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Abstract. We show that the problem of finding a perfect matching satisfying a single equality constraint with a
0–1 coefficients in ann×n incomplete bipartite graph, polynomially reduces to a special case of the same peoblem
called the partitioned case. Finding a solution matching for the partitioned case in the incomlpete bipartite graph,
is equivalent to minimizing a partial sum of the variables overQn,r1

n1,n2 = the convex hull of incidence vectors of
solution matchings for the partitioned case in the complete bipartite graph. An important strategy to solve this
minimization problem is to develop a polyhedral characterization ofQn,r1

n1,n2. Towards this effort, we present two
large classes of valid inequalities forQn,r1

n1,n2, which are proved to be facet inducing using a facet lifting scheme.
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1. Introduction

The well-known assignment problem of ordern deals with minimizing a linear objective
function involvingn2 variablesx = (xi j : i, j = 1, . . . ,n), usually written in the form of a
square matrix of ordern, subject to constraints (1)–(4). Associating the variablexi j with the
edge(i, j ) in the complete bipartite graphKn,n, G = (I , J, I × J), whereI = {1, . . . ,n},
J = {1, . . . ,n}, each assignment̄x = (x̄i j ), i.e., feasible solution of (1)–(4), is associated
with the perfect matching{(i, j ) : x̄i j = 1} in G. We will also find it convenient to associate
the variablexi j and edge(i, j ) in G, with the(i, j )th cell in the two dimensional arrayI × J.
With the values of the variables entered in their associated cells in the array, each assignment
becomes a permutation matrix.

However, in many applications, we need to find an assignment which has a specified
value for a given objective function, rather than an assignment that minimizes it; i.e., we
need to find a solutionx = (xi j ) to the following system

n∑
j=1

xi j = 1 for all i = 1, . . . ,n (1)
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n∑
i=1

xi j = 1 for all j = 1, . . . ,n− 1 (2)

xi j ≥ 0 for all i, j = 1, . . . ,n (3)

xi j ∈ {0, 1} for all i, j = 1, . . . ,n (4)
n∑

i=1

n∑
j=1

ci j xi j = r. (5)

An example of such an application arises in the core management of pressurized water
nuclear reactors (Brans et al., 1973; Gupta and Sharma, 1981).

Solving (1)–(5) is NP-complete whenci, j are general integers (Chandrasekaran et al.,
1982). The problem of solving (1)–(5) when allci, j are 0–1 has been described in
Papadimitriou (1984) as a mysterious problem. In this special case necessary and suf-
ficient conditions for the existence of a feasible solution to (1)–(5) have been derived
in Karzanov (1987) and Murty et al. (1993), and anO(n2.5) algorithm for either finding
a feasible solution to (1)–(5) or concluding that it is infeasible is also given in Murty
et al. (1993).

In the sequel we assume that allci j are 0 or 1, and 0≤ r ≤ n, r integer. In this paper we
investigate some polyhedral aspects of this special case.

System (1)–(5) is defined on the complete bipartite graphG, i.e., all then2 variablesxi j

are allowed to assume values 0 or 1. This feature is used crucially in the algorithm discussed
in Murty et al. (1993) for solving (1)–(5). However, in applications, the problem is usually
defined on an incomplete bipartite graph; i.e., we are given a subset of edgesF called the
subset offorbidden edges, or missing edgesof G and all the variablesxi j for (i, j )∈ F are
deleted from system (1)–(5) and we need to solve the remaining system. This is equivalent
to imposing a new constraint

xi j = 0 for all (i, j ) ∈ F. (6)

Whether an efficient algorithm exists for the problem in an incomplete graph, i.e., for
solving (1)–(6) remains an open question.

Whether it is on the complete graph (this corresponds toF =∅) or incomplete graph,
our problem belongs to a special case called thepartitioned caseif there exist partitions
I = I1 ∪ I2, J = J1 ∪ J2 such that

ci j =
{

1 for all (i, j ) ∈ (I1× J1) ∪ (I2× J2)\F
0 for all (i, j ) ∈ (I1× J2) ∪ (I2× J1)\F.

In this partitioned case, the cells in the two dimensional arrayI × J are partitioned into 4
blocks: B1= I1× J1, B2= I1× J2, B3= I2× J2, andB4= I2× J1. Let |I1| =n1, |J1| =n2.
The following facts have been proved in Murty et al. (1993) and Yi (1994) for this partitioned
case, in the complete graph.

(i) In this case, for anyt = 1 to 4,|Bt ∩ {(p,q) : xpq= 1}| is the same, sayrt , for all solutions
x= (xpq) of (1) to (5), and if such a solution exists, thenr1= (−n+ r + n1+ n2)/2,
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r2 = (n− r + n1− n2)/2, r3 = (n+ r − n1− n2)/2, r4 = (n− r − n1+ n2)/2 since
r2 = n1− r1, r4 = n2− r1, andr3 = n− r1− r2− r4.

(ii) In this case, system (1) to (5) has a solution iffn+ r + n1+ n2 is an even number, and
all ther1, r2, r3, r4 given in (i) are≥ 0. Hence all ther for which system (1) to (5) has
a solution in this case have the same odd-even parity, and the set of all suchr form an
arithmetic progression in which consecutive elements differ by 2.

Furthermore, in this partitioned case, the following 6 constraints:
∑

(i, j )∈Bt
xi j = rt ,

t = 1 to 4;
∑

(i, j )∈B1∪B3
xi j = r ;

∑
(i, j )∈B2∪B4

xi j = n− r ; are all equivalent to each other in
the sense that any one of them can replace (5) in system (1) to (5), leading to an equivalent
system. In particular, consider∑

(i, j )∈B1

xi j = r1. (7)

In this case, system (1) to (5); or the equivalent system (1) to (4) and (7), has a solution
iff r1 is a nonnegative integer and max{0, n1+ n2− n} ≤ r1 ≤ min{n1, n2}.

Color the edge(i, j ) in G (and the cell(i, j ) in the arrayI × J) red if ci j = 1, blue if
ci j = 0. Then any solution to (1)–(5) is the incidence vector of a perfect matching inG with
exactlyr red edges. Such a perfect matching will be called asolution matching.

We will assume that there is at least edge of each color, as otherwise the problem of
finding a solution matching becomes the standard one of finding a perfect matching in a
bipartite graph which is efficiently solvable.

With this coloring, the complete graphG, or the incomplete graphH = (I , J, E =
(I × J)\F) belongs to the partitioned case if there exists partitionsI = I1∪ I2, J = J1∪ J2

such that

edge(i, j ) is red iff (i, j ) ∈ (I1× J1) ∪ (I2× J2)\F
edge(i, j ) is blue iff (i, j ) ∈ (I1× J2) ∪ (I2× J1)\F.

(8)

Consider the incomplete graph case as defined earlier. The following lemma gives the
necessary and sufficient conditions for the incomplete graphH to belong to the partitioned
case.

Lemma 1. Consider the incomplete colored bipartite graph H= (I , J, E)where E= (I×
J)\F. H belongs to the partitioned case iff there exists no cycle in H containing an odd
number of red edges.

Proof: SinceH is bipartite, if a cycle inH contains an odd number of red edges, it must
also contain an odd number of blue edges and vice versa. If partitions exist as defined
earlier, clearly there can be no cycle containing an odd number of red edges inH .

Suppose there exist no cycle containing an odd number of red edges. LetHR= (I , J, ER),
HB= (I , J, EB) denote the subgraphs ofH induced by the red and blue edges respectively
but each of them containing all the nodes. Under these assumptionsHR cannot be a connected
graph, for suppose it is connected. Take any blue edge(i, j ). SinceHR is connected, there
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exists a red simple pathP say in HR from i to j . ThenP ∪ {(i, j )} is a simple cycle
containing an odd number, 1, of blue edges, contradicting our assumption. SoHR must
consist of two or more connected components, and no blue edge connects two nodes in the
same component.

Construct an auxiliary graphX= (N ,A) by the following rules:

1. Each node inN represents a connected component inHR.
2. Nodesp andq inN are joined by an edge(p,q) ∈ A iff there is at least one blue edge

in H connecting one of the nodes in connected componentp of HR and another node
from connected componentq of HR.

