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Abstract. There is a tension in the world between complexity and simplicity. On one hand, we are faced with
a richness of environment and experience that is at times overwhelming. On the other, we seem to be able to
cope and even thrive within this complexity through the use of simple scripts, stereotypical judgements, and habitual
behaviors. In order to function in the world, we have idealized and simplified it in a way that makes reasoning
about it more tractable. As a group and as individuals, human agents search for and create islands of simplicity
and stability within a sea of complexity and change.

In this article, we will discuss an approach based on the case-based reasoning paradigm that attempts to resolve
this tension. This agency approach embraces, rather than avoids, this paradox of the apparent complexity of the
world and the overall simplicity of our methods for dealing with it. It accomplishes this by treating the behavior
of intelligent agents as an ongoing attempt to discover, create, and maintain the stability that is necessary for
the production of actions that satisfy our goals.
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1. Introduction

There is a tension in the world between complexity and simplicity. On one hand, we are
faced with a richness of environment and experience that is at times overwhelming. On
the other, we seem to be able to cope and even thrive within this complexity through the
use of simple scripts, stereotypical judgements, and habitual behaviors. In order to function
in the world, we have idealized and simplified it in a way that makes reasoning about it
more tractable. As a group and as individuals, human agents search for and create islands
of simplicity and stability within a sea of complexity and change.

In this article, we will discuss an approach based on the case-based paradigm that at-
tempts to resolve this tension. This agency approach embraces, rather than avoids, this
paradox of the apparent complexity of the world and the overall simplicity of our methods
for dealing with it. It accomplishes this by treating the behavior of intelligent agents as
an ongoing attempt to discover, create, and maintain the stability that is necessary for the
production of actions that satisfy our goals.

Our framework for the study of agency consists of four parts:

¢ Case-based planning

¢ [earning from failure

¢ Learning from execution-time opportunity

* Stabilizing the environment through enforcement
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Each of these components plays a role in the overall effort to establish a functional cor-
respondence between the internal world of an agent and the complex environments in which
it must function. The starting point, case-based planning, provides the structure by pro-
ducing a framework for learning and reusing standard plans that constitute fixed reference
points in the world. The ability to learn from failure allows a planner to incrementally
search the simplified space of problems that actually arise during execution as opposed
to the far more complex space of those problems that can theoretically arise. Likewise,
the ability to recognize and learn from execution-time opportunity allows a planner to
construct and save plans for the conjuncts of goals that actually arise in a problem space,
while avoiding the problems of exponential search of the entire space of possible conjuncts.
Finally, the ability to stabilize an environment with respect to an agent’s plans and then
enforce the resulting states through policy decisions (McDermott, 1978) allows the creation
of niches in which the complexity of the world is reduced, thus making it easier to reason
about and act within them.

Together, these four different aspects of planning and execution provide a mechanism
for learning from interactions with the world. The theory of agency will be successful only
to the extent that it provides a mechanism for learning from experience; in other words,
planning is only possible when supported by learning.

In the sections that follow, we will first present a taxonomy of the different kinds of com-
plexity that an intelligent agent must confront in the world, and then discuss how each
of these four components addresses this complexity. We will then discuss particular aspects
of case-based planning, learning from failure, and learning from opportunity. This discus-
sion will concentrate on two systems: CHEF, a case-based planner, and TRUCKER, an oppor-
tunistic planner.

2. Problems in planning: The need for learning

Most Al work on problems of autonomous agency has been within the classical approach
to planning and problem-solving, where a fairly strict separation between planning and
execution was often assumed. In this view, theories of planning emphasized exhaustive pre-
planning in order to guarantee that a correct plan would be found (if one existed). Planners
in this paradigm required certain constraints (rising out of the closed-world assumption
and STRIPS):

* The world will be stable; it will behave as projected.

* Time consumed in planning is independent of the time that can be devoted to execution,
so that the efficiency of the planner has no side-effects on the feasibility of the constructed
plan.

¢ The information available to the planner is complete, and execution will be flawless.

® Any initially correct plan will remain correct and can in fact be carried out.

As we begin to relax these assumptions, new issues arise that planners operating under

these constraints were able to avoid. It is the problems that appear in the absence of these
restrictive assumptions that motivate departure from the classical view of planning and action.

86



OPPORTUNISM AND LEARNING 281

¢ The Immediate Complexity Issue
If a planner searches for a correct and safe plan by projecting forward the effects of early
steps to compare with preconditions of later steps, goals, and preservation conditions,
the computational complexity can rise to a high order. Chapman (1985) has shown the
problem to be NP-hard, and undecidable in the worst case. Dean et al. (1987) have also
shown, in the construction of FORBIN, that average case behavior is also far too time-
consuming to be practical.

¢ The Overall Complexity Issue
As a planner interacts with the world, it is confronted with a stream of goals, or sets
of conjunctive goals, rather than independent problems. If these are all treated singly,
independently, the total planning and execution effort would be at least the sum of the
separate costs (possibly worse, due to unfavorable interactions).

¢ The Planning/Execution Crowding Issue
If planning and execution are to be carried out by the same agent, essentially without
parallelism, then time consumed in planning can deplete the time available for execution.
This can create a situation where some series of actions would be a correct response
to the goals and the world state, and could be feasibly executed within the total time
available, but become infeasible within the time left after planning.

¢ The Costly Information Issue
The planner cannot count on having complete information about a domain, either its
underlying causal “physics” or its current state. To minimize the effects of this informa-
tion shortage (namely, inefficient plan construction and inaccurate plans), the planner
should have information-gathering as a background goal. But understanding the world
correctly, and storing new information in a usable form, can be expensive operations.
They must be carried out in the normal course of execution if they are to be a help and
not a hindrance.

¢ The Execution-time Failure Issue
A plan that looked correct when it was constructed may turn out to be incorrect during
execution. This may be because conditions in the world have changed in the meantime,
invalidating the preconditions of a plan step, or because the plan was incorrect in the
first place, based on incorrect assumptions in the planner’s limited world-knowledge.
To cope with this, a planner must have some facility for replanning, recovery, and repair.

¢ The Execution-time Opportunism Issue
A corollary to the Execution-time Failure issue is the Execution-time Opportunism issue.
Because the world does not necessarily match the planner’s projection of it, it is often
the case that oportunities to satisfy goals are missed at planning time and must be noticed
and exploited at execution time.

These issues are at the core of planning and activity, but what, one may ask, do they
have to do with learning? The answer to this is simple: learning from planning and exe-
cution is the solution to the problems posed by these issues.

In general, we propose that the only way to deal with the intractability of exhaustive
reasoning within complex domains is to integrate the tasks of planning and learning into
a single-agent architecture. Rather than suppose that it is possible to construct functional
plans from a static knowledge base, we suggest that a dynamic case base of plans and their
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effects be produced and used incrementally. In this way, a planner can improve itself over
time through the understanding of its own success and failure of actions taken within a
given domain.

The existence of the learner makes the incremental improvement of the planner possible,
while the control of the planner gives the learner the guidance it needs to construct only
those concepts that are useful to the agent.

As we stated in the last section, there are four learning issues that must be addressed
to deal with these problems:

» Case-based planning, to support the reuse of plans and deal with the problems of plan
complexity and execution crowding.

¢ Learning from failure, to avoid the problem of execution-time failure.

¢ Learning from opportunity, to exploit the optimizations learned from execution-time
opportunities.

» Stabilization of the environment through enforcement (Hammond, 1991), which allows
greater reuse of existing plans and avoids much of the cost of information gathering.

Planning and learning are one and the same: To ignore this is to ignore the complexity
of the former and the functionality of the latter. Planning can only be made possible when
done in the context of a system that incrementally adapts itself so as to learn about the
plans, failures, and opportunities that make up the structure of a domain. Learning is only
feasible when knowledge plays a functional role in a performance system, such as a planner
that is able to inform the learner when that knowledge is faulty.

In the sections that follow, we will move back and forth between discussion of planning
and learning. While we do this, it is important for the reader to understand that there is
no division between the two, but rather, that they are fully integrated, and that each informs,
guides, and supports the other.

3, Case-based planning

One technological method that addresses the problems of overall complexity, execution-
time failure, and costly information comes out of emerging work in case-based reasoning
(Alterman, 1986; Bareiss, 1989; Carbonell, 1981; Hammond, 1989; Kolodner, 1984,
Kolodner & Simpson, 1989; Martin, 1990; Owens, 1990; Schank, 1982). This work has
suggested an approach to problem-solving that may be a tractable alternative to the more
traditional rule-based approaches (Fikes & Nilsson, 1971; Newell & Simon, 1972; Sacerdoti,
1975; Stefik, 1981). The idea of case-based reasoning also seems to correspond to the intu-
ition that people make use of past experience in planning for new goals (Byrne, 1977).

