemma 3
and since the following 8 feasible assignments, represented as permutations, are affinely
independent and satisfy (23) as an equality. Recall that@ih = 8.

x1'=1(1,342 x*=(1,4,32 x*=(1,4273 x*=(24,173)
x°=(3,1,42 x5=(3,241) x'=@3B,214 x2=@42173).

Now assumen > 4 and that the assertion is true for assignments of andddsing the
lifting procedure in Lemma 6, we will show that it is true for assignments of anderl.
Letd ", >"_; &;x; < 1be afacet-inducing inequality of form (12), shown in figure 3,
for the problem of orden (i.e., for Q1 ); and let(p, q) be its defining celllCr (Kc) be
its defining subset of row (column) indices. We will refer to this valid inequality ag)VI(
Consider the problem of ordén+ 1) and its corresponding arrdy x J*. Thenl* x J*
is obtained from x J,1 = J = {1, 2,..., n} by the addition of one new row and one new
column. The new row can be added either at the top or at the bottom wikhmearray, and
the new column can be added either to the left or to the right afithen array, leading to

four separate cases:

Case 1 The added row and the added columnmarel andn + 1. This corresponds to the
polytopeQﬂi,ﬁ’zrl whererj = r3 + 1. (Recall that symbols withx) refer to the problem
of ordern + 1). Then VIf) can be lifted in two ways:

1. Selectip to be any rowe Kr and jo to be any columre J,\Kc. Note that for this
selectionay,j, = 0. Hence,Y ("7 > as xt < 1, whereA* = (&) as defined
in (22), is a valid inequality OQQI%’Z“ since it is of the form (12), with defining cell
(p, ), Kg = KrU {n+ 1}, andKE = K¢; and by Lemma 6 it is facet-inducing.
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2. Selectjp to be any columre K¢ andig to be any rowe 1,\Kg. Using the same
argument as in 1, it follows that the valid inequality fQﬂf,ﬁgl with defining cell
(p,q), andE = Kc U {n + 1} andK% = KR is also facet-inducing.

Case 2 The added row and the added column are Orard respectively. This corresponds
to the pontopeQﬂjj{;z wherer} = r, 4+ 1. Selectjo to be any columre J\Kc and
io to be any rone ({1, 2, ..., ni}\{p}). Notice that for this selectiod is a row of all
0's. Using the same argument as in case 1, it follows that the valid inequali@ffgs
with defining cell(p, q) andKg = K¢, K = Kr is facet-inducing. '

Case 3 The added row and the added column are 0 and O respectively. This corre-
sponds to the polytopégﬂ;l’ltgil wherer; = r; + 1. Selectjo to be any column
€{L 2 ...,n}\{g}andigtobe anyrove ({1, 2, ..., ni}\{p}). Forthis selectiod’ =
A%, = 0. Using the same argument as in case 1, it follows that the valid inequality
for QRTj{;ZH with defining cell(p, g) andKg = K¢, K = Kr is facet-inducing.

Case 4 The added row and the added columnrasiel and O respectively. This corresponds
to the pontopeQﬂjﬁ’;il wherer; =r4+ 1. Selecig to be any rowe 1,\Kg and jo to
be any columre ({1, 2, ..., n2}\{q}). Using the same argument as in case 1, it follows
that the valid inequality foQﬂﬁ‘Jil with defining cell(p, q) andKg = K¢, Ki = Kr
is facet-inducing. '

Now assumen > 4, we will show that every valid inequality of the form (12) for the
problem of ordemn + 1 can be established as being facet-inducing by lifting some facet-
inducing inequality of the form (12) for the problem of orderSincen + 1 > 5, for the
problem of orden + 1 at least one of the’s > 2 fort = 1 to 4.

Assume that} > 2 and consider the valid inequality of form (12) for the problem of
ordern + 1 with defining cell(p, ) and defining subsefs}, and/C&. We will refer to this
inequality by VIf 4+ 1). Then|IC¢| + |Kg| > 3. Thus eithefCE | or || must be> 2.

1. If |[Kg| = 2. Letig be any rowe Kk and jo be any columre J;\KE and consider the
problem Pf) of ordern associated with arrayl *\{ig}) x (J*\{jo}). Then the inequality
obtained from VI + 1) by deleting o from K} is of form (12) with defining cel(p, q),

Kr = Ki\lio}, andKc = K§; and hence it is a facet-inducing inequality for problem
P(). Furthermore, VIf 4+ 1) can be established as facet-inducing for the problem of
ordern + 1 by lifting this inequality as in Case 1 above.