By the hypothesis, the graphX contains no odd cycles. HenceX is bipartite. Suppose a
bipartition forX isN1,N2. Now place nodei ∈ I in I1 if the component ofHR containing
nodei is inN1, or in I2 if that component is inN2. Similarly place nodej ∈ J in J1 if the
component ofHR containing nodej is in N1, or in J2 if that component is inN2. Then
the edges inH in blocks I1 × J1 and I2 × J2 can not be blue, since the two nodes on any
edge from these blocks come from the same connected component ofHR. On the other
hand, the edges inH in blocks I1× J2 and I2× J1 can not be red, since the two nodes on
any edge from these blocks come from different components inHR. Therefore, partitions
I = I1 ∪ I2, J= J1 ∪ J2 satisfy the conditions given in (8). 2

We will show now that the problem of solving (1)–(5) on the incomplete bipartite graph
H can be solved in polynomial time iff there exists a polynomial time algorithm for the
same type of problem belonging to the partitioned case.

Theorem 1. The problem of solving(1)–(5) on the incomplete bipartite graph H poly-
nomially reduces to a problem of the same type belonging to the partitioned case.

Proof: We consider two cases:

Case 1: Suppose thatH has no cycles containing an odd number of red edges. In this case
by Lemma 1, our problem itself belongs to the partitioned case.

Case 2: H has at least one cycle containing an odd number of red edges. LetHR= (I , J, ER),
HB= (I , J, EB) denote the subgraphs ofH induced by the red and blue edges respec-
tively. We will now enlargeH into a new bipartite graphH∗ by adding 2|ER| new nodes
and 2|ER| new edges by the following rule:

Replace each edge(i, j )∈ ER by a pathi, (i, ui j ), ui j ,(ui j , vi j ), vi j , (vi j , j ), j ; (see
figure 1), whereui j , vi j are two new nodes corresponding to the original red edge(i, j )
in H . On this path color the new edges(i, ui j ) and(vi j , j ) red; and color the new edge
(ui j , vi j ) blue. Clearly the new graphH∗ hasn∗ = 2n+2|ER| nodes and|EB|+3|ER| =
|E| + 2|ER| edges. Also notice that any cycle inH∗ that contains a new node of the
typeui j say, must also include the nodesvi j , i, j . Also each cycle in the original graph
H that containsa red edges andb blue edges becomes a cycle containing 2a red edges
anda+ b blue edges. Hence all cycles inH∗ have an even number of red edges so by
Lemma 1 the colored graphH ∗ belongs to the partitioned case.
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Figure 1. An edge, and the path that replaces it.

By replacing each red edge(i, j ) in a perfect matching withr red edges inH by the pair
of edges(i, ui j ), (vi j , j ), it becomes a perfect matching with 2r red edges in the new
graphH∗. Also every perfect matching inH∗ that contains the red edge(i, ui j ) must
also contain the red edge(vi j , j ), as otherwise the nodevi j will remain unmatched. Thus
red edges in each perfect matching inH∗ occur in pairs, each pair belonging to a path
of the form in figure 1. Thus by replacing each pair of red edges in a path of the form in
figure 1 by the edge on the left of figure 1 in the original graphH , every perfect matching
with 2r red edges becomes a perfect matching inH with r red edges. Thus finding a
perfect matching inH containingr red edges is equivalent to finding a perfect matching
in the new graphH∗ containing 2r red edges, and this is a problem of the same type as
the original problem, but belonging to the partitioned case. 2

Because of Theorem 1, algorithmic studies of the problem of solving (1)–(6) can be
restricted to the partitioned case without any loss of generality. So in the sequel we focus
our attention on the partitioned case. Also, solving (1)–(6) is equivalent to the optimization
problem

min
∑
(i, j )∈F

xi j

subject to (1)–(5).
(9)

(9) is a 0–1 integer program defined on the complete graphG which we assume belongs to
the partitioned case. An important strategy for solving a 0–1 integer program is to develop a
polyhedral characterization of the convex hull of its set of feasible solutions, i.e., obtain a lin-
ear inequality representation for it. In this paper, we focus on a polyhedral characterization
for (1)–(5) in the partitioned case. We present two large classes of facet-inducing inequal-
ities (each containing an exponential number of inequalities) for this problem (Alfakih,
1996). However, these classes do not completely characterize the convex hull of the set of
feasible solutions of (1)–(5).

2. The results

We consider the system (1) to (5) defined on the complete graphG belonging to the parti-
tioned case with partitions,I = I1 ∪ I2, J = J1 ∪ J2, blocksB1, B2, B3, B4, andn1, n2, r1

to r4 as defined earlier.
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Figure 2. The double lines indicate the row and column partitions, and the four blocksB1, B2, B3, andB4 are
shown. The 2n basic cells corresponding to basic vectorxB are marked with (◦) or (?).

When one of the sets amongI1, I2 is ∅, and one of the sets amongJ1, J2 is ∅, all the
edges inG have only one color, and all extreme points of the set of feasible solutions
of (1), (2), (3), (5) satisfy (4) automatically. The same property holds when exactly one
of the 4 sets amongI1, I2, J1, J2 is ∅, and the other three are nonempty. So, we assume
0 < n1 < n, 0 < n2 < n, and without loss of generality, we assume that the rows and
columns of the array are rearranged so thatI1={1, 2, . . . ,n1}, I2={n1+ 1, . . . ,n}, J1 =
{1, 2, . . . ,n2}, J2 = {n2+ 1, . . . ,n} (See figure 2). Define

Pn,r1
n1,n2
= Set of feasible solutions of (1), (2), (3), (7) [or equivalently (1), (2),

(3), (5)]

Qn,r1
n1,n2
= Integer hullof Pn,r1

n1,n2
defined as conv({x : x ∈ Pn,r1

n1,n2
andx integer})

= convex hull of set of feasible solutions of (1), (2), (4), (7).

It can be shown thatPn,r1
n1,n2
6= ∅ iff max{0, n1 + n2 − n} ≤ r1 ≤ min{n1, n2}, which we

assume.
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The polytope defined by (1), (2), and (3) is the well-knownassignment, orBirkoff polytope
K A with integral extreme points. However, with the side constraint (7),Pn,r1

n1,n2
may have

fractional extreme points. For example, whenn = 4, n1 = n2 = 2, r1 = 1,

x11 = x14 = x22 = x23 = x32 = x34 = x41 = x43 = 1

2
, xi j = 0 otherwise

is a fractional extreme point ofP4,1
2,2 . Hence,Qn,r1

n1,n2
may not be equal toPn,r1

n1,n2
.

In the sequel, an assignmentx= (xi j ) of ordern is represented as a permutation(σ1, σ2,

. . . , σs, . . . , σn) such thatxsσs = 1 for s= 1, 2, . . . ,n, xi j = 0 otherwise. For example, the
diagonal assignment is represented by the permutation(1, 2, . . . ,n).

2.1. Dimension and the trivial facets of Qn,r1
n1,n2

Here, we present one condition under whichQn,r1
n1,n2

coincides withPn,r1
n1,n2

. For the general
case whenQn,r1

n1,n2
6= Pn,r1

n1,n2
, we establish that dim(Qn,r1

n1,n2
)= dim(Pn,r1

n1,n2
) = n2 − 2n when

Qn,r1
n1,n2
6= ∅.

Lemma 2. Let KA be the assignment polytope, i.e., set of feasible solutions of(1), (2),
(3). If one or more of r1, r2, r3, r4 are0, Qn,r1

n1,n2
= Pn,r1

n1,n2
= a face of KA.

Proof: From Theorem 1 we know that in system (1), (2), (3), (5), the constraint (5) can
be replaced by∑

(i, j )∈Bt

xi j = rt . (10)

for anyt = 1 to 4. HencePn,r1
n1,n2

is the set of feasible solutions of (1), (2), (3), and (10). But
if rt = 0, under (3), constraint (10) is equivalent to

xi j = 0 for each(i, j ) ∈ Bt . (11)

Hence in this casePn,r1
n1,n2

is the set of feasible solutions of (1), (2), (3), (11), which
by definition is a face ofK A, and hence all its extreme points are 0− 1 vectors. Hence
Qn,r1

n1,n2
= Pn,r1

n1,n2
= a face ofK A in this case. 2

Theorem 2. Suppose that rt ≥ 1 for all t = 1 to 4, and Qn,r1
n1,n2
6= ∅. Then Qn,r1

n1,n2
and Pn,r1

n1,n2

both have the same dimension n2 − 2n. Also, each non-negativity restriction in(3) is a
facet-inducing inequality for Qn,r1

n1,n2
.