Case-based planning, a special case of case-based reasoning, proposes that the way to
deal with the combinatorics of planning and projection is to let experience tell the planner
when and where things work and do not work: rather than replanning, a planner should
reuse past successful plans, rather than projecting the effects of actions into the future,
a planner should recall what the outcomes were in the past; rather than simulating a plan
to identify problematic interactions, a planner should recall and then avoid those that have
cropped up before.
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The methodology of case-based planning is aimed at tackling different aspects of plan-
ning that have been traditional bottlenecks (plan generation, projection, optimization) by
looking for way to amortize the cost of system’s reasoning efforts through storing and reus-
ing the results of the problem solving. The core notion of case-based planning is that learn-
ing through planning, execution, and recovery from failure is essential to the development
of domain theory (a case library) that covers the space of plans for actual goals while allowing
the planner to avoid those execution problems that arise when trying to run those plans.

The results of this methodology are systems with the following features:

* New plans are built from old plans.

¢ Projection is replaced with anticipation based on experience rather than simulation.

¢ Plans are indexed and retrieved by reference to the goals that they satisfy, the execution
problems that they avoid, and the features in the world that have been associated with
them in the past.

¢ Knowledge of the effects of individual operators is not used in planning per se.

* Execution failures lead to learning.

® Execution opportunities lead to learning.

3.1. A framework for case-based planning

In case-based planning, a plan library reflects the structure of a domain (e.g., the goals
that tend to arise in conjunction, the interactions between steps that tend to occur, and
the plans that resolve them), and is built up incrementally through learning.

This framework suggests seven case-based planning processes:

¢ An ANTICIPATOR that predicts execution problems! on the basis of the failures that
have been seen by the planner in the past.

¢ A RETRIEVER that searches a plan memory for a plan that satisfies as many of the
current goals as possible while avoiding any execution problems that the ANTICIPATOR
has predicted.

¢ A MODIFIER that alters the plan found by the RETRIEVER to achieve any goals from
the input that it does not satisfy.

* A PROJECTOR that uses cases indexed by plans rather than goals to predict outcomes.

¢ A STORER that places new plans in memory, indexed by the goals that they satisfy and
the execution problems that they avoid.

® A REPAIRER that is called if a plan fails. It is here that we argue that causal knowledge
is applied—if it is applied at all.

¢ An ASSIGNER that uses the causal explanation built during repair to determine the fea-
tures that will predict this failure in the future. This knowledge is used to index the failure
for later access by the ANTICIPATOR.

The flow of control through modules is simple (figure 1). Goals are handed to the planner
through the ANTICIPATOR, which predicts any execution problems that might occur as
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Figure 1. Flow of control through a case-based planner.

a result of planning for them. If a problem is predicted, a goal to avoid it is added to the
set of goals to be planned for. Once this is done, the goals are handed to the RETRIEVER,
which searches for a plan that satisfies as many goals as possible, including any goals to
avoid the execution problems predicted by the ANTICIPATOR. In order to do this, the
RETRIEVER makes use of a memory of plans indexed by the goals they satisfy and the
execution problems they avoid.

Once a baseline plan is found, the MODIFIER alters it to satisfy any goals that are not
already satisfied. The MODIFIER does this using a set of modification rules that are indexed
by the goal to be added and the type of plan being altered. It also uses a set of critics for
problematic items in the domain.

Once a plan reaches this stage, it is run. If the plan runs without fail, it is handed directly
to the STORER, which indexes the plan in memory by the goals that it satisfies. If these
are failures, the plan is handed to the REPAIRER for repair. The REPAIRER builds a causal
description of why the plan has failed and then uses that description to find the repair strat-
egies that will alter the situation and fix the fault. After the plan has been repaired, it is
placed in memory by the STORER, which indexes the plan by the goals it satisfies and
the execution problems it now avoids.

Because an execution problem has to be anticipated before it can be planned for, however,
the case-based planner has to do more than just store plans by the fact they solve particular
problems. It also has to build up a knowledge base that can be used by the ANTICIPATOR
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to infer problems in advance on the basis of the features in the world that predict them.
The module that does this is the ASSIGNER. The ASSIGNER is called whenever a failure
occurs, and it builds links between the features that have caused the failure and a memory
of the failure itself. These links are later used by the ANTICIPATOR to predict failures
so that the plan can be found that avoids them.

These seven modules define case-based planning. The RETRIEVER, MODIFIER, and
STORER make up the central planning loop that allows old plans to be modified in service
of new goals. The PROJECTOR and REPAIRER are required to identify and repair plans
that fail. The ASSIGNER and ANTICIPATOR provide the learning and application modules
that allow the planner to avoid making mistakes that it has already encountered. This organ-
ization defines an anticipate and avoid planner that can predict execution problems before
they occur, apply a wide variety of repairs to faulty plans that it does create, and store
plans that deal with problems so that they can be used when those problems arise.

3.2. CHEF

One example of this type of system is CHEF, a case-based planner in the domain of Szechwan
cooking (Hammond, 1989). Its input is a set of goals for different tastes, textures, ingre-
dients, and types of dishes, and its output is a single recipe that satisfies all of its goals.
Its algorithm is to find a past plan that satisfies as many of the most important goals as
possible and then modify that plan to satisfy the other goals as well.

Before searching for a plan to modify, CHEF examines the goals in its input and predicts
any failures that might rise out of the interactions between the plans for satisfying them.
If a failure is predicted, CHEF adds a goal of avoiding the failure to its list of goals to satisfy,
and this new goal is also used to search for a plan. For example, if it predicts that stir
frying chicken with snow peas will lead to soggy snow peas because the chicken will sweat
liquid into the pan, it searches for a stir fry plan that avoids the problem of vegetables
getting soggy when cooked with meats. In doing so, it finds a past plan for beef and broc-
coli that solves this problem by stir frying the vegetable and meat separately. The important
similarity between the current situation and the one for which the past plan was built is
that the same problem rises out of the interaction between the planner’s goals, although
the specific goals themselves are different.

There are two important points about the anticipation of problems by case-based planners.
The first is that CHEF indexes its plans by both the goals that they satisfy and the execution
problems that they avoid. This means that the anticipation of a problem can be used to
find a plan in memory that avoids it, while also satisfying the goals that the planner has
been given. The second is that the ANTICIPATOR predicts execution problems that will
rise out of the current goals before any other planning is done. This means that the predic-
tion of a problem is made before any planning is done. So CHEF is able to anticipate and
then avoid problems before they actually arise.

The result of this strategy is that CHEF incrementally improves its ability to predict prob-
lems and create plans in response to its own failures. Its attempts at satisfying its own goals,
successful or not, result in an improvement in its ability to do so in the future.
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3.3. Learning from planning

Case-based planning depends on learning. Learning new plans allows a planner to shape
its understanding of the domain to those goals that typically tend to co-occur within it.
Learning specific repairs, such as stir-frying beef and broccoli at separate times, allows
a planner to avoid errors that it has experienced previously. Learning the features that predict
such errors further allows a planner to anticipate and thus avoid the problems by recalling
debugged plans or reapplying newly learned repairs.

Without learning, a case-based system is dependent on hand-tailored cases and modifica-
tion rules if it is to avoid the complexity of search through the space of potential plans.
With learning, however, a case-based planner can construct and then search the smaller
libraries associated with the plans that cover the actual problem space it confronts.

4, Opportunism and memory

Despite addressing some of the problems of traditional planning, case-based planning still
shares some of its basic assumptions. The most central of these is the view of action as
decomposable into separate planning and execution phases, where the execution phase is
in some sense faithfully carrying out the dictates of the computation object called the plan.
There are tasks and domains where this decomposition is still tenable. For example, ROENT-
GEN, a planner in the domain of radiation therapy, uses these separate phases; in fact, the
domain has distinct job titles for the planners and executors. The desirability of this separation
is due both to the high cost of real-world failure and to the existence of reliable simulation
programs against which plans can be tested. Yet in recent years there has been a realization
in the planning community that the domains that will support such a planning—execution
separation are much rarer than had previously been supposed.

At a minimum, exhaustive pre-planning for a set of goals seems to require that an agent
be aware of all of its goals at plan time and that it have complete knowledge of the physics
and other agents in his environment. Unfortunately, this is simply not true of most interesting
domains or situations that an agent must confront. It is this problem that led us to believe
that execution-time failure was inevitable and pushed us in the direction of the work on
coping with and learning from failure that we discussed in the last section. But failure
is only part of the story. The other part is the issue of execution-time opportunity. Just
as a system that cannot fully predict the future must contend with those futures in which
plans fail, it must also deal with those futures in which they succeed in unanticipated ways.
In order to be effective, it must also cope with and iearn from opportunities that were not
predicted in much the same way that it deals with failures.

The difference between the approach we discuss here and the one taken in CHEF lies
in the relationship between expectations and plans. In CHEF, we studied expectation failures
(Schank, 1982) that corresponded to actual plan failures. There we looked at the utility
of learning from failures by changing the planner’s knowledge of plans and repairs as well
as its expectations about when previously experienced failure would tend to recur.