2. If [KE| = 2. Let jo be any columne K¢ andig be any rowe I;\K%. Then the
inequality of form (12) with defining celip, @) andc = K&\{jo}, andKr = Kk
is a facet-inducing inequality for problemm( and we can establish that Vil§ 1) is
facet-inducing for the problem of orde#r-1 by lifting this inequality as in Case 1 above.

Similarly, if r5 > 2 letig be any rowe (1;\{p}), and letjo be any columre J;\KE. If
ry > 2 letip be any rowe (1;\{p}), and letjo be any columre (Jf\{q}). If r; > 2 letig
be any rowe (1;\K}%) and letjo be any columre (J;\{g}). Then in all these cases, it is
easy to show that the inequality with defining cqll () andCc = K§, andCr = K} is of
form (12) and hence it is a facet-inducing inequality for the problem of andessociated
with the array(1*\{ip}) x (J*\{jo}) and that VI + 1) can be established to be facet
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inducing for the problem of order + 1 by lifting this inequality as in Cases 2,3, and 4
respectively. O

Proof of Theorem 4. We assume that the secondary defining ¢alll) € B,. A proof

similar to the following applies whegm, |) € B,. Also we use induction on, the order of
the assignment. Faor = 6,n; = n, = 3andr; = 1. Let(p,q) = (1, 1), (m, 1) = (4, 2),

Kc = {5}, Kc = {4}, Kr = {5}, andKr = {2}. Then

X11 + X15 + X51 — X32 — X36 — X456 — X2 — X64 — Xe6 < 1 (24)

is a facet-defining inequality oQgé since it is a valid inequality ongé by Lemma 3
and since the following 24 feasible assignments, represented as permutations, are affinely
independent and satisfy (24) as an equality. Recall that@irh = 24.

x!'=(1,4,526,3 x*=(154263 x3=(16,4,5223)
x*=(1,6,4,253 x>=(1,6,4,235 x°=(1,6,4325)
x'=(1,6,54,23 x¥=(165243 x=(26,45123)
x10= (36,4215 x"=(5142673 x2=(5246123)
x¥=(5241673 x¥=(5,24361 x¥=(524316)
x=(526,413 x=(624513 x¥=(5314261
x1°= (54,1263 x*=(5,62413 x*=(463215)
x??=(5,4,3,2,6,1) x*=(56,3412 x*=(563214.

Now assumen > 6 and that the assertion is true for assignments of andddsing the
lifting procedure in Lemma 6, we will show that it is true for assignments of anderl.

Without loss of generality, we assume that the primary defining(@ell)) € B;. Thus
(=lb={m+1....,n),J=%={n,+1,...,n},andr, =r3.

Letd> ", er‘:l a;jXi; < 1be afacet-inducing inequality of form (15), shown in figure 4,
for the problem of orden (i.e., for Qn." ); and let(p, q), (m, ) be respectively its primary
and secondary defining cell§g, Kr, K¢, andCc be its defining subset of row and column
indices. We will refer to this valid inequality as VHJ.

Consider the problem of ordén+ 1) and its corresponding arrdy x J*. Thenl* x J*
is obtained from x J,1 = J = {1, 2, ..., n} by the addition of one new row and one new
column. As in the proof of Theorem 3, the new row can be added either at the top or at the
bottom of then x n array, and the new column can be added either to the left or to the right
of then x n array, leading to four separate cases:

Case 1 The added row and the added columnmarel andn + 1. This corresponds to the

polytope isQﬂj};Jl whererj = r3 + 1. Then VII() can be lifted in two ways.

1. Selecigto be any rone g andjg to be any columre J,\ (Kc U Kc). Note that for
such selectiom;,, = 0. HenceY ("7 Y™ & xt < 1, whereA* = (&) as defined

in (22), is a valid inequality oQﬁﬁjl since it is of the form (15) with defining cells
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(p, q) and(m, I), and defining subsefs} = Kr U {n + 1}, K¢ = Kc, fCE = K,
andC% = Kg; and by Lemma 6 it is facet-inducing.

2. Selectjg to be any columre K¢ andip to be any rone 15\ (Kr U {m}). Using the
same argument as in 1, it follows that the valid mequahty@ﬂrﬂl] 1 with defining
cells (p, @) and (m, l) and defining subsetsg = Kc U {n + 1} andlC* = Kr,
K = Kc, andK% = Kr is also facet-inducing.

Case 2 The added row and the added column are Orapd respectively. This corresponds
to the polytopeQ s wherer; = r, + 1. Then V() can also be lifted in two ways.

1. Selectj, to be any columre K¢ andig to be anyi € {1,2,...,ni\({p} UKR).
Using the same argument as in Case 1, it follows that the valid inequali(yﬂgb:rltgz
with defining (p, @) and (m,l) and defining subsety = Kgr, ¢ = Kc,
ICC =Kc U{n+ 1}, andIC = KR is facet-inducing.