Proof: Dim Pn,r1
n1,n2
= n2 − 2n can be shown rather easily. Hence, dimQn,r1

n1,n2
≤ n2 − 2n.

Now assume that dimQn,r1
n1,n2

< n2−2n then there exists a hyperplaneH ={x ∈Rn2
:
∑n

i=1∑n
j=1 αi j xi j =β} containingQn,r1

n1,n2
, but notPn,r1

n1,n2
. i.e., H is not defined by a linear com-

bination of the equality constraints (1), (2), and (7). We will show that no such hyperplane
H can exist thus establishing that dimQn,r1

n1,n2
= n2− 2n.



372 ALFAKIH, YI AND MURTY

Let Ax = b represent the system of equality constraints (1), (2), and (7). ThenA is a
full row rank 2n× n2 matrix. Letx0 be a solution matching inQn,r1

n1,n2
andA= (B, N) be a

partition of A into basic, nonbasic parts withB being a 2n× 2n basis forA, corresponding
to basic vectorxB containing the basic variables

x1, n2+r2−1, x2, n2+r2−2, . . . , xn1+r4−1 ,1, xn1+r4,n, xn1+r4+1,n−1, . . . , xn,n2+r2

x1,n2+r2, x2,n2+r2−1, . . . , xn1+r4,1, xn1+r4+1,n, xn1+r4+2,n−1, . . . , xn,n2+r2+1

with the basic variables in the top row having value 0 inx0 (the cells marked with(◦) in
figure 2), and those in the bottom row having value 1 inx0 (the cells marked with a(?) in
figure 2). LetxN denote the vector of nonbasic variables. From the results in Murty et al.
(1993) we know that in the partitioned case under discussion here, the rows and columns
of the array can be rearranged so that the matched cells in any solution matching appear
along one of the diagonals like the one marked with(?)’s in figure 2.

Let (αB αN) be the corresponding rearrangement of the row vector(αi j ). Hence

H = {x ∈ Rn2
:αBxB + αN xN = β

}
.

Let

Ĥ = {x ∈ Rn2
: α̂BxB + α̂N xN = β̂

}
where

(α̂B, α̂N, β̂) = (αB, αN, β)− λT (B, N, b)

whereλ ∈ R2n will be chosen appropriately.
By constructionĤ containsQn,r1

n1,n2
. Now if we can show that̂αB= 0, α̂N = 0, andβ̂ = 0,

for a proper choice ofλ, it would follow that the equation definingH , is a linear combination
of the equality constraints (1), (2), and (7), thus arriving at a contradiction.

To establish this, letλT =αB B−1. Thenα̂B = 0. Represented as a permutation of(1, 2,
. . . ,n), x0 is

(n2+ r2, n2+ r2− 1, n2+ r2− 2 . . . , 1, n, n− 1, . . . , n2+ r2+ 1).

Thenx0
N = 0. SinceQn,r1

n1,n2
lies in Ĥ , it follows thatα̂Bx0

B+ α̂N x0
N = β̂. Sinceα̂B = 0 and

x0
N = 0 it follows thatβ̂ = 0. Thus it remains to show thatα̂N = 0. Towards this effort, letx1

be the assignment

x1 = (n2+ r2− 1, n2+ r2, n2+ r2− 2 . . . , 1, n, n− 1, . . . , n2+ r2+ 1)

whose representation as a permutation is obtained by interchanging the first two elements
in the permutation corresponding tox0 (when represented as permutation matrices,x1 is
obtained by interchanging rows 1 and 2 inx0). By the hypothesis in the theoremn1 =
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r1+ r2≥ 2, and hence the interchange does not alter the number of allocations within each
of the four blocks, i.e.,x1 is also a solution matching, orx1 ∈ Qn,r1

n1,n2
. So

∑n
i=1

∑n
j=1 α̂i j x1

i j
= β̂ = 0, clearly this implies that the componentα̂2,n2+r2 in α̂N is zero.

In the same way we can generate a sequence of solution matchingsx2, x3, . . . , xk, . . . ,

xn2−2n ∈ Qn,r1
n1,n2

written as permutation matrices, wherexk is derived from somexi ∈ {x0, x1,

. . . , xk−1}, by interchanging either two rows (both withinI1 or both within I2) or two
columns (both withinJ1 or both within J2), and for eachk = 2 to n2 − 2n, using the
equation

∑n
i=1

∑n
j=1 α̂i j xk

i j = 0 we are able to establish that one more component ofα̂N is
zero. In the end we havêαN = 0. This establishes that dimQn,r1

n1,n2
= n2− 2n.

Now select any variablexpq. From the above procedure it is clear that the dimension of
the set of all solution matchings in each of whichxpq = 0 has dimensionn2−2n−1. This
implies that the faceF = {x ∈ Qn,r1

n1,n2
: xpq= 0} is a facet ofQn,r1

n1,n2
. 2

2.2. Some non trivial facets of Qn,r1
n1,n2

We assume that all ofr1, r2, r3, andr4 ≥ 1. This automatically impliesn ≥ 4.

Proposition 1. Let xĨ J̃ = (xi j : i ∈ Ĩ , j ∈ J̃), whereĨ , J̃ are arbitrary nonempty subsets
of I, J respectively, be the incidence matrix of a matching inĨ × J̃ . LetKR,KC be subsets
of Ĩ , J̃ respectively such that|KR| ≤ | J̃\KC| and|KC| ≤ | Ĩ \KR|. Then∑

i∈KR j∈KC

xi j +
∑

i∈KR j∈ J̃\KC

xi j +
∑

i∈ Ĩ \KR j∈KC

xi j ≤ |KR| + |KC|.

Equality holds for the matchinḡxĨ J̃ = (x̄i j : i ∈ Ĩ , j ∈ J̃) where

x̄i j =


1 for each i∈ KR, for some j∈ J̃\KC

1 for each j∈ KC, for some i∈ Ĩ \KR

0 otherwise.

Proof: This follows directly from the definition of a matching. 2

2.2.1. The first class of facets.Facet-inducing inequalities forQn,r1
n1,n2

of the first class are
characterized by a cell(p,q) ∈ I × J called theprimary defining cellor just thedefining
cell, and a nonempty set of row indicesKR, and a nonempty set of column indicesKC.

Look at the four blocks in our partition (figure 2). BlocksB1, B2 lie in the same rows of
the array, so we say that each of them is therow adjacent blockof the other. Similarly, in
blocksB3, B4, each is row adjacent block to the other. In the same way in the pairs (B1, B4),
(B2, B3), each is thecolumn adjacent blockof the other. We say that two given blocks are
adjacentif they are either row adjacent or column adjacent.

The defining cell(p,q) for the first class of facets can be any cell in the array. Suppose
it is contained in blockBt . Let It , Jt denote the set of row and column indices ofBt

respectively. LetBu be the row adjacent block ofBt , andBv the column adjacent block of
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Bt . Let Bw be the remaining block which is not adjacent toBt . Let Î denote the set of row
indices ofBv, andĴ denote the set of column indices ofBu. (i.e., Î = I \It and Ĵ = J\Jt )
Then thedefining subset of row indicesKR must be a nonempty proper subset ofÎ , and the
defining subset of column indicesKC must be a nonempty proper subset ofĴ, and together
they have to satisfy|KR| + |KC| = 1+ rw.

Lemma 3. Let (p,q) be the defining cell andKR, KC be the defining sets of row and
column indices selected as discussed above. Then

xpq +
∑
j∈KC

xpj +
∑
i∈KR

xiq −
∑

i∈ Î \KR , j∈ Ĵ\KC

xi j ≤ 1 (12)

is a valid inequality for Qn,r1
n1,n2

.

Proof: First we observe that in any assignmentx = (xi j : i ∈ I , j ∈ J)

xpq +
∑
j∈KC

xpj +
∑
i∈KR

xiq (13)

is equal to 0, 1, or 2. This is easy to see since each of these terms is either 0 or 1 and since
all of them can not be 1 at the same time.