In this section, we will look at the issue of learning from expectation failures that are
failures to anticipate planning opportunities. In CHEE, we argued that a planner has to
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respond to failure by repairing its current plan and by repairing the knowledge base (its
expectations as to the results of its actions) that allowed it to create the plan. In this sec-
tion, we argue that execution-time opportunities can be responded to in a similar way: the
planner should exploit the current opportunity and change its expectations so as to properly
anticipate and exploit the opportunity in the future.

The approach to the problem of execution-time opportunism that we have used in both
TRUCKER and RUNNER uses episodic memory to organize, recognize, and exploit opportuni-
ties. Briefly, the algorithm includes the following features:

¢ Goals that cannot be fit into a current ongoing plan are considered blocked, and work
on them is suspended (Schank & Abelson, 1977).

¢ Suspended goals are associated with elements of episodic memory that can be related
to potential opportunities.?

¢ These same general memory structures are then used to interpret events in the world
so that the planner can make routine execution-time decisions.

* As clements of memory are activated by conditions in the world, the goals associated
with them are also activated and integrated into the current processing queue.

In this way, suspended goals are brought to the planner’s attention when conditions change
so that the goals can be satisfied.

Because the recognition of opportunities depends on the nature of its episodic memory
structures, we call the overall algorithm presented here opportunistic memory.

Plan failures are indicators of when a system needs to learn about negative interactions
that might be avoided. Likewise, execution-time opportunities are indicators of when a
system needs to learn about positive interactions that might be exploited. Here again, plan-
ning, execution, and learning are interwoven into a system that provides itself with feedback
about its own knowledge base through the active application of that knowledge base in
creating and running plans.

4.1. Opportunistic planning

Our approach to opportunism builds on two views of opportunism in planning—that of
Hayes-Roth and Hayes-Roth (1979), and that of Birnbaum and Collins (1984).
Hayes-Roth and Hayes-Roth presented the view that a planner should be able to shift
between planning strategies on the basis of perceived opportunities, even when those oppor-
tunities are unanticipated. Thier model, which they called spportunistic planning, consisted
of a blackboard architecture (Lesser et al., 1975) and planning specialists that captured
planning information at many different levels of abstraction. These specialists included
domain-level plan developers (e.g., specialists that know about routes, stores, or conditions
for specific plans) as well as more strategic operators (e.g., specialists that would look
for clusters of goals and goals with similar preconditions). The planner could jump between
strategies as different specialists “noticed” that their activation conditions were present.
For example, in scheduling a set of errands, a specialist with knowledge of clustering of
errands by location could be invoked while another specialist was scheduling them by goal
priority. In this way, the planner could respond to opportunities noticed at planning time.
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Unfortunately, this view of opportunism includes no model of execution. As with many
planners, all planning is done in the absence of the ability to execute the plan, and thus
respond to the effects of execution. It is a model of opportunism at planning time rather
than at execution time, and as such fails to capture the behavior we are interested in modeling.

More recently, Birnbaum and Collins (1984) presented a view of opportunism that does
include a role for execution. Under their model, goals are viewed as independent processing
entities that have their own inferential power (e.g., demons). When a goal is suspended
because of resource constraints, it continues to examine the ongoing flow of objects and
events that pass by the agent. If circumstances that would allow for the satisfaction of the
goal arise, a demon associated with the goal recognizes them and projects a plan into the
current action agenda. They present a simple yet compelling example of the behavior that
interests them in a description of an agent trying to obtain both food and water in the wild.
In their example, the agent suspends the goal to find water while trying to satisfy the goal
to find food. While searching for food, however, the agent jumps over a stream and is able
to recognize that the stream affords an opportunity to satisfy a suspended goal.

Birnbaum and Collins argue that this is managed by giving the suspended goal the ability
to examine the current situation and initiate inference. They argue that this must be the
case, since there can be no way to decide, at the time of suspending a goal, the exact condi-
tions under which it should be activated. Any planner that has to store and then activate
suspended goals will miss opportunities that it could not anticipate.

Birnbaum (1986) has argued further that indexing of suspended goals by descriptions
of the conditions that allow their satisfaction is an unworkable approach. Not only will
the indices be too complex, but the overall system will have to constantly compare the cur-
rent state of the world to the features used to index suspended goals in what amounts to
a memory of unsatisfied tasks. As Birnbaum notes, this is hardly opportunism. However,
Birnbaum’s arguments against indexing apply to models that separate representations of
suspended goals from the planner’s memory and understanding of the world.

‘We share Birnbaum and Collins’ approach to explaining complex opportunistic behavior
in terms of suspended goals. We suggest, however, that this behavior does not result from
goal demons constantly monitoring the world, but instead, that indexing suspended goals
provides a better account of recognizing opportunities during plan execution. This is possi-
ble because there is no distinction in our model between types of memory—suspended vs.
achieved goals. Instead, there is only one memory base that is used to understand the world
and to store suspended goals along with any other information.

Thus, the action of recognition is the same as the act of indexing: The processing done
in attempting to recognize the current planning environment is the same processing that
will activate suspended goals waiting under appropriate indices in memory. The advantage
to this approach is that prepared indices make the recognition of later opportunities easy
and effortless, because they can be formulated so as to utilize information that results from
normal, default inferencing about the world. “Smarter” indexing can provide a solution
to the problem of recognizing future opportunities for past goals by anticipating the cir-
cumstances that comprise an opportunity at the time of the impasse.
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4.2. An example of opportunism

Before we go any further, it is important to understand an example of the type of behavior
we want to capture. Although this example is couched in terms of a story, we are interested
in modeling the planning bebhavior described, not in understanding the text.

On making breakfast for himself in the morning, John realized that he was out of orange
juice. Because he was late for work he had no time to do anything about it.

On his way home from work, John noticed that he was passing a Seven-Eleven and
recalled that he needed orange juice. Having time, he stopped and picked up a quart
and then continued home.

There are a number of interesting aspects to this example. First of all, the planner is
confronted with new goals during execution as well during planning. This indicates com-
plete preplanning is impossible. Second, the planner is able to suspend planning for a goal
before deciding exactly how to satisfy it. In effect, he is able to say “I don’t have all the
resources needed to completely integrate a plan for this goal into my current agenda.” Using
Schank’s vocabulary, we call this the ability to suspend a goal (Schank & Abelson, 1977).
And third, although the goal is suspended, the planner is able to recognize the conditions
that potentially lead to its satisfaction? The final element to this example is more subtle:
in order to decide to suspend planning for the goal to possess orange juice, John has to
do some reasoning about what a plan for that goal is lacking—lack of time to go to the
store. As a result, he has a clear idea, at planning time, as to what an execution-time oppor-
tunity would look like.

In this example, our opportunistic memory algorithm translates into the following:

® John’s goal to possess orange juice is blocked by lack of time to run the default plan.
He decides, on the basis of the preconditions on his plan to possess orange juice, that
being at a store would constitute an opportunity to get the orange juice. As a result, he
links the suspended goal to the condition of being near a store.

¢ While coming home, he sees and recognizes a Seven-Eleven. This activates the goal to
obtain orange juice that he associated with this condition earlier in the day.

© He then tests the preconditions of the plan and merges it into his current agenda.

In our example, having money, being at a grocery store, and having time are all pre-
conditions for buying orange juice. But there is a difference between them, in that having
money is a normative condition and as such does not constitute an opportunity, while being
near a store is a non-normative precondition and as such does constitute an opportunity.

The notion of normative here is based on McDermott’s idea of policies (McDermott,
1978) that maintain states in the world by generating goals when those states are violated
and our own notion of enforcement (Hammond, 1991). If a state is associated with a policy
(and as such is always maintained), then it can be considered a normative state. Likewise,
if a state has been established and is under enforcement, it too can be considered norma-
tive. Always having money on hand is the result of a policy decision that causes a goal
to get more money whenever the local supply drops below a certain threshold. As a result,
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the state of having money can be assumed by a planner that maintains such a policy. Likewise,
enforcing a state such as keeping the coffeec maker plugged in allows a planner to assume
this state as well. In general, then, the world can be roughly divided into those states that
the planner enforces, permanently stable states, and those that are in flux.

First, the planner suspends the blocked goals by associating them with the elements of
memory that describe potential opportunities. This requires that the planner have access
to a vocabulary that differentiates between the different types of planning problems (e.g.,
resource limitations, time constraints, and the planner’s limitations).

Next, the planner executes the plans for its active goals. During execution, it has to moni-
tor the ongoing effects of its plan as well as the effects of the plans of others in its world.
The representational elements used to do this parsing are the same elements with which
suspended goals have been associated. As a result, the planner’s general recognition of
a situation that constitutes an opportunity can immediately activate any goals that have pre-
viously been associated with that situation.

Finally, any activated goals are integrated into the current set of scheduled steps, and
the plan is executed. This requires reasoning about resources and protections, as well as
the effects of actions.