2. Selectij to be any rowe ICR and jo to be any columre Jz\(ICC UKce). Usmg the
same argument as in Case 1, it follows that the valid mequahtyQ’,'ﬁ)ilri12 with

defining(p, g) and(m, I) and defining subsefs; = Kr, K¢ = Kc, IC = Kc, and
K& = Kr U {n + 1} is facet-inducing.

Case 3 The added row and the added column are 0 and O respectively. This corresponds to
the polytopeQ) 4"}, wherer = r; + 1. Selectjo to be any columre {1, 2, ..., no}\
({q} U {I}) andip to be any rowe {1,2,...,n\({p} U KR). For this selectlonA*
= 0. Using the same argument as in Case 1, it follows that the valid |nequal|ty for

QML | with defining(p, q) and(m, ) and defining subsets} = Kr, K = Kc,

ni+1, n2+
IC}} = Ke, andICR = Kg, is facet- inducing.
Case 4 The added row and the added columnra#el and O respectively. This corresponds

to the polytopngirl]‘;;l wherer; =r4+ 1. Selectig to be any rowe [\(Kr U {m})
and jp to be any columre {1, 2, ..., n2}\({q} U {I}). Using the same argument as in
n+1,rp

Case 1, it follows that the valid inequality fo@, >+, with defining (p,q) and
(m, ) and defining subsety = Kgr, K& = K¢, K& = K¢, andK§ = Kr is facet-
inducing.

We will now show that every valid inequality of form (15) for the problem of onaler 1
can be obtained by lifting some valid inequality of form (15) for the problem of ander

Consider the valid inequality of form (15) for the problem of order 1 with primary
and secondary defining celip, q), (m, 1), and defining subset§%, fC’,;, KE, andfCé.
Refer to this inequality as VIi(+ 1). Sincen+ 1 > 7, for the problem of ordem+ 1, one
of the following must holdr3 > 2,r5 > 3,r; > 3, orr; > 2.

If r; > 2. Inthis casglCx| + |KE| > 3 which implies that eithel]Cy| > 2 or g | > 2.

1. if|ICxl = 2. Letigbe any rone K andjo be any columre J3\ (KE U I~C;§) and consider
the problem PZ{) of ordern associated with arraly*\{ip} x J*\{jo}. Thenthe inequality
obtained from VII(+1) by deletind o from K, is of form (15) with defining cellgp, q),
(m, 1), and defining subsetSg = Ki\{io}, ICC = K¢, Kr = IC;, Ke = ICQ‘:, and hence
it is a valid inequality for problem P8j. Furthermore, VIIQ + 1) can be lifted from
this valid inequality as in Case 1.
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2. if |KCE| = 2. Let jo be any columre K¢ andig be any rowe 13\ (ICk; U {m}). Then
the inequality obtained from VIi(+ 1) by deletingjo from K¢ is of form (15) with
defining cells(p, q), (m, I), and defining subsetSc = K&\ {jo}, Kr = K, Kr= IC*;{,
Kc = Kg; and hence it is a valid inequality for problem Rg(and VIi(n 4 1) can be
lifted from it.

If r; > 3. In this caselc | + |IC*| > 3 which implies that e|the|riC | >2 or|IC*| > 2.

L if |IC | > 2. Letig be any rowe IC* and jo be any columre JZ*\(IC* U KE). Then
the inequality obtained from Vli(+ 1) by deletingig from IC; is of form (15) with
defining cells(p, q), (m, 1), and defining subsef§g = IE’,;\{io}, Kc = K¢, Kr =Kk
Kc = Kg; and hence it is a valid inequality for problem Rg(and VIi(n 4 1) can be
lifted from it.

2. if |ICC| > 2. Let jo be any columnre ICC andig be any rowe I*\(IC* U {p}). Then
the inequality obtained from VIi(+ 1) by deletingjo from Kz is of form (15) with
defining cells(p, q), (m, I), and defining subsefsc = ICC\{jo} Ke = K¢, Kr =K
Kr = Kx; and hence it is a valid inequality for problem Rg(and VIi(n 4 1) can be
lifted from it.

If ry > 3, letip be any rowe 13\ (K} U {m}) and jo be any columre 17\({q} U {I}). If
r1 > 2, letig be any rowe I*\(I~C* U {p}) and jo be any columre 1;\({q} U {l}). Then
in both these cases the inequality with defining cefisq), (m, 1), and defining subsets
Kc=Kg, Ke=KE, Kr=K%, Kr= K% is of form (15); and hence it is a valid inequality
for problem P2(§), and VII(n 4+ 1) can be lifted from it. O

SinceQp"4, in R space ofx;; :i, j = 1ton)is notafull dimensional polytope (because
of equality constraints (1), (2), (5) in the system of constraints defining it) it is possible that
a pair of inequalities among (3), (12), (15), (21) may actually represent the same facet of
ny,- Asanexample, let = 5, n; = np = 2,r; = 1. Then the following two inequalities
of the first class with their defining cells in blocls, B respectively; can be verified to

represent the same facet using the equat@?;,l Xy =1 ande:1 X5 = 1.