For an assignmentx ∈ Qn,r1
n1,n2

, if the expression in (13) is equal to either 0 or 1, our lemma
holds trivially. Therefore, assume that the expression in (13) is equal to 2 for an assignment
x ∈ Qn,r1

n1,n2
. This holds only whenxpq = 0, and

∑
j∈KC

xpj =
∑

i∈KR
xiq = 1. Suppose

thatxpj0 = xi0q = 1 where j0 ∈ KC andi0 ∈ KR. Thus∑
j∈ Ĵ

xi0 j =
∑
i∈ Î

xi j0 = 0. (14)

Sincex ∈ Qn,r1
n1,n2

we have
∑

(i, j )∈Bw
xi j = rw, i.e.,∑

i∈KR , j∈KC

xi j +
∑

i∈KR , j∈ Ĵ\KC

xi j +
∑

i∈ Î \KR , j∈KC

xi j +
∑

i∈ Î \KR , j∈ Ĵ\KC

xi j = rw.

Using Proposition 1 and (14) it follows that∑
i∈KR, j∈KC

xi j +
∑

i∈KR, j∈ Ĵ\KC

xi j +
∑

i∈ Î \KR, j∈KC

xi j ≤ |KR\{i0}| + |KC\{ j0}| = rw − 1

hence
∑

i∈ Î \KR , j∈ Ĵ\KC
xi j ≥ 1 and hence (12) holds forx and the lemma follows. 2

As an example consider the case wheren = 5, n1 = 2, n2 = 3 andr1 = 1. Hencer2 =
r3 = 1 andr4 = 2. Let the defining cell be (1, 1), and the defining sets beKR = {3},
KC = {4}. The valid inequality (12) corresponding to these choices is

x11+ x14+ x31− x45− x55 ≤ 1
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Figure 3. Pictorial representation of signs of nonzero coefficients in (12). The double lines indicate the row and
column partitions.

which is a valid inequality forQ5,1
2,3. Note that all the nonzero coefficients in (12) are+1

or−1.
It is helpful to have a pictorial representation of inequality (12). In figure 3, we show

the array with the defining cell(p,q) and the defining subsetsKR,KC, and the cells in the
array whose variables appear with a+1 coefficient (marked by+ symbol), and those with
a−1 coefficient (marked by− symbol) in this inequality.

Theorem 3. The valid inequality(12)in Lemma3 is a facet-inducing inequality for Qn,r1
n1,n2

.

The proof of Theorem 3 is given in Section 2.3.
Inequalities (12) define the first class of facet-inducing inequalities forQn,r1

n1,n2
. For defining

these inequalities, the defining cell(p,q) can be selected as any cell in the array, so there
aren2 ways of choosing it. Once the defining cell(p,q) is selected, the number of ways
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of selecting the defining subsetsKR,KC is

rw∑
N=1

(
Î
N

)(
Ĵ

rw + 1− N

)

whereN = |KR| andrw + 1− N = |KC|, this number grows exponentially with| Î |, | Ĵ|
andrw. Hence the total number of these first class of facet-inducing inequalities forQn,r1

n1,n2

grows exponentially withn1, n2, r1.

2.2.2. The second class of facets.Facet-inducing inequalities in this class are characterized
by two defining cells called theprimary and secondary defining cells, and by two defining
subsets of row indices, and two defining subsets of column indices.

The primary defining cell,(p,q) say, can be any cell in the array. Suppose it is contained
in block Bt . The second class of facet-inducing inequalities forQn,r1

n1,n2
only exist for the

primary defining cell(p,q) ∈ Bt if the numbersru, rv corresponding to the row adjacent
block Bu, the column adjacent blockBv of Bt , are both≥ 2. If this condition is satisfied,
the secondary defining cell,(m, l ) say, can be any cell in the adjacent blocksBu or Bv of
Bt satisfyingm 6= p, l 6= q.

Let Bw be the block not adjacent toBt . If (m, l )∈ Bu, the defining subsets of column
indicesKC, K̃C, say, can be any nonempty proper subsets of the column indices of the blocks
Bu, Bt respectively satisfying the condition thatl 6∈ KC, q 6∈ K̃C; and the defining subsets
of row indices,KR, K̃R, say, can be any nonempty mutually disjoint proper subsets of the
row indices ofBv which together satisfy|KC| + |KR| = 1+ rw, and|K̃C| + |K̃R| = rv.

If (m, l ) ∈ Bv, the column adjacent block ofBt , the defining subsets of column indices,
KC, K̃C, can be any nonempty mutually disjoint proper subsets of the column indices of
Bu; and the defining subsets of row indices,KR, K̃R can be any nonempty proper subsets of
the row indices ofBv, Bt respectively satisfying the condition thatm 6∈KR, p 6∈ K̃R; which
together satisfy|KC| + |KR| = 1+ rw, and|K̃C| + |K̃R| = ru (see figure 4).

For this case where the secondary defining cell(m, l ) ∈ Bv (see figure 4) we have the
following lemma.

Lemma 4. Let the primary defining cell be(p,q) from block Bt , and suppose its row,
column adjacent blocks Bu, Bv satisfy ru ≥ 2. Let Î be the set of row indices of block Bv,
and Ĵ be the set of column indices of block Bu. Let It , Jt be the sets of row and column
indices of Bt . Let (m, l ) ∈ Bv be the secondary defining cell, and let the defining subsets
of row and column indicesKR, K̃R, KC, andK̃C be selected as discussed above. Let Bw

be the block not adjacent to Bt (i.e., Bw = Î × Ĵ). Then

xpq +
∑
j∈KC

xpj +
∑
i∈KR

xiq −
∑

i∈ Î \(KR∪{m}) j∈ Ĵ\KC

xi j −
∑

j∈ Ĵ\(KC∪K̃C)

xmj

−
∑

i∈It\(K̃R∪{p}) j∈ Ĵ\(KC∪K̃C)

xi j −
∑

i∈I \(KR∪K̃R∪{p,m})
xil ≤ 1 (15)

is a valid inequality of Qn,r1
n1,n2

.
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Figure 4. Pictorial representation of signs of nonzero coefficients in (15).

Proof: For any assignmentx ∈ Qn,r1
n1,n2

the sum

xpq +
∑
j∈KC

xpj +
∑
i∈KR

xiq (16)

is equal to 0, 1, or 2. If the expression in (16) is equal to either 0 or 1 the lemma follows
trivially. Therefore, assume that the expression in (16) is equal to 2. This holds when
xpj0 = 1 for somej0 ∈ KC andxi0q= 1 for somei0 ∈ KR. Then by Proposition 1 we have∑

i∈KR j∈KC

xi j +
∑

i∈KR j∈ Ĵ\KC

xi j +
∑

i∈ Î \KR j∈KC

xi j ≤ |KR\{i0}| + |KC\{ j0}|. (17)

Two cases will be considered.

Case 1: xmj = 0 for all j ∈ K̃C. Then since
∑

(i, j )∈Bw
xi j = rw and since|KR\{i0}| +

|KC\{ j0}| = rw − 1 it follows that∑
i∈ Î \KR j∈ Ĵ\KC

xi j ≥ 1



378 ALFAKIH, YI AND MURTY

and since
∑

j∈K̃C
xmj = 0 by assumption, it follows that

∑
i∈ Î \(KR∪{m}) j∈ Ĵ\KC

xi j +
∑

j∈ Ĵ\(KC∪K̃C)

xmj ≥ 1

and (15) holds forx.
Case 2: xmj1 = 1 for somej1 ∈ K̃C.