4.2.1. Suspending blocked goals

In general, opportunities to run plans can be derived from the preconditions on each of
the steps of a plan. A planner could, given time, move through a plan step by step and
collect the preconditions that have to be true at that point in the plan. But this would require
the examination of many conditions that are not particularly useful in the context of oppor-
tunism. Some preconditions for obtaining orange juice—having money, having time, and
being able to carry the carton—are not useful if we are looking for the features that will
allow us to recall the suspended goal at the appropriate time. This is because there are
more constraints on “‘opportunities” than on simple preconditions. These constraints include
features such as ease of recognition, likelihood of occurrence, and predictiveness.

For example, having money is a strong precondition for buying orange juice, but it is
also a normative condition. As a result, it is a bad predictor of an opportunity to satisfy
the goal to have orange juice. If the suspended goal is tied to having money, the planner
will be reminded of the goal far too often.

Rather than test all preconditions of a plan for these constraints, we propose a taxonomy
of opportunity types to derive the conditions that will serve as opportunities to satisfy the
plan. This taxonomy guides the planner’s search through the plan for appropriate precondi-
tions. Once a plan has been analyzed in terms of this taxonomy, it is annotated with pointers
to the features associated with opportunities to run it. Features are removed from this list
if they cause the goal and plan to be recalled at inappropriate times.

This taxonomy takes the form of a set of tests or questions that the planner asks of a plan:

¢ Is there a special® resource that is needed to run the plan?
If so, index the goal in terms of the resource.
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¢ Is there a special tool that is required to run the plan?
If so, index the goal in terms of the tool.

¢ Is there a special location indexed with the plan?
If so, index the goal in terms of the location.

¢ Is there a special agent or skill associated with the plan?
If so, index the goal in terms of the agent or skill.

¢ Is there a specific time constraint associated with the plan?
If so, index the goal in terms of the time.

There are also special-purpose rules for suspending particular goals. Possession goals, for
example, are associated with the object of the possession.

Using these rules, it is possible to associate in memory the blocked goal to posssess
orange juice with the location, GROCERY-STORE, and the object itself, ORANGE-JUICE.
This association takes the form of a SUSPEND link from the representations of these items
to the suspended goal itself. Associating the goal using the least likely conditions as indices
assumes that most of the other normative conditions will be true whenever the suspended
goal is activated. Thus, the other conditions are checked when the goal is recalled, but
they are not linked with or used to index to the suspended goal in memroy.

4.2.2. Recalling suspended goals

An agent usually has a wide variety of planning options for any one goal. In our example,
John can pick up orange juice at any grocery store, not just a particular one. It is necessary,
then, to be able to recognize a wide variety of situations as opportunities for goal satisfaction.

To deal with this, we have been using a version of Martin’s (1990) DMAP parser, a general-
purpose recognition system. DMAP uses a marker-passing algorithm in which two types
of markers are used to activate and predict concepts in an ISA and PART-OF network.
Activation markers are passed from primitive features up an abstraction hierarchy. For
TRUCKER—which functions in a “neighborhood world” of roads, signs, and buildings—
these features include type descriptions such as “road,” “wall,” *“window,” and “sign,”
but no tokens such as “the Seven-Eleven on Cornell and 47th.” When any PART-OF a
concept is active, prediction markers are spread to its other parts. When a predicted con-
cept is handed an activation marker, it becomes active. Likewise, when all parts of a con-
cept are activated, the concept itself is activated.

For opportunistic planning, we have added a new type of link to the memory structures.
This link associates suspended goals with concepts that represent opportunities to achieve
them. Pointing from concepts to goals, this SUSPEND link is traversed by any activation
marker that is placed on the concept. Consequently, the activation of a concept also acti-
vates any suspended goals associated with it.

In our example, the suspended goal to get the orange juice is associated with the concept
representing “the planner is at a grocery store.”” As the world is parsed, a Seven-Eleven
is recognized as a sequence of “parking lot,” “building,” and “Seven-Eleven sign.” Because
DMAP is passing activation markers up ISA links, the Seven-Eleven is recognized as a
particular Seven-Eleven, an instance of Seven-Elevens in general, a CONVENIENCE-
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STORE, a GROCERY-STORE, and a STORE. While the suspended goal is not directly
associated with the concept ‘‘Seven-Eleven,” it is associated with GROCERY-STORE. So
the recognition of the Seven-Eleven causes the activation of the suspended goal. In general,
we can use this property of DMAP to recall goals associated with general characterizations
of opportunities through the recognition of specific situations.

The approach here is straightforward. In order to execute a plan, the low-level features
must be disambiguated into tokens representing specific objects in the world. As this is
done, each token is checked for an associated goal. If any goal is found, it is considered
a candidate for immediate satisfaction.

Note that we are not arguing that we will notice all instances of opportunities for satisfy-
ing the goal. This approach also predicts that some actual opportunities will be missed
by the processor, if the opportunities occur in a form that could not be anticipated at the
time of the goal block. We will only catch those that fall within the standard set of plans
for goal satisfaction. Truly unique oportunities will be missed simply because this techni-
que is aimed at recognition of known solutions rather than creation of new ones.

4.2.3. Exploiting opportunities

Once a suspended goal is reactivated, it has to be evaluated for integration into the current
execution agenda.

The integration is easier than expected because many of the planning steps can be ignored
in developing the new plan. In our orange-juice example, the steps required to get the plan-
ner to a store can be ignored, in that being at the store is the condition that activated the
goal in the first place. But the planner can also ignore other steps; in particular, the steps
that are used to “recover” from the precondition of being at the store once the plan is
over can be ignored. Because the planner did not need to run the steps in the GROCERY-
STORE plan to get to the store, it will not have to run the steps in that plan that will get
it away from the store. In general, precondition/cleanup steps will occur in pairs that can
be cancelled together. This is because the planner knows that the active plan must include
the same pair, and need not be concerned with the part of the recalled plan that includes it.

The remaining steps—going into the store, buying the orange juice, and exiting—can
be integrated in a fairly traditional way. The planner checks the preconditions not set by
the activation conditions, and it notes the use of resources and their interactions with exist-
ing protections. The final product is a small change in the overall plan that takes the plan-
ner into the store for a moment before resuming its trip home.

4.3. Predicting opportunities

In addition to being a functional requirement for an agent without complete knowledge of
the world, the ability to recognize opportunities to satisfy goals relates to the background
goal of gaining costly information about the world. Just as in the case of execution-time
failure, an unexpected opportunity may indicate a chance for learning so as to improve
future performance. This is particularly true if there is a good reason to believe that the
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conditions that produced the opportunity will recur, or can be induced from experience to
recur. Just as failure-driven learning is an alternative to exhaustive projection in debugging
of conjunctive goal plans, learning from encountered opportunities presents a method for
constructing conjunctive goal plans without complete search of the space of possible plans.

This is best understood in the context of an elaboration of our ‘“buying orange juice”
example. The plan for this goal is simple: go into the store, find the orange juice, buy
it, and go home. During the execution of this plan, a planner will have to move through
the store looking for the juice. As he does so, he may see a bottle of milk and recall the
need for it. He also may recall that he had run out of aluminum foil as well.

At this point, he does what any optimizing planner should do: he merges the separate
plans for obtaining milk, orange juice, and aluminum foil into a single plan for the conjunct
of goals. He buys them all at once while at the store, rather than buying them one at a
time and returning home with each.

Here the planner has three options for storing the new plan in memory: he can forget
that this particular version of the GROCERY-STORE plan exists, he can save the entire
plan that satisfies all three goals, or he can reason about what parts of the plan should
be retained and how to index the resulting plan in memory.

The first option is clearly wrong. This is a useful optimization of three separate instances
of the GROCERY-STORE plan and could easily be re-used if these goals arise again.’ The
second option is better, but ignores that fact that the cycle of use of aluminum foil (based
on a combination of the rate it is used, amount purchased, and non-perishable status) is
much longer than the cycles of use for either the milk or the orange juice. A plan for the
entire conjunct, then, is going to be of little use.

What seems to make the most sense is the third option—decide which parts of the plan
should be retained and where the resulting structure should be indexed. We are proposing
that blocked goals are encoded and indexed in memory so as to be recalled under more
favorable solution conditions. That is, one anticipates features related to circumstances where
success would be possible, encodes the blocked goal into memory with those features, and
retrieves the goal from memory again when those features actually occur in the world.
The indexing of goals, then, must be tied to the features believed to be related to successfully
achieving the goal under later circumstances. Dormant goals recognize opportunity by wait-
ing for them in the “right place” in memory; if those features are activated later, the goal
will be reactivated among the more favorable conditions. We call this process predictive
encoding, where the features that indicate the relevance of the plan are anticipated and
used to index the plan in memoryS$

With the predictive encoding process, a planner takes this shopping experience and uses
it to form a new plan to pick up milk when it is at the store getting orange juice—without
also picking up aluminum foil each time as well. The rationale for this choice of items
to be included in this plan is clear: Given the rate of use of orange juice and milk, there
is a good chance that at any given moment you may be out of either. Given the rate of
use of aluminum foil, however, there is little chance that at any one time you will need
more of it. The plan for buying all three items is not constructed for the simple reason
that the cycle of use and buying for the three items cannot be coordinated. While the cycle
for milk and orange juice can be brought together, the use cycle for the aluminum foil is
so much longer that there is no way to bring it into line with the other two.
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At this point, it is not enough to create the plan and associate it with the conjoined goals
of wanting to obtain milk and juice. This would allow the planner recall this plan when
both goals are active, but would not give it a plan that assumes a set of goals is active
in the presence of any one of them. What we really want is to have a plan that is activated
when any one of the goals arises, and then checks for the existence of the other goals—that
is, a plan that includes knowledge of the other plans with which it is typically merged.