Ineql: Xj1+ Xi3+ X14+ X31 — Xg45 — Xs5 < 1
INneR:  Xas+ Xo5 + X31 — X12 < 1.

However, we have the following proposition.

Proposition 2. Let Ineq i Z?Zl a;xj < land Ine@: > Z_';:_l alxij < 1betwo
distinct facet-inducing inequalities of the first class whose defining cells lie in the same
block. Thenlneq and Ineq represent distinct facets.

Proof: Without any loss of generality and for ease of presentation we assume the
following:

1. The defining cell$p, q) of Ineq and(p?, g?) of IneR lie in Bock 1. In particular, let
p=1andg=n;—ri+1.



386 ALFAKIH, YI AND MURTY

2. LetKr andKc, respectively the defining subset of row and column indicdaed be
as follows:

Kr={m+1n+2....n—1+|KRg|},
Ke={n—|Kel+1n—|Kc|+2,....,n}

Let x° be the assignment
XO={np—ri+1, np—ri+2...,n12...,14), (25)

represented in figure 5 by cells marked with stars. Then clediiy a feasible assignment
which satisfiedneq as an equality (sinceyn,—r,-1 = 1). Now we consider 3 cases
depending on the location ¢p?, g?), the defining cell olnecR. Let K and K2 denote
respectively the defining subset of row and column indicdaed.

Case 1 p? = pandg? = q, i.e., bothineqandIneR have the same defining cell. Let
jo € Kc\KZ (such jo exists since ifCc] = |KZ], thenKc # K2 sincelneqand
InecR are distinct; and ifKCc| # |K2], then without loss of generality we assume that
IKcl > |K2]). Letig € I2\K%; and letx! be the assignment obtained fraxf by

q Ke
p * ++- 4+
Ik
*
*
*
k-
*
*
*
*
X
*
*
+ **
Kr : %
+ *
*
_——— e — *
* —_——— e e —
*
*
*
*
*
N ——

Figure 5 Pictorial representation of the facet-inducing inequdliggand the assignmenf.
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switching columnsjo andn and rowsn; + rz andio. Then clearlyx! is a feasible
assignment that satisfi¢gseq as an equality (since;, j, = 0) andIne as a strict
inequality (since? ; = —1).

Case2 (p%, g9 e {2, na—r1+2), (3, n,—r1+3),...,(r1, ny)}. Letx? be the assign-
ment obtained fronx® by switching columng)? and 1. Then clearly? is a feasible
assignment that satisfiseqas an equality anthe as a strict inequality.

Case 3 Otherwise, i.e.(p?, g% € By andg® — p? # n, —ry. Then clearlyx® is a feasible
assignment that satisfiiseqas an equality anthe as a strict inequality. O

Using the assignment: in figure 6 (cells with “1” entry marked with a star) in place of
x%, and arguments parallel to those in the above proposition, we can prove that two distinct
facet-inducing inequalities of the second class whose primary defining cells lie in the same
block represent distinct facets Q"

Ng,nz*

! q Ke Ke
p * ++---+
— * —_— s —
*
- « —
*
*
- * _— e —
*
*
~, *
K
*
*
+ *
. *
Kr : "
+ *
*
_ —— ] *
= SRR D *
mi « —_ .=
—|x _— e — —
*
*
*
*
— « —_— = —

Figure 6  Pictorial representation of a facet-inducing inequality of form (15), and an assignthembe used
in the proof.
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3. Summary and concluding remarks

We have shown that the general 0-1 problem (9) polynomially reduces to the very special
partitioned case. We have derived two large classes of facetinducing inequalities for the 0-1
integer program (9) in the partitioned case, the number in each class grows exponentially
with the order of the problem. Whereas the first class of facet-inducing inequalities comes
into play forn > 4, the second class plays a role only for- 6. We are studying the
separation problems for these classes with the aim of using these facet-inducing inequalities
in a branch and cut scheme for solving (9).

These classes together with the non-negativity constraints on the variables do not com-
pletely characterize the convex hull of integer feasible solutions of the problem. Currently
we are also investigating other facet-inducing inequalities for the problem that may lead
to a complete characterization of its integer hull. We are also investigating whether all the
facet-inducing inequalities for this problem can be shown to have coefficiemts, @r—1
only.
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