Then if (17) holds as a strict inequality, and by the same argument as in case 1, we
have

∑
i∈ Î \(KR∪{m}) j∈ Ĵ\KC

xi j ≥ 1, and (15) holds forx. Therefore, assume that (17)
holds as an equality. By Proposition 1, this corresponds to the case where for each
i ∈ KR\{i0}, xi j = 1 for somej ∈ Ĵ\KC; and for eachj ∈ KC\{ j0}, xi j = 1 for some
i ∈ Î \(KR ∪ {m}). This implies that

xil = 0 for all i ∈ KR ∪ {m} (18)∑
i∈It\{p} j∈KC

xi j = 0. (19)

Now applying Proposition 1 to blockBu and using (19) we have∑
i∈K̃R j∈K̃C

xi j +
∑

i∈K̃R j∈ Ĵ\K̃C

xi j +
∑

i∈It\K̃R j∈K̃C

xi j ≤ |K̃R| + |K̃C\{ j1}|. (20)

If (20) holds as a strict inequality and since
∑

(i, j )∈Bu
xi j = ru and|K̃R| + |K̃C\{ j1}| =

ru − 1 it follows that∑
i∈It\(K̃R∪{p}) j∈ Ĵ\(KC∪K̃C)

xml ≥ 1

and (15) holds forx.
Therefore assume that (20) holds as an equality. This corresponds to the case where

for eachi ∈ K̃R, xi j = 1 for somej ∈ Ĵ\K̃C ∪{ j1}; and for eachj ∈ K̃C ∪{ j1}, xi j = 1
for somei ∈ It\(K̃R ∪ {p}) which implies thatxil = 0 for all i ∈ K̃R ∪ {p}. Therefore,
by (18) and the fact that

∑
i∈I xil = 1 it follows that

∑
i∈I \(KR∪K̃R∪{p,m}) xil = 1 Thus,

(15) holds forx and the lemma follows. 2

A similar lemma for the case where the secondary defining cell(m, l )∈ Bu is given below.

Lemma 5. Let the primary defining cell be(p,q) from block Bt , and suppose its row,
column adjacent blocks Bu, Bv satisfy rv ≥ 2. Let Î be the set of row indices of block Bv,
and Ĵ be the set of column indices of block Bu. Let It , Jt be the sets of row and column
indices of Bt . Let(m, l )∈ Bu be the secondary defining cell, and let the defining subsets of
row and column indicesKR, K̃R, KC, andK̃C be selected as discussed above. Let Bw be
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the block not adjacent to Bt (i.e., Bw = Î × Ĵ). Then

xpq +
∑
j∈KC

xpj +
∑
i∈KR

xiq −
∑

i∈ Î \KR j∈ Ĵ\(KC∪{l })
xi j −

∑
i∈ Î \(KR∪K̃R)

xil

−
∑

i∈ Î \(K̃R∪KR) j∈Jt\(K̃C)∪{q})
xi j −

∑
j∈J\(KC∪K̃C∪{q,l })

xmj ≤ 1 (21)

is a valid inequality of Qn,r1
n1,n2

.

The proof of Lemma 5 is similar to that of Lemma 4.
As an example consider the case wheren= 8, n1= 4, n2= 4, andr1= r2= r3= r4= 2.

Then, selecting(p,q) = (1, 1) ∈ B1, (m, l ) = (5, 2) ∈ B4,KR = {6},KC = {6, 7}, K̃R =
{2}, K̃C = {5} satisfying all the conditions for selection mentioned above, leads to the valid
inequality forQ8,2

4,4.

x11+ x16+ x17+ x61− x32− x38− x42− x48

− x58− x72− x75− x78− x82− x85− x88 ≤ 1.

In figure 4, we give a pictorial representation of inequality (15). It shows the array with the
defining cells(p,q) ∈ Bt , (m, l ) ∈ Bv and the defining subsetsKR, KC, K̃R, K̃C and the
cells in the array whose variables appear with a+1 coefficient (marked by+ symbol), and
those with a−1 coefficient (marked by− symbol) in the inequality.

Theorem 4. The valid inequalities(15)or (21)defined in Lemmas4, 5are facet-inducing
inequalities for Qn,r1

n1,n2
provided that both ru, rv ≥ 2.

Theorem 4 will be proved in Section 2.3. Notice that in Lemma 4 we only requireru ≥ 2
for (15) to be a valid inequality forQn,r1

n1,n2
. Correspondingly in Lemma 5 we only require

rv ≥ 2 for (21) to be a valid inequality forQn,r1
n1,n2

. But Theorem 4 establishes that these are
facet-inducing when bothru, rv ≥ 2.

Unfortunately, these two nontrivial classes of facets do not provide a complete description
of the polytopeQn,r1

n1,n2
as demonstrated by the following fractional pointx̂ = (x̂i j ) defined

by

x̂11 = x̂15 = x̂24 = x̂27 = x̂35 = x̂38 = x̂43 = x̂44 = x̂56 = x̂57 =
x̂62 = x̂66 = x̂73 = x̂78 = x̂81 = x̂82 = 1

2
, x̂i j = 0, otherwise.

It can be verified that̂x is an extreme point of the polytopeP8,1
2,4 and that it satisfies allfirst

classfacet-inducing inequalities forQ8,1
2,4. Since bothr1 andr2 are<2 (in fact equal to 1)

for Q8,1
2,4, we do not have a pair of nonadjacent blocks both of whoser -numbers are≥2.

Hence the second class of inequalities of the form (15), (21) are not facet-inducing for this
problem.
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2.3. A facet lifting procedure

In this section, a lifting procedure for facets ofQn,r1
n1,n2

is presented. Given a facetF of Qn,r1
n1,n2

,
we show how to liftF into a facetF∗ of Qn+1,r1

n1,n2
, Qn+1,r1

n1+1,n2
, Qn+1,r1+1

n1+1,n2+1, andQn+1,r1
n1,n2+1. This

procedure is used to prove Theorems 3 and 4 using mathematical induction. All symbols
with a star (*) refer to assignments of ordern+ 1. For any matrixA, we denote itsi th row
vector byAi ., and its j th column vector byA. j .

Lemma 6. Let
∑n

i=1

∑n
j=1 ai j xi j ≤ a0 be a non trivial facet-inducing inequality for

Qn,r1
n1,n2

and let A∗ = (a∗i j ) be the(n+ 1)× (n+ 1)matrix derived from A= (ai j ) such that

A∗ =
(

A A. j0
Ai0. 0

)
(22)

for any i0∈ {n1+1, . . . ,n}and any j0∈ {n2+1, . . . ,n}satisfyingai0 j0 = 0. Then
∑n+1

i=1

∑n+1
j=1

a∗i j x
∗
i j ≤ a0 is a facet-inducing inequality for Qn+1,r1

n1,n2
provided that it is a valid inequality

for it.

Proof: Let F = {x ∈ Qn,r1
n1,n2

:
∑n

i=1

∑n
j=1 ai j xi j = a0} andF∗ = {x∗ ∈ Qn+1,r1

n1,n2
:
∑n+1

i=1∑n+1
j=1 a∗i j x

∗
i j = a0}. Then there existn2 − 2n affinely independent assignmentsx1, x2,

. . . , xn2−2n in F , and for every(i, j )∈ {1, . . . ,n}× {1, . . . ,n} there exists at least one
xk ∈ {x1, x2, . . . , xn2−2n} such thatxk

i j = 1. The last assertion follows since otherwise
if xk

rs = 0 for all xk ∈ {x1, x2, . . . , xn2−2n} thenF would be contained in the intersection of
two facetal hyperplanesxrs = 0 and

∑n
i=1

∑n
j=1 ai j xi j = a0 contradicting the assumption

thatF is a facet ofQn,r1
n1,n2

. Let {xi1, xi2, . . . , xin}⊂ {x1, x2, . . . , xn2−2n} be such thatxi1
1 j0
=

xi2
2 j0
= · · · = xin

n j0
= 1. Likewise, let{x j1, x j2, . . . , x jn} ⊂ {x1, x2, . . . , xn2−2n} be such

thatx j1
i01 = x j2

i02 = · · · = x jn
i0n = 1.