To perform predictive encoding, the planner faces a two-fold task. It must evaluate the
likelihood that a similar conjunction will ever arise again—i.e., determine if the plan is
worth saving at all, and which goals in the initial conjunct should be included. Then it
must determine the set of features that predicts the presence of the conjunct. In the language
of case-based planning, it must determine how to index the plan in memory so that it will
be recognized in appropriate circumstances. In the extreme case—and when combined with
some enforcement (Hammond, 1990c)—these plans will converge to become a regularly
performed trip to the grocery store.

The problem of how to learn the predictive indices that indicate when an opportunity
is relevant can be approached either empirically or analytically. The task can be done em-
pirically by trying the new plan when any one of the goals arises, and removing links be-
tween it and those goals that do not predict the presence of the other goals. This is, in
essence, the method implemented in the program IPP (Lebowitz, 1980). Or it can be done
analytically, using explanation-based learning methods to construct explanations for why
the goals should or should not be expected to arise in concert. Regardless of the sophistication
of the reasoning involved in deciding what conjoined plan to save, though, the crucial point
is that the possibilities for conjunction are suggested by occurrence in the world, and not
by projection methods.

The issue here is not so much the nature of the algorithm used to make this decision
as much as the effect that the decision has on learning. The predictive encoding process—
the interaction between planning and learning processes—results in a learner that saves
only those plans for conjuncts of goals that have been demonstrated to arise during execu-
tion. The result is a learning system that builds up a corpus of plans for the conjuncts of
goals that will tend to arise in the course of its execution.

5. An implementation of oppertunistic memeory: The TRUCKER program

Our first experiments with an implementation of opportunistic memory were in the TRUCKER
program. In terms of the taxonomy discussed in section 2, this project was most concerned
with the planning/execution crowding problem and with the run-time recognition of oppor-
tunities, As with the more general discussion of opportunistic memory, the discussion here
relates to the opportunities for learning that a memory-based reasoning system provides.

TRUCKER is a University of Chicago planner that interacts with a simulated world in order
to test out its plans and learn from both failure and success. Its domain is a UPS-like pickup
and delivery task in which new orders are received during the course of a day’s execution.
Its task is to schedule the orders and develop the routes for its trucks to follow through
town. A dispatcher controls a fleet of trucks that roams a simulated city or neighborhood,
picking up and dropping off parcels at designated addresses. Transport orders are *“‘phoned
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in” by customers at various times during the simulated business day, and the planner must
see to it that all deliveries are successfully completed by their deadlines.

TRUCKER’s task involves receiving requests from customers, making decisions about which
truck to assign a given request to, deciding in what order given parcels should be picked
up and dropped off, figuring out routes for the trucks to follow, and in general monitoring
the execution of the plans it has constructed. A number of limited resources must be man-
aged, including the trucks themselves, their gas and cargo space, and the planner’s own
planning time. TRUCKER starts off with very little information about the world that its trucks
will be negotiating; all it has is the equivalent of a street map, an incomplete and potentially
inaccurate schematic of its simulated world.

TRUCKER creates new plans using two means: a map and a memory. TRUCKER Uses its
map when it initially builds a route for an area. Once it has built a new route and verified
it by running it in the world, it stores the route in a case memory, indexed by its literal
endpoints as well as by neighborhood and part-of-town discriptors. When it is able to find
a plan for an order in memory, the plan is expanded and placed at the end of TRUCKER's
agenda of actions. TRUCKER never tries to optimize over multiple goals unless it already
has a plan in memory that does so.

TRUCKER optimizes its planning for multiple goals only when it notices an opportunity
to do so during execution. If TRUCKER notices an opportunity to satisfy a goal that is sched-
uled later in the agenda, it stops and reasons about the utility of merging the later plan
with the steps it is currently running. If it is able to construct a plan that is significantly
better than one which treats the plans independently, it uses the new plan. It also stores
the new plan in memory, indexed by each of the separate goals. When either goal recurs,
TRUCKER searches its agenda for the partner goal and uses the plan that it has created for
the pair. The point here is that TRUCKER is able to construct a library of plans for the con-
juncts of goals that will fend to arise, evidenced by the fact that they do arise.

In order to accomplish this, TRUCKER takes even goals placed on the action queue and
treats them as though they were blocked. That is, with the predictive encoding process,
it establishes the conditions that would allow TRUCKER to satisfy the goal, and then associates
the goal with the memory structures that would be active during the recognition of those
conditions. For example, while planning for a pickup at the Sears Tower later in the day,
TRUCKER associates the goal with its internal representation of the Tower. This allows it
to activate and then satisfy the goal if it recognizes the Sears Tower earlier in the day.

TRUCKER’s approach to this task is a departure from conventional scheduling methods.
These methods, however, with emphasis on exhaustive pre-planning, would be inadequate
for this task due to a number of reasons:

* TRUCKER lacks perfect information about its world.

® TRUCKER does not know all of its goals in advance—new calls continually come in that
must be integrated with currently running plans.

¢ Planning time is limited. TRUCKER’s world does not wait for it to complete plans before
new events occur.

¢ Even given perfect advance information, an optimal solution to the problem TRUCKER
faces is computationally intractable. Even scheduling optimal pickup and delivery points
for a single truck is a variant on the NP-hard traveling salesman problem.
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TRUCKER must plan opportunistically, recognizing and acting upon opportunities for goal
satisfaction as they arise, if only to deal with the fact that new goals are presented to it
during the course of execution. Since planning time is limited and plan construction is
costly, we further argue that plans should be stored and re-used as much as possible. Finally,
patterns of opportunity that are recognized once should be learned, and should be easier
to recognize again if they recur.

5.1. Opportunism in TRUCKER

We will illustrate the sort of opportunistic behavior that TRUCKER is capable of with reference
to fragments of output from the program.

TRUCKER controls its fleet of trucks by deciding which trucks should receive given pickup-
and-delivery orders, retrieving or calculating routes for the trucks to follow, and actually
monitoring the progress of the trucks. The trucks are better viewed as effectors of the plan-
ner than as autonomous agents. Time spent planning and monitoring the progress of the
trucks comes from the same budget.

TRUCKER'’s central control structure is a queue-based executor, reminiscent of Firby’s RAP
system (Firby, 1989), with planning and monitoring actions sharing space on the queue.
In addition to planning the agendas for the trucks, and constructing routes for them to follow,
the planner must react to new goals as they come in on the “telephone.”

[Day #1]

7:58:00 AM Planner Action: (ANSWER-TELEPHONE)

7:58:00 AM Planner Action: (HANDLE-NEW-REQUEST REQUEST.41)
--- Planner relating request REQUEST.41 to memory ---
7:58:00 AM Pltanner Action: (TRY-ASSIGN-TO-IDLE-TRUCK
REQUEST .41)

PLANNER assigning request REQUEST.41 to truck #1

In absence of good reasons to the contrary, the planner hands pickup and dropoff orders
to trucks based on availability in the order they come in, and integrates the new order into
the truck’s agenda. In the case where the truck is idle, no real integration is necessary,
and the standard plan of traveling to the pickup point and then to the dropoff point is used.

Starting INTEGRATE-REQUEST REQUEST.41 #1 |IDLE

Resulting new plan: ((GOTO (800 E-61-ST))
(PICKUP PARCEL.42 (850 E-61-ST))
(GOTO (6200 S-COTTAGE))
(DROPOFF PARCEL .42 (6230 S-COTTAGE)))

When TRUCKER receives a new request for a pickup and delivery, it attempts to satisfy the
order using a variety of methods. First it checks all active requests on its trucks’ agendas
for one that has a known positive interaction with the new request, If this fails, TRUCKER
attempts to find a truck that is currently idle to take up the order. If this also fails, TRUCKER
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searches its “desktop” for a suspended request that might be usefully combined with the
new order. If all else fails, TRUCKER is forced to place the request on a queue of orders
waiting for idle trucks and must construct a new route for the truck using its map and cur-
rent information about the available trucks. This takes time away from the planner’s other
activities.