Letx∗k, fork= 1, 2, . . . ,n2−2n, be the assignments of ordern+1 defined asx∗kn+1,n+1= 1,
x∗ki j = xk

i j for i, j = 1, 2, . . . ,n thenx∗1, x∗2, . . . , x∗n
2−2n belong toF∗ since by construc-

tion a∗n+1,n+1= 0. Let x∗i1, x∗i2, . . . , x∗in be the assignments of ordern + 1 derived from
xi1, xi2, . . . , xin by switching columnsj0 and n + 1 and by settingx∗kn+1, j0

= 1 for all
k= i1, i2, . . . , i n. Thenx∗i1, x∗i2, . . . , x∗in belong toF∗ since A∗.n+1 = A∗. j0. Likewise,
let x∗ j1, x∗ j2, . . . , x∗ jn be the assignments of ordern+ 1 derived fromx j1, x j2, . . . , x jn by
switching rowsi0 andn + 1 and by settingx∗ki0,n+1= 1 for all k = j1, j2, . . . , jn. Then
x∗ j1, x∗ j2, . . . , x∗ jn belong toF∗ sinceA∗n+1.= A∗i0.. Then, by construction,x∗1, x∗2, . . . ,
x∗n

2−2n, x∗i1, x∗i2, . . . , x∗i n , x∗ j1, x∗ j2, . . . , x∗ jn\{x∗ j j0 } is a set of affinely independent as-
signments. Thus dimF∗ = n2− 2= (n+ 1)2− 2(n+ 1)− 1. 2

Using a similar argument as in Lemma 6, it can be shown that if
∑n

i=1

∑n
j=1 ai j xi j ≤ a0

is a facet-inducing inequality forQn,r1
n1,n2

then

n∑
i=0

n+1∑
j=1

b∗i j x
∗
i j ≤ a0,

n∑
i=0

n∑
j=0

c∗i j x
∗
i j ≤ a0,

n+1∑
i=1

n∑
j=0

d∗i j x
∗
i j ≤ a0
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are facet-inducing inequalities forQn+1,r1
n1+1,n2

, Qn+1,r1+1
n1+1,n2+1 , andQn+1,r1

n1,n2+1 respectively provided
that they are valid inequalities.B∗ = (b∗i j ), C∗ = (c∗i j ), andD∗ = (d∗i j ) are defined by

B∗ =
(

Ak0. 0
A A. j0

)
, C∗ =

(
0 Ak0.

A.m0 A

)
, D∗ =

(
A.m0 A

0 Ai0.

)
for any k0∈ {1, . . . ,n1}, any j0∈ {n2 + 1, . . . ,n}, any m0∈ {1, . . . ,n2}, and anyi0 ∈
{n1+ 1, . . . ,n} satisfyingak0 j0 = 0, ak0m0 = 0, andai0m0 = 0.

Proof of Theorem 3: For ease of notation, and without loss of generality assume that
thedefining cell(p,q) belongs to BlockB1. Thus, Î = I2 = {n1 + 1, n1 + 2, . . . ,n} and
Ĵ = J2 = {n2 + 1, n2 + 2, . . . ,n} andrw = r3. The proof is by induction onn, the order
of the assignment.

For n = 4, n1 = n2 = 2 andr1 = 1. Let(p,q) = (1, 1) andKR = KC = {3}. Then

x11+ x13+ x31− x44 ≤ 1 (23)

is a facet-defining inequality ofQ4,1
2,2 since it is a valid inequality ofQ4,1

2,2 by Lemma 3
and since the following 8 feasible assignments, represented as permutations, are affinely
independent and satisfy (23) as an equality. Recall that dimQ4,1

2,2 = 8.

x1 = (1, 3, 4, 2) x2 = (1, 4, 3, 2) x3 = (1, 4, 2, 3) x4 = (2, 4, 1, 3)
x5 = (3, 1, 4, 2) x6 = (3, 2, 4, 1) x7 = (3, 2, 1, 4) x8 = (4, 2, 1, 3).

Now assumen ≥ 4 and that the assertion is true for assignments of ordern. Using the
lifting procedure in Lemma 6, we will show that it is true for assignments of ordern+ 1.

Let
∑n

i=1

∑n
j=1 ai j xi j ≤ 1 be a facet-inducing inequality of form (12), shown in figure 3,

for the problem of ordern (i.e., for Qn,r1
n1,n2

); and let(p,q) be its defining cell,KR (KC) be
its defining subset of row (column) indices. We will refer to this valid inequality as VI(n).

Consider the problem of order(n+1) and its corresponding arrayI ∗× J∗. ThenI ∗× J∗

is obtained fromI × J, I = J = {1, 2, . . . ,n} by the addition of one new row and one new
column. The new row can be added either at the top or at the bottom of then×n array, and
the new column can be added either to the left or to the right of then× n array, leading to
four separate cases:

Case 1: The added row and the added column aren+ 1 andn+ 1. This corresponds to the
polytopeQn+1,r1

n1,n2
wherer ∗3 = r3+ 1. (Recall that symbols with(∗) refer to the problem

of ordern+ 1). Then VI(n) can be lifted in two ways:

1. Selecti0 to be any row∈ KR and j0 to be any column∈ J2\KC. Note that for this
selectionai0 j0 = 0. Hence,

∑n+1
i=1

∑n+1
j=l a∗i j x

∗
i j ≤ 1, whereA∗ = (a∗i j ) as defined

in (22), is a valid inequality ofQn+1,r1
n1,n2

since it is of the form (12), with defining cell
(p,q),K∗R = KR ∪ {n+ 1}, andK∗C = KC; and by Lemma 6 it is facet-inducing.
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2. Select j0 to be any column∈ KC and i0 to be any row∈ I2\KR. Using the same
argument as in 1, it follows that the valid inequality forQn+1,r1

n1,n2
with defining cell

(p,q), andK∗C = KC ∪ {n+ 1} andK∗R = KR is also facet-inducing.

Case 2: The added row and the added column are 0 andn+1 respectively. This corresponds
to the polytopeQn+1,r1

n1+1,n2
wherer ∗2 = r2 + 1. Selectj0 to be any column∈ J2\KC and

i0 to be any row∈ ({1, 2, . . . ,n1}\{p}). Notice that for this selectionA∗i0. is a row of all
0’s. Using the same argument as in case 1, it follows that the valid inequality forQn+1,r1

n1+1,n2

with defining cell(p,q) andK∗C = KC,K∗R = KR is facet-inducing.
Case 3: The added row and the added column are 0 and 0 respectively. This corre-

sponds to the polytopeQn+1,r1+1
n1+1,n2+1 wherer ∗1 = r1 + 1. Select j0 to be any column

∈ {1, 2, . . . ,n2}\{q}andi0 to be any row∈ ({1, 2, . . . ,n1}\{p}). For this selectionA∗i0. =
A∗. j0 = 0. Using the same argument as in case 1, it follows that the valid inequality
for Qn+1,r1

n1+1,n2+1 with defining cell(p,q) andK∗C = KC,K∗R = KR is facet-inducing.
Case 4: The added row and the added column aren+ 1 and 0 respectively. This corresponds

to the polytopeQn+1,r1
n1,n2+1 wherer ∗4 = r4 + 1. Selecti0 to be any row∈ I2\KR and j0 to

be any column∈ ({1, 2, . . . ,n2}\{q}). Using the same argument as in case 1, it follows
that the valid inequality forQn+1,r1

n1,n2+1 with defining cell(p,q) andK∗C = KC,K∗R = KR

is facet-inducing.

Now assumen ≥ 4, we will show that every valid inequality of the form (12) for the
problem of ordern + 1 can be established as being facet-inducing by lifting some facet-
inducing inequality of the form (12) for the problem of ordern. Sincen+ 1 ≥ 5, for the
problem of ordern+ 1 at least one of ther ∗t ’s ≥ 2 for t = 1 to 4.

Assume thatr ∗3 ≥ 2 and consider the valid inequality of form (12) for the problem of
ordern+ 1 with defining cell(p,q) and defining subsetsK∗R andK∗C. We will refer to this
inequality by VI(n+ 1). Then|K∗C| + |K∗R| ≥ 3. Thus either|K∗C| or |K∗R| must be≥ 2.

1. If |K∗R| ≥ 2. Let i0 be any row∈ K∗R and j0 be any column∈ J∗2 \K∗C and consider the
problem P(n) of ordern associated with array(I ∗\{i0})×(J∗\{ j0}). Then the inequality
obtained from VI(n+1) by deletingi0 fromK∗R is of form (12) with defining cell(p,q),
KR = K∗R\{i0}, andKC = K∗C; and hence it is a facet-inducing inequality for problem
P(n). Furthermore, VI(n + 1) can be established as facet-inducing for the problem of
ordern+ 1 by lifting this inequality as in Case 1 above.

2. If |K∗C| ≥ 2. Let j0 be any column∈ K∗C and i0 be any row∈ I ∗2\K∗R. Then the
inequality of form (12) with defining cell(p,q) andKC = K∗C\{ j0}, andKR = K∗R
is a facet-inducing inequality for problem P(n), and we can establish that VI(n+ 1) is
facet-inducing for the problem of ordern+1 by lifting this inequality as in Case 1 above.