7:58:39 AM *** Truck #2 making delivery at 1450 E-62-ST ***
--- Planner searching memory for route from
(6100 S-WOODLAWN) to (800 E-61-ST) ---
Search unsuccessful.
======== PLANNER consulting map to build route ========
8:03:12 AM *** Truck #1 has a new route: b
((START N 6100-S-WOODLAWN)
(TURN W E-61-ST)
(STOP 800-E-61))
8:03:12 AM *** Truck #1 is starting new route at 6100 block of S
Wood|awn ***
8:05:48 AM *** Truck #1 making pick-up at 850 E-61-ST ***
*** Truck #2 done with delivery ***

Whenever TRUCKER is forced to construct a new route from scratch, it both constructs
the plan and suspends the goal associated with it in memory, using predictive encoding
to anticipate recognition conditions. To suspend a goal, TRUCKER marks its representative
of the goal’s pickup and delivery points with an annotation that there is a goal related to
those locations. Because TRUCKER plans for only one type of goal, it does not have to do
any more reasoning than this to identify good opportunities to satisfy the suspended goals.

TRUCKER ties execution of actions to locations, landmarks, and addresses that it recog-
nizes in the world. It must parse and interpret the objects in the world, since in addition
to planning routes and agendas, it must monitor execution and direct trucks to turn and
stop at appropriate times. It is during this parse that TRUCKER recognizes and recalls previ-
ously suspended goals. A typical TRUCKER plan, when fully expended, is a route in the
form of a list of the turns that have to be made, described in terms of street names and
compass directions. So the plan step (GOTO (920 E-55th)) after a pickup at (5802 S-
WOODLAWN) expands into

(START NORTH (5802 S-WOODLAWN))
(TURN EAST E-57TH)

(TURN NORTH S-CORNELL)

(TURN EAST E-55TH)

(STOP (920 E-55TH))

As TRUCKER moves through its world, it parses the objects at its current location and
responds to any changes that the tokens it has recognized suggest: turning, for example,
when it recognizes the 5700 block of Woodlawn. But TRUCKER does more than this when
it recognizes an individual token. It also checks the token for any annotation of a goal that
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might be associated with it. If one is found, TRUCKER activates the suspended goal and
attempts to integrate it into the current schedule. This allows TRUCKER to easily and effec-
tively activate suspended goals when the opportunities to satisfy them arise. Further, the
overhead on this activation is trivial, in that all that TRUCKER has to do is look for a specific
type of link on each of the objects it recognizes.

The same memory for places and landmarks that is used to tell the trucks when to turn
and where to stop is annotated with the delivery goals that have not yet been satisfied.
When such a location is recognized in the course of executing another delivery, the possibility
of opportunistically satisfying the goal is suggested. At this point the planner is invoked
to construct a new route that satisfies both goals. The following fragment illustrates the
process of noticing the opportunity, the subsequent reassignment of a request to a different
truck, and the invocation of the planner to construct an optimized agenda that incorporates
the opportunity.

8:17:12 AM *** Tryck #1 is starting new route at
800 block of E 6lst Street ***
*** Truck #1 has noticed an opportunity to make the
pickup for request REQUEST .49 ***
*** Request REQUEST.49 is assigned -- Truck
#1 inserting reassignment request in
planner’'s agenda.
*** Noting combination opportunity in memory ***
8:17:45 AM Planner Action: (REASSIGN-BY-NOTI|CED-OPPORTUNITY
REQUEST .49 #1)
--- Reassignment of request REQUEST.49 means that truck #2
need not continue to its destination.
PLANNER assigning request REQUEST.49 to truck #1
Starting INTEGRATE-REQUEST REQUEST.49 #1 NOTICED-
OPPORTUNITY

Current plan: ((GOTO (6200 S-COTTAGE) #{Structure ROUTE 2})
(DROPOFF PARCEL .42 (6230 S-COTTAGE)))
Request-plan to integrate: ((GOTO (6100 S-COTTAGE))

(PICKUP PARCEL.50 (6150 S-COTTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.50 (925 E-63-ST)))
8:17:45 AM *** Truck #1 is stopping in 6100 block of S Cottage
Grove ***
Finishing INTEGRATE-REQUEST REQUEST.49 #1 NOTICED-
OPPORTUNITY
Resulting new plan: ((GOTO (6100 S-COTTAGE))
(PICKUP PARCEL.50 (6150 S-COTTAGE))
(GOTO (6200 S-COTTAGE))
(DROPOFF PARCEL.42 (6230 S-COTTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.50 (925 E-63-ST)))
8:17:48 AM *** Truck #1 making pick-up at 6150 S-COTTAGE ***
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After having noticed the opportunity and suggesting the reassignment, TRUCKER uses
special-purpose techniques tailored to the domain to plan the new agenda. Scheduling the
pickup is trivial, in that a truck is at the pickup location. The difficulty lies in scheduling
the delivery. TRUCKER does this by stepping through each location already scheduled and
finding the section of the route that will be the least altered by the insertion of the delivery.
This can be done even before the exact routes are selected, by using the map and simple
rules of geometry.

In this way the full planner is invoked only when the recognition of an opportunity to
satisfy a pending goal suggests that a combination of delivery orders may be fruitful. The
noticed opportunity is also saved in memory, so that the conjunction may be exploited again
if it reoccurs.

5.2. Reuse and adaptation in TRUCKER

Plans in TRUCKER are routes. They are indexed by the goals that they satisfy as well as
initial locations of the trucks that will satisfy them. When a pickup/delivery pair is given
to the system, it is used to pull a particular plan out of long-term memory, using the specific
locations as indices. If this indexing fails, the particulars are generalized upwards through
BLOCK, STREET-SEGMENT, NEIGHBORHOOD, and CITY-SEGMENT. GOTO steps
in the plan are marked as to whether they control action within each of these designations
or between them. Once a plan is found, the linking sections associated with the level of
generality that was used in the indexing is reused and the rest discarded and replanned
around.

Because trucks move about, their locations are also used in the retrieval of plans in mem-
ory. The segments that are retrieved are adapted and then concatenated together to make
up a new, complete route for the goal set currently under consideration by the planner.

5.3. Learning in TRUCKER

There is considerable regularity and repetition in the orders that the world simulation hands
to TRUCKER. TRUCKER exploits this in a case-based manner, by saving particular constructed
routes, remembering conjuncts of requests that have been profitably combined, and remem-
bering the particular interleavings of steps that these conjuncts produced. When the con-
juncts of goals reoccur, TRUCKER recognizes them as a known conjunct of goals for which
it has a plan and uses the plan for that conjunct that it has saved in memory.

While the final version of TRUCKER did no explicit generalization, the system, like the
CHEF system, created implicit generalization through the indexing process. While the route
information remained very specific, the paths themselves were indexed by address, block,
and neighborhood. This allowed TRUCKER to retrieve and use partially matching paths without
losing any information. Such partially matching plans were then adapted using the same
path finding techniques that were used in the construction of the initial plan.

When TRUCKER receives a request, the request’s long-term record is inspected to see
if there are any notations about combinations with other requests. If so, the planner looks
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to see if the other requests are currently active. If it finds the requests that it has previously
been able to merge with the current one, the plan for the conjunction is added to the agenda
rather than those for the idividual requests. It is important to note that plans for combina-
tion of requests are only activated when all the requests are active.

[Day#2]
8:17:00 AM Planner Action: (ANSWER-TELEPHONE)

--- Planner relating request REQUEST.73 to memory ---
8:17:00 AM Planner Action: (TRY-ASSIGN-TO-USEFUL-TRUCK
REQUEST .73)

--- Truck #1 is pursuing a request that has been
previously associated with route of request REQUEST.73
PLANNER assigning request REQUEST.73 to truck #1
Starting INTEGRATE-REQUEST REQUEST.73 #1 GOING-NEAR

Current plan: ((GOTO (6200 S-COTTAGE)) (DROPOFF PARCEL.72
(6230 S-COTTAGE)))
Request-plan to integrate: ((GOTO (6100 S-COTTAGE))

(PICKUP PARCEL .74 (6150 S-COTTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL .74 (925 E-63-ST)))
Resulting new plan: ((GOTO (6100 S-COTTAGE))
(PICKUP PARCEL .74 (6150 S-COTTAGE))
(GOTO (6200 S-COTTAGE))
(DROPOFF PARCEL.72 (6230 S-COTTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.74 (925 E-63-ST)))

This automatic combination of requests that have been joined in the past will not necessar-
ily lead to an optimal assignment of requests to trucks, at least in a sense of optimality
that ignores the cost of the work done in arriving at the assignment. There is a side benefit
to this standardization, however. Having the planner use existing interleavings means that
the routes between internal points of the schedule can also be reused:

s======= PLANNER consulting map to build route ========

8:17:12 AM *** Truck #1 has a new route: *Hw
((START W 800-E-61)
(TURN S S-COTTAGE)
(STOP 6100-S-COTTAGE))
8:17:12 AM *¥* Truck #1 is starting new route at
800 block of E 61st Street ***
8:17:39 AM *** Truck #1 making pick-up at 6150 S-COTTAGE ***
--- Planner searching memory for route from
(6100 S-COTTAGE) to (6200 S-COTTAGE) ---
Search successful .

=== PLANNER knows route from 6100S-COTTAGE to 6200S-COTTAGE ===
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In TRUCKER, the question of whether or not to save a plan for a new conjunct in memory
is dealt with by keeping statistics on use and reuse of plans. Initial plans are saved, and
then information about false alarms (the plan is suggested and then not used) as well as
successful reuses is stored away in association with the plan. If the level of reuse versus
false alarms falls below a preset threshold, the indexing is altered so as to make it impossi-
ble to access the plan except when both goals that it satisfies are active.

5.4. Analysis and evaluation

Given some regularity in the orders it receives, TRUCKER builds a library of planned routes
and a library of conjoined plans for groups of requests that have occurred together. This
opportunistic noticing of chances for combination is in part forced by the nature of the
task, both because a complete solution is intractable and since action must begin before
all the goals are known. Learning from these encountered opportunities advances TRUCKER’S
background goal of learning about interesting regularities in its environment, and helps
amortize the complexity over the long term of satisfying its goals.

The complexity of planning is amortized across reuses in that TRUCKER needs to create
a plan for a conjunct only once and then reuse it as the goals recur. The only problem
with this is the possibility that it will be saving plans for conjuncts that were only coinci-
dental and will never be seen again. TRUCKER deals with this by keeping statistics on plan
activation and reuse that allows it to discard plans that are being suggested but never verified
and reused. As with all case-based systems, the assumption is that the domain itself is regular
with regard to the goals that will tend to be conjoined. In further work on RUNNER, this
question of reuse is handled by building up explanations as to why the two plans have come
together to begin with. If a repetition can be predicted, then the plan for the conjunct is
saved for reuse. Otherwise it is discarded.

The learning of routes is not particularly interesting from a case-based perspective, since
it amounts to memorization. Because TRUCKER stores constructed routes, it saves planning
time if the same goals recur. The issues of indexing and retrieval are not all that interesting
in TRUCKER’s domain. However, the learning of plans that group requests is more interesting,
partly because the situations in which the stored plans will be reused may be different than
those in which they were originally applied.

This method of learning conjunctive plans confers three sorts of advantages to TRUCKER:

¢ First, there is the benefit of having learned about profitable combinations of goals in
the course of activity that had to be done anyway.

® Second, there is the benefit of having saved the results of more conventional planning
in those situations when there is already an indication of the profitability of combination.

¢ Third, the implicit policy decision to reuse combinations that have worked in the past
reduces the complexity of the remaning planning and scheduling problem. The recur-
rence of particular goals provides a source of stability in the domain; the decision to
use the same plans for those recurring sets provides an additional source of stability.
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The payoff associated with the first and second advantage is immediate and straight-
forward. In the TRUCKER domain, where a major percentage of the orders are stable over
time, certain conjuncts of orders will also tend to be stable and thus predictable. This means
that the plans for those conjuncts can be reused directly, saving both planning time (because
the interactions no longer have to be reasoned about) and execution-time (because an opti-
mized version of the plan for the conjuncts is being applied)

The more stable a domain with respect to the goals that will tend to arise, the more
advantage there is to reusing the plans associated with the opportunities associated with
conjuncts of goals. Even in relatively unstable domains, however, islands of stability can
be recognized (in that the planner is collecting plans that are clustered around frequently
recurring goals) and the efforts in building optimized plans associated with opportunities
can still be amortized over multiple uses.

There is a trade-off associated with the third benefit. It would be easy to construct adver-
sary arguments to show that an early decision to combine goals may lead to worse perfor-
mance. There are two central assumptions necessary for this sort of learning to be of use:
first, that there is strong regularity in the set of goals that arise and occur simultaneously,
and second, that the domain is complex enough that policy decisions that simply reduce
that complexity may be beneficial. We argue that many real-world domains have both of
these characteristics.

In general, it is difficult to evaluate the performance of a system like TRUCKER. This
is because CBP itself assumes a domain that is stable with respect to goals and the external
environment, yet both of these are, within a simulated world, controlled by the system
developers. To fit this assumption, we constructed a world for TRUCKER that reflected this
assumption of overall global order. Within this world, TRUCKER runs extremely well, reusing
a quickly stabilized case library. While the world that TRUCKER functions within was created
by us, however, it does truly reflect our view of the nature of the structured environments
which themselves support intelligent behavior.

Of course, in other simulated worlds in which there is a far greater degree of randomness,
TRUCKER may very well exhibit all of the failings that we fear in a case-based system: reuse
of inappropriate cases, explosion of a case library, and exhaustive search of the space of
possible plans. To hand TRUCKER or any system this type of world, however, actually argues
that our world is itself random. We confess that we have difficulties with this notion.

5.5. Psychological evidence

There is also strong evidence that human memory shares many of the organizational prop-
erties proposed in CHEF and TRUCKER. Psychological evidence also suggests that features
that predict possible planning failures are more useful in retrieving past cases than are equally
similar but less predictive features (Johnson & Seifert, 1991).

We conducted several experiments to investigate the retrieval of prior cases based on
new cues. In a single-session reminding paradigm (based on Gentner & Landers, 1985),
subjects studied a set of base stories and then later were given a set of cue stories and
asked to write down any base stories that come to mind. Two types of cues were examined:
predictive features subsets included only the thematic features apparent before the planning
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decision was made, and were predictive of a pending planning failure; by contrast, outcome
features included the thematic elements containing the same planning decision and its out-
come. The main memory findings were that both predict and outcome cues were retrieved
from memory at higher-than-chance level. However, the predict-theme cues produced sig-
nificantly fewer mismatch intrusions than did outcome features. Therefore, the stories con-
taining predictive features led to more reliable access to matching stories in memory.

It appears that the predictive cues characterized the themes of the base stories more
uniquely than the outcome cues did. Thus, predictive features appear to more distinctively
characterize the theme, and therefore are more successful in recognizing when the past
episode is in fact relevant in current processing. These results confirm the predictive features
approach used in CHEF and TRUCKER. In human memory, indices related to when and how
to make a particular decision are more useful than equally related information that is too
late in the decision process to affect the choice.

Likewise, a classic finding by Zeigarnik (Zeigarnik, 1927) has claimed that interrupted
(suspended) problems are remembered better than solved problems. Zeigarnik found that,
among a set of 20 simple problems, interrupted tasks were better remembered than com-
pleted ones in a free recall test. This ‘“Zeigarnik effect” was explained by appealing to
social and motivational factors (Prentice, 1944). However, predicting whether interrupted
problems would be more accessible in memory may involve more subtle cognitive factors
operating in the experimental task (Seifert & Patalano, 1991). What, if any, are the differ-
ences in the way in which we encode and remember completed versus interrupted problems?

In a series of experiments, we explored factors including the nature of the interruption,
the processing time spent on problems, and the context of set size of the incomplete prob-
lems as they affect memory. We attempted to match Zeigarnik’s (1927) methods as closely
as possible, and to replicate the effect of better memory for incomplete problems. Using
word problems, we manipulated task interruption versus completion on each problem. Our
results showed that free recall memory for completed tasks is better than memory for inter-
rupted tasks. However, this is not surprising given that subjects spent substantially more
time, both when correct and incorrect, on the completed problems than on the incomplete
problems, a difference required if one wants to manipulate which problems are completed
and keep the set size of the two conditions equal.

We hypothesized that, under blocked rather than simple interrupted conditions, a height-
ened memorability exists for blocked problems when they are outnumbered by successful
solution attempts. We created such a situation by modifying the earlier experiments to in-
clude more difficult problems and allowed subjects less time to work on each problem.
The results showed equal percentages of recall of the two problem types when roughly
equivalent set sizes were used. Fewer unsolved problems may become memorable because
they violate subjects’ expectations about their performance. In these experiments, experience
with the problem set may have created expectations of success or failure, so that when
the problem solver is surprised, the problem becomes more memorable. The availability
of exceptions in memory is a well-known effect in the person perception literature (Hastie
& Kumar, 1979), and as expectation failure in inference and -schema effects.

The enhanced memorability of the Zeigarnik effect appears to be due to differences in
encoding based on expectation failures that mark significant events that deviate from predic-
tions. This serves to highlight memories that may be important and to enhance availability
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for later processing. Under these conditions, the status of completion can serve as a useful
index to past problem situations. Therefore, we conclude that heightened memorability for
suspended goals is a reliable phenomenon, but may be best explained in terms of differences
in the nature of encoding for some problems (motivated by expectation failure) rather than
any separate memory store or content differences in suspended goal situations.

5.6. Beyond TRUCKER: Memory and agency

The TRUCKER domain was a good one for studying issues of opportunistic behavior and
learning, since the inherent intractability and time pressure of the domain forced solutions
that did not depend on complete projection and modeling of the world. However, there
are a number of limitations with this domain. First of all, although opportunity recogni-
tion is crucial, there is really only one type of opportunity that can be exploited in this
domain: the presence of a truck in a particular area. Secondly, although multiple trucks
need to be tracked, and multiple orders need to be interleaved, there is not much additional
interesting interaction between plans. Since we believe that a large part of the development
of domain expertise involves learning the interactions between goals and plans that typically
arise in conjunction, a model in a domain that is richer in interactions would provide more
challenges to the approach.