Similarly, if r ∗2 ≥ 2 let i0 be any row∈ (I ∗1\{p}), and let j0 be any column∈ J∗2 \K∗C. If
r ∗1 ≥ 2 let i0 be any row∈ (I ∗1\{p}), and let j0 be any column∈ (J∗1 \{q}). If r ∗4 ≥ 2 let i0

be any row∈ (I ∗2\K∗R) and let j0 be any column∈ (J∗1 \{q}). Then in all these cases, it is
easy to show that the inequality with defining cell (p,q) andKC = K∗C, andKR = K∗R is of
form (12) and hence it is a facet-inducing inequality for the problem of ordern associated
with the array(I ∗\{i0}) × (J∗\{ j0}) and that VI(n + 1) can be established to be facet
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inducing for the problem of ordern + 1 by lifting this inequality as in Cases 2,3, and 4
respectively. 2

Proof of Theorem 4: We assume that the secondary defining cell(m, l )∈ Bv. A proof
similar to the following applies when(m, l ) ∈ Bu. Also we use induction onn, the order of
the assignment. Forn = 6, n1 = n2 = 3 andr1 = 1. Let (p,q) = (1, 1), (m, l ) = (4, 2),
KC = {5}, K̃C = {4},KR = {5}, andK̃R = {2}. Then

x11+ x15+ x51− x32− x36− x46− x62− x64− x66 ≤ 1 (24)

is a facet-defining inequality ofQ6,1
3,3 since it is a valid inequality ofQ6,1

3,3 by Lemma 3
and since the following 24 feasible assignments, represented as permutations, are affinely
independent and satisfy (24) as an equality. Recall that dimQ6,1

3,3 = 24.

x1 = (1, 4, 5, 2, 6, 3) x2 = (1, 5, 4, 2, 6, 3) x3 = (1, 6, 4, 5, 2, 3)
x4 = (1, 6, 4, 2, 5, 3) x5 = (1, 6, 4, 2, 3, 5) x6 = (1, 6, 4, 3, 2, 5)
x7 = (1, 6, 5, 4, 2, 3) x8 = (1, 6, 5, 2, 4, 3) x9 = (2, 6, 4, 5, 1, 3)

x10 = (3, 6, 4, 2, 1, 5) x11 = (5, 1, 4, 2, 6, 3) x12 = (5, 2, 4, 6, 1, 3)
x13 = (5, 2, 4, 1, 6, 3) x14 = (5, 2, 4, 3, 6, 1) x15 = (5, 2, 4, 3, 1, 6)
x16 = (5, 2, 6, 4, 1, 3) x17 = (6, 2, 4, 5, 1, 3) x18 = (5, 3, 4, 2, 6, 1)
x19 = (5, 4, 1, 2, 6, 3) x20 = (5, 6, 2, 4, 1, 3) x21 = (4, 6, 3, 2, 1, 5)
x22 = (5, 4, 3, 2, 6, 1) x23 = (5, 6, 3, 4, 1, 2) x24 = (5, 6, 3, 2, 1, 4).

Now assumen ≥ 6 and that the assertion is true for assignments of ordern. Using the
lifting procedure in Lemma 6, we will show that it is true for assignments of ordern+ 1.

Without loss of generality, we assume that the primary defining cell(p,q) ∈ B1. Thus
Î = I2 = {n1+ 1, . . . ,n}, Ĵ = J2 = {n2+ 1, . . . ,n}, andrw = r3.

Let
∑n

i=1

∑n
j=1 ai j xi j ≤ 1 be a facet-inducing inequality of form (15), shown in figure 4,

for the problem of ordern (i.e., forQn,r1
n1,n2

); and let(p,q), (m, l ) be respectively its primary
and secondary defining cells,KR, K̃R,KC, andK̃C be its defining subset of row and column
indices. We will refer to this valid inequality as VII(n).

Consider the problem of order(n+1) and its corresponding arrayI ∗× J∗. ThenI ∗× J∗

is obtained fromI × J, I = J = {1, 2, . . . ,n} by the addition of one new row and one new
column. As in the proof of Theorem 3, the new row can be added either at the top or at the
bottom of then× n array, and the new column can be added either to the left or to the right
of then× n array, leading to four separate cases:

Case 1: The added row and the added column aren+ 1 andn+ 1. This corresponds to the
polytope isQn+1,r1

n1,n2
wherer ∗3 = r3+ 1. Then VII(n) can be lifted in two ways.

1. Selecti0 to be any row∈ KR and j0 to be any column∈ J2\(KC ∪ K̃C). Note that for
such selectionai0 j0 = 0. Hence,

∑n+1
i=1

∑n+1
j=l a∗i j x

∗
i j ≤ 1, whereA∗ = (a∗i j ) as defined

in (22), is a valid inequality ofQn+1,r1
n1,n2

since it is of the form (15) with defining cells
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(p,q) and(m, l ), and defining subsetsK∗R = KR ∪ {n+ 1}, K∗C = KC, K̃∗C = K̃C,
andK̃∗R = K̃R; and by Lemma 6 it is facet-inducing.

2. Selectj0 to be any column∈ KC andi0 to be any row∈ I2\(KR ∪ {m}). Using the
same argument as in 1, it follows that the valid inequality forQn+1,r1

n1,n2
with defining

cells (p,q) and (m, l ) and defining subsetsK∗C = KC ∪ {n + 1} andK∗R = KR,
K̃∗C = K̃C, andK̃∗R = K̃R is also facet-inducing.

Case 2: The added row and the added column are 0 andn+1 respectively. This corresponds
to the polytopeQn+1,r1

n1+1,n2
wherer ∗2 = r2+ 1. Then VII(n) can also be lifted in two ways.

1. Select j0 to be any column∈ K̃C and i0 to be anyi ∈ {1, 2, . . . ,n1}\({p} ∪ K̃R).
Using the same argument as in Case 1, it follows that the valid inequality forQn+1,r1

n1+1,n2

with defining (p,q) and (m, l ) and defining subsetsK∗R = KR, K∗C = KC,
K̃∗C = K̃C ∪ {n+ 1}, andK̃∗R = K̃R is facet-inducing.

2. Selecti0 to be any row∈ K̃R and j0 to be any column∈ J2\(K̃C ∪KC). Using the
same argument as in Case 1, it follows that the valid inequality forQn+1,r1

n1+1,n2
with

defining(p,q) and(m, l ) and defining subsetsK∗R = KR,K∗C = KC, K̃∗C = K̃C, and
K̃∗R = K̃R ∪ {n+ 1} is facet-inducing.

Case 3: The added row and the added column are 0 and 0 respectively. This corresponds to
the polytopeQn+1,r1+1

n1+1,n2+1 wherer ∗1 = r1+1. Selectj0 to be any column∈ {1, 2, . . . ,n2}\
({q} ∪ {l }) and i0 to be any row∈ {1, 2, . . . ,n1}\({p} ∪ K̃R). For this selection,A∗. j0= 0. Using the same argument as in Case 1, it follows that the valid inequality for
Qn+1,r1

n1+1,n2+1 with defining(p,q) and(m, l ) and defining subsetsK∗R = KR, K∗C = KC,

K̃∗C = K̃C, andK̃∗R = K̃R, is facet-inducing.
Case 4: The added row and the added column aren+1 and 0 respectively. This corresponds

to the polytopeQn+1,r1
n1,n2+1 wherer ∗4 = r4 + 1. Selecti0 to be any row∈ I2\(KR ∪ {m})

and j0 to be any column∈ {1, 2, . . . ,n2}\({q} ∪ {l }). Using the same argument as in
Case 1, it follows that the valid inequality forQn+1,r1

n1,n2+1 with defining (p,q) and
(m, l ) and defining subsetsK∗R = KR, K∗C = KC, K̃∗C = K̃C, andK̃∗R = K̃R is facet-
inducing.

We will now show that every valid inequality of form (15) for the problem of ordern+1
can be obtained by lifting some valid inequality of form (15) for the problem of ordern.

Consider the valid inequality of form (15) for the problem of ordern+ 1 with primary
and secondary defining cells(p,q), (m, l ), and defining subsetsK∗R, K̃∗R, K∗C, andK̃∗C.
Refer to this inequality as VII(n+ 1). Sincen+ 1≥ 7, for the problem of ordern+ 1, one
of the following must hold.r ∗3 ≥ 2, r ∗2 ≥ 3, r ∗4 ≥ 3, orr ∗1 ≥ 2.

If r ∗3 ≥ 2. In this case|K∗R| + |K∗C| ≥ 3 which implies that either|K∗R| ≥ 2 or |K∗C| ≥ 2.

1. if |K∗R| ≥ 2. Leti0 be any row∈ K∗R and j0 be any column∈ J∗2 \(K∗C ∪ K̃∗C)and consider
the problem P2(n) of ordern associated with arrayI ∗\{i0}×J∗\{ jo}. Then the inequality
obtained from VII(n+1) by deletingi0 fromK∗R is of form (15) with defining cells(p,q),
(m, l ), and defining subsetsKR = K∗R\{i0},KC = K∗C, K̃R = K̃∗R, K̃C = K̃∗C; and hence
it is a valid inequality for problem P2(n). Furthermore, VII(n + 1) can be lifted from
this valid inequality as in Case 1.
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2. if |K∗C| ≥ 2. Let j0 be any column∈ K∗C andi0 be any row∈ I ∗2\(K∗R ∪ {m}). Then
the inequality obtained from VII(n + 1) by deleting j0 from K∗C is of form (15) with
defining cells(p,q), (m, l ), and defining subsetsKC = K∗C\{ j0},KR = K∗R, K̃R = K̃∗R,
K̃C = K̃∗C; and hence it is a valid inequality for problem P2(n), and VII(n+ 1) can be
lifted from it.

If r ∗2 ≥ 3. In this case|K̃∗R| + |K̃∗C| ≥ 3 which implies that either|K̃∗R| ≥ 2 or |K̃∗C| ≥ 2.

1. if |K̃∗R| ≥ 2. Let i0 be any row∈ K̃∗R and j0 be any column∈ J∗2 \(K̃∗C ∪ K∗C). Then
the inequality obtained from VII(n + 1) by deletingi0 from K̃∗R is of form (15) with
defining cells(p,q), (m, l ), and defining subsets̃KR = K̃∗R\{i0},KC = K∗C,KR = K∗R,
K̃C = K̃∗C; and hence it is a valid inequality for problem P2(n), and VII(n+ 1) can be
lifted from it.

2. if |K̃∗C| ≥ 2. Let j0 be any column∈ K̃∗C and i0 be any row∈ I ∗1\(K̃∗R ∪ {p}). Then
the inequality obtained from VII(n + 1) by deleting j0 from K̃∗C is of form (15) with
defining cells(p,q), (m, l ), and defining subsets̃KC = K̃∗C\{ j0},KC = K∗C,KR = K∗R,
K̃R = K̃∗R; and hence it is a valid inequality for problem P2(n), and VII(n+ 1) can be
lifted from it.

If r ∗4 ≥ 3, let i0 be any row∈ I ∗2\(K∗R ∪ {m}) and j0 be any column∈ I ∗1\({q} ∪ {l }). If
r ∗1 ≥ 2, let i0 be any row∈ I ∗1\(K̃∗R ∪ {p}) and j0 be any column∈ I ∗1\({q} ∪ {l }). Then
in both these cases the inequality with defining cells(p,q), (m, l ), and defining subsets
K̃C = K̃∗C,KC =K∗C,KR=K∗R, K̃R= K̃∗R is of form (15); and hence it is a valid inequality
for problem P2(n), and VII(n+ 1) can be lifted from it. 2

SinceQn,r1
n1,n2

in Rn2
space of(xi j : i, j = 1 ton) is not a full dimensional polytope (because

of equality constraints (1), (2), (5) in the system of constraints defining it) it is possible that
a pair of inequalities among (3), (12), (15), (21) may actually represent the same facet of
Qn,r1

n1,n2
. As an example, letn = 5, n1 = n2 = 2,r1 = 1. Then the following two inequalities

of the first class with their defining cells in blocksB1, B3 respectively; can be verified to
represent the same facet using the equations

∑5
j=1 x1 j = 1 and

∑5
i=1 xi 5 = 1.

Ineq1: x11+ x13+ x14+ x31− x45− x55 ≤ 1

Ineq2: x35+ x25+ x31− x12 ≤ 1.

However, we have the following proposition.

Proposition 2. Let Ineq:
∑n

i=1

∑n
j=1 ai j xi j ≤ 1 and Ineq2:

∑n
i=1

∑n
j=1 a2

i j xi j ≤ 1 be two
distinct facet-inducing inequalities of the first class whose defining cells lie in the same
block. Then, Ineq and Ineq2 represent distinct facets.

Proof: Without any loss of generality and for ease of presentation we assume the
following:

1. The defining cells(p,q) of Ineq, and(p2,q2) of Ineq2 lie in Bock 1. In particular, let
p = 1 andq = n2− r1+ 1.
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2. LetKR andKC, respectively the defining subset of row and column indices ofIneqbe
as follows:

KR = {n1+ 1, n1+ 2, . . . ,n− 1+ |KR|},
KC = {n− |KC| + 1, n− |KC| + 2, . . . ,n}.

Let x0 be the assignment

x0 = {n2− r1+ 1, n2− r1+ 2, . . . ,n, 1, 2, . . . , r4}, (25)

represented in figure 5 by cells marked with stars. Then clearlyx0 is a feasible assignment
which satisfiesIneq as an equality (sincea1,n2−r1+1 = 1). Now we consider 3 cases
depending on the location of(p2,q2), the defining cell ofIneq2. LetK2

R andK2
C denote

respectively the defining subset of row and column indices ofIneq2.

Case 1: p2 = p andq2 = q, i.e., bothIneqand Ineq2 have the same defining cell. Let
j0 ∈ KC\K2

C (such j0 exists since if|KC| = |K2
C|, thenKC 6= K2

C since Ineq and
Ineq2 are distinct; and if|KC| 6= |K2

C|, then without loss of generality we assume that
|KC| > |K2

C|). Let i0 ∈ I2\K2
R; and letx1 be the assignment obtained fromx0 by

Figure 5. Pictorial representation of the facet-inducing inequalityIneqand the assignmentx0.
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switching columnsj0 and n and rowsn1 + r3 and i0. Then clearlyx1 is a feasible
assignment that satisfiesIneq as an equality (sinceai0, j0 = 0) and Ineq2 as a strict
inequality (sincea2

i0, j0
= −1).

Case 2: (p2,q2) ∈ {(2, n2− r1+ 2), (3, n2− r1+ 3), . . . , (r1, n2)}. Let x2 be the assign-
ment obtained fromx0 by switching columnsq2 and 1. Then clearlyx2 is a feasible
assignment that satisfiesIneqas an equality andIneq2 as a strict inequality.

Case 3: Otherwise, i.e.,(p2,q2) ∈ B1 andq2− p2 6= n2− r1. Then clearlyx0 is a feasible
assignment that satisfiesIneqas an equality andIneq2 as a strict inequality. 2

Using the assignmentx1 in figure 6 (cells with “1” entry marked with a star) in place of
x0, and arguments parallel to those in the above proposition, we can prove that two distinct
facet-inducing inequalities of the second class whose primary defining cells lie in the same
block represent distinct facets ofQn,r1

n1,n2
.

Figure 6. Pictorial representation of a facet-inducing inequality of form (15), and an assignmentx1 to be used
in the proof.
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3. Summary and concluding remarks

We have shown that the general 0–1 problem (9) polynomially reduces to the very special
partitioned case. We have derived two large classes of facet inducing inequalities for the 0–1
integer program (9) in the partitioned case, the number in each class grows exponentially
with the order of the problem. Whereas the first class of facet-inducing inequalities comes
into play for n ≥ 4, the second class plays a role only forn ≥ 6. We are studying the
separation problems for these classes with the aim of using these facet-inducing inequalities
in a branch and cut scheme for solving (9).

These classes together with the non-negativity constraints on the variables do not com-
pletely characterize the convex hull of integer feasible solutions of the problem. Currently
we are also investigating other facet-inducing inequalities for the problem that may lead
to a complete characterization of its integer hull. We are also investigating whether all the
facet-inducing inequalities for this problem can be shown to have coefficients 0,+1, or−1
only.
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