TRUCKER executes plan steps by pulling them off an agenda one at a time. As a result,
standard execution is rather rigid. On the other hand, activation of suspended goals is driven
by recognition of features in the execution environment. As a result, this activation is quite
flexible. In developing the opportunistic memory architecture, we noted that it could be
used not only for the suspension and reawakening of goals, but for the control of planning
and action on a finer grain. In essence, this amounted to a decision to discard the queue-
based execution system of TRUCKER, and draw execution under the same uniform memory
architecture as opportunity recognition. The result is an executive that is driven from the
top by the activation of plans and actions aimed at satisfying the system’s current goals
and from the bottom by the presense of features in the world that allow their execution.

In current work on the RUNNER system (Hammond et al., 1990), we are looking at the
idea that a case-based system can be used to control the execution as well as the production
of plans. In this system, we are developing a unified framework for planning and activity
that is based on the idea that most of these aspects of behavior in the world stem from
the application of well-rehearsed plans, rather than creation of new ones. Our movement
into the study of action, then, stems directly from the core concepts of case-based reason-
ing that define tasks in terms of memories of how they were accomplished in the past.

We are also looking at a further implication of case-based reasoning that we call enforce-
ment (Hammond, 1991). Enforcement parallels learning in that both are aimed at building
a functional correspondence between the external world and an agent’s model. In learning,
this is done by changing the agent’s model and in enforcement, by changing the agent’s world.

The goal associated with enforcement is the same as that associated with learning in
the context of planning—the development of a set of effective plans that can be applied
to satisfy the agent’s goals. The path toward this goal, however, is one of shaping the world
to fit the agent’s plans rather than shaping the agent to fit the world. The idea of enforcement
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rises out of the observation that the results of long-term interaction between agent and en-
vironment include an adaptation of both the environment and the agent. Enforcement is
linked to case-based reasoning in that it is aimed at stabilizing the environment with respect
to the planner’s already existing plans. The result of enforcement, then, is a case library
of plans that can be run in a world that is itself fine-tuned for them just as they are for it.

6. Conclusions

Our current work rests on the notion that intelligent behavior is a long-term activity, and
that much of it is aimed at learning the structure of a domain. Our central premise is that
the stability of the world includes stability over the collections of goals that we will be
called upon to satisfy, the types of difficulties we will encounter, and the kinds of condi-
tions that we will be forced to overcome. It is only through learning that an agent can develop
a true expertise in any domain. And it is only through an ongoing attempt to satisfy goals
in a dynamic world that chances for learning can ever be encountered.

Our work began with the simple notion of applying case-based reasoning to the problem
of deliberative planning (Hammond, 1986a). A natural progression of ideas has followed
from this: reuse of plans (Hammond, 1986b; Hammond, 1990a), learning from failure
(Hammond, 1986¢; Hammond, 1990b), learning from opportunity (Hammond et al., 1988;
Hammond et al., 1989; Seifert & Patalano, 1991; Johnson & Seifert, 1991), memory-based
control of action (Hammond et al., 1990), and enforcement (Hammond, 1990c). These
ideas are straightforwardly implied by case-based reasoning and are inextricably linked
to issues of learning from planning and execution.

Case-Based Planning: Case-based planning both requires and facilitates learning. By defini-
tion, a case-based system reuses the products of its own reasoning, and as a result learns
from that reasoning. More importantly, a case-based planner is able to determine when
it should learn as well as whar it should learn, because it is able to judge how well retrieved
cases fit new situations (Hammond, 1986a). This is the simplest form of learning done
by a case-based planner. The more interesting forms arise in response to failure.

Failure-Based Learning: By its nature, a case-based planner can create and execute plans
without ever validating the effects of each action within them. As a result, a case-based
planner can fail. While this can be problematic, it is actually one of the sources of power
for a case-based system, in that failure provides the system with both the opportunity to
learn and the indication that it is time to do so. In CHEE, this resulted in a system that would
learn about the problematic interactions between goals and operators in the domain as well
as learning about the plans that would avoid them. It learned to anticipate and avoid the
actual problems that occurred in its domain.

Learning from Opportunity: TRUCKER was then designed to recognize and fill gaps corre-
sponding to knowledge about planning optimizations and execution opportunities. Just as
memory was used in CHEF to avoid failures experienced by the system, memory was used
in TRUCKER to exploit opportunities. In both cases, the systems learned by using experience
to shape their knowledge of plans and the conditions under which they should be run.
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Opportunistic Memory: One unique aspect of TRUCKER was the understanding system
it used to construct a dynamic model of its environment, as well as to recognize opportuni-
ties to satisfy suspended goals. This recognition system was built on top of DMAP (Martin,
1990), a case-based model of understanding. In particular, our main interest in TRUCKER
was learning the plans for frequently occurring conjuncts of goals. A by-product of work,
however, was the realization that DM AP was a powerful tool not only for the recognition of
execution-time opportunities for goal satisfaction, but also for the production of plans and
the control of action. It was this realization that has led to our current work on RUNNER.

In RUNNER, we are looking at the idea that a case-based system can be used to control
the execution as well as the production of plans. In this system, we are developing a unified
framework for planning and activity that is based on the idea that most of these aspects
of behavior in the world stem from the application of well-rehearsed plans, rather than
creation of new ones. Our movement into the study of action, then, stems directly from
the core concepts of case-based reasoning that define tasks in terms of memories of how
they were accomplished in the past.

Enforcement: One last implication of case-based reasoning that we have recently been
exploring is an idea we call enforcement (Hammond, 1991). Enforcement parallels learning
in that both are aimed at building a functional correspondence between the external world
and an agent’s model. In learning, this is done by changing the agent’s model and in en-
forcement, by changing the agent’s world.

The goal associated wth enforcement is the same as that associated with learning in the
context of planning—the development of a set of effective plans that can be applied to satisfy
the agent’s goals. The path toward this goal, however, is one of shaping the world to fit
the agent’s plans rather than shaping the agent to fit the world. The idea of enforcement
rises out of the observation that the results of long-term interaction between agent and en-
vironment include an adaptation of both the environment and the agent. Enforcement is
linked to case-based reasoning in that it is aimed at stabilizing the environment with respect
to the planner’s already existing plans. The result of enforcement, then, is a case library
of plans that can be run in a world that is itself fine-tuned for them just as they are for it.

Each of these pieces of research builds on the foundation of case-based reasoning and
learning, and each is a necessary consequent of the commitment to case-based reasoning
as a model of cognition. Further, each is linked to the idea that intelligent behavior is an
ongoing process of planning, doing, and learning in response to the demands of a dynamic
environment. Together, these individual processes—learning from failure, learning from
opportunity, opportunistic memory, and enforcement—point toward a model of agency, or
what it means to be an autonomous agent in a changing world.
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Notes

1. In what follows, the phrases *‘planning problems” and “execution problems” will refer to those problems that
arise as a result of the interaction between planning steps. The former refers to those problems that are discovered
during the planning phase, while the latter refers to those that are not discovered until execution. The word
“goal” will be used in the standard way to refer to those states that a planner is trying to actively achieve.

2. By “associated with,” we mean that the knowledge structure representing a goal is linked to the knowledge
structures describing the opportunities under which it can be satisfied. This allows the former to be activated
as soon as the latter is recognized.

3. One could argue that in this example the planner does completely preplan for this goal and that the plan is
to get the orange juice on the way home. But this is begging the question, in that we can take any version
of a plan designed to satisfy this goal and still argue that opportunities to satisfy it in other ways should be
exploited. For example, if John passes by someone giving away free samples of orange juice on the way to
work, we would certainly want him to recognize that his is a chance to satisfy a currently suspended goal.
The point is that we want a planner to exploit opportunities to satisfy goals, whether or not it has already
planned for them.

4, A feature is “‘special” if it does not predictably reoccur as a product of the planner’s policy decisions.

5. One could argue that our planner does not need to learn the new plan in this example, in that he can just
rebuild this plan from scratch the next time this situation arises. But this is just begging the question, because
it is easy to change the example slightly—by raising the cost of execution-time planning or obscuring the visual
cues—thus making the anticipation of the goal conjunct far more valuable.

6. The idea of predictive encoding has been implemented in both TRUCKER (Hammond et al., 1989; K.J. Ham-
mond & Converse, 1989) and ruNNER (Hammond et al. 1990). Other examinations of this idea can be found
in Robinson and Kolodner (1991).

7. There are two sources to the stability of the TRUCKER domain. The first is the fact that most shipping is be-
tween standard clients, and so stable sets of pickups can be established. The second is through overall patterns
of activity in which certain neighborhoods (e.g., industrial, retail) have their own level of traffic even though
there may be fluctuations at individual locations. The plans for the former can be reused without adaptation,
while the plans for the latter can be used with only minor changes.